Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Appl Microbiol ; 135(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38749675

RESUMO

AIMS: In previous studies, it was demonstrated that co-culturing Clostridium pasteurianum and Geobacter sulfurreducens triggers a metabolic shift in the former during glycerol fermentation. This shift, attributed to interspecies electron transfer and the exchange of other molecules, enhances the production of 1,3-propanediol at the expense of the butanol pathway. The aim of this investigation is to examine the impact of fumarate, a soluble compound usually used as an electron acceptor for G. sulfurreducens, in the metabolic shift previously described in C. pasteurianum. METHODS AND RESULTS: Experiments were conducted by adding along with glycerol, acetate, and different quantities of fumarate in co-cultures of G. sulfurreducens and C. pasteurianum. A metabolic shift was exhibited in all the co-culture conditions. This shift was more pronounced at higher fumarate concentrations. Additionally, we observed G. sulfurreducens growing even in the absence of fumarate and utilizing small amounts of this compound as an electron donor rather than an electron acceptor in the co-cultures with high fumarate addition. CONCLUSIONS: This study provided evidence that interspecies electron transfer continues to occur in the presence of a soluble electron acceptor, and the metabolic shift can be enhanced by promoting the growth of G. sulfurreducens.


Assuntos
Clostridium , Fermentação , Fumaratos , Geobacter , Geobacter/metabolismo , Geobacter/crescimento & desenvolvimento , Fumaratos/metabolismo , Clostridium/metabolismo , Clostridium/crescimento & desenvolvimento , Transporte de Elétrons , Glicerol/metabolismo , Técnicas de Cocultura , Propilenoglicóis/metabolismo
2.
Mol Microbiol ; 116(4): 1124-1139, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34423503

RESUMO

Geobacter sulfurreducens utilizes extracellular electron acceptors such as Mn(IV), Fe(III), syntrophic partners, and electrodes that vary from +0.4 to -0.3 V versus standard hydrogen electrode (SHE), representing a potential energy span that should require a highly branched electron transfer chain. Here we describe CbcBA, a bc-type cytochrome essential near the thermodynamic limit of respiration when acetate is the electron donor. Mutants-lacking cbcBA ceased Fe(III) reduction at -0.21 V versus SHE, could not transfer electrons to electrodes between -0.21 and -0.28 V, and could not reduce the final 10%-35% of Fe(III) minerals. As redox potential decreased during Fe(III) reduction, cbcBA was induced with the aid of the regulator BccR to become one of the most highly expressed genes in G. sulfurreducens. Growth yield (CFU/mM Fe(II)) was 112% of WT in ∆cbcBA, and deletion of cbcL (an unrelated bc-cytochrome essential near -0.15 V) in ΔcbcBA increased yield to 220%. Together with ImcH, which is required at high redox potentials, CbcBA represents a third cytoplasmic membrane oxidoreductase in G. sulfurreducens. This expanding list shows how metal-reducing bacteria may constantly sense redox potential to adjust growth efficiency in changing environments.


Assuntos
Citocromos/genética , Citocromos/metabolismo , Transporte de Elétrons , Compostos Férricos/metabolismo , Geobacter/genética , Geobacter/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , DNA Bacteriano , Metabolismo Energético , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Geobacter/crescimento & desenvolvimento , Proteínas de Membrana/genética , Família Multigênica , Oxirredução , Oxirredutases/genética , Oxirredutases/metabolismo , Respiração
3.
Proc Natl Acad Sci U S A ; 116(41): 20716-20724, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31548422

RESUMO

Metal-reducing bacteria direct electrons to their outer surfaces, where insoluble metal oxides or electrodes act as terminal electron acceptors, generating electrical current from anaerobic respiration. Geobacter sulfurreducens is a commonly enriched electricity-producing organism, forming thick conductive biofilms that magnify total activity by supporting respiration of cells not in direct contact with electrodes. Hypotheses explaining why these biofilms fail to produce higher current densities suggest inhibition by formation of pH, nutrient, or redox potential gradients; but these explanations are often contradictory, and a lack of direct measurements of cellular growth within biofilms prevents discrimination between these models. To address this fundamental question, we measured the anabolic activity of G. sulfurreducens biofilms using stable isotope probing coupled to nanoscale secondary ion mass spectrometry (nanoSIMS). Our results demonstrate that the most active cells are at the anode surface, and that this activity decreases with distance, reaching a minimum 10 µm from the electrode. Cells nearest the electrode continue to grow at their maximum rate in weeks-old biofilms 80-µm-thick, indicating nutrient or buffer diffusion into the biofilm is not rate-limiting. This pattern, where highest activity occurs at the electrode and declines with each cell layer, is present in thin biofilms (<5 µm) and fully grown biofilms (>20 µm), and at different anode redox potentials. These results suggest a growth penalty is associated with respiring insoluble electron acceptors at micron distances, which has important implications for improving microbial electrochemical devices as well as our understanding of syntrophic associations harnessing the phenomenon of microbial conductivity.


Assuntos
Biofilmes/crescimento & desenvolvimento , Respiração Celular , Eletricidade , Eletrodos , Geobacter/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Espectrometria de Massa de Íon Secundário/métodos , Fenômenos Bioquímicos , Fontes de Energia Bioelétrica , Geobacter/crescimento & desenvolvimento , Nanotecnologia , Oxirredução
4.
Environ Microbiol ; 23(1): 299-315, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33185968

RESUMO

Geobacter sulfurreducens is a model bacterium to study the degradation of organic compounds coupled to the reduction of Fe(III). The response of G. sulfurreducens to the electron donors acetate, formate, hydrogen and a mixture of all three with Fe(III) citrate as electron acceptor was studied using comparative physiological and proteomic approaches. Variations in the supplied electron donors resulted in differential abundance of proteins involved in the citric acid cycle (CAC), gluconeogenesis, electron transport, and hydrogenases and formate dehydrogenase. Our results provided new insights into the electron donor metabolism of G. sulfurreducens. Remarkably, formate was the preferred electron donor compared to acetate, hydrogen, or acetate plus hydrogen. When hydrogen was the electron donor, formate was formed, which was associated with a high abundance of formate dehydrogenase. Notably, abundant proteins of two CO2 fixation pathways (acetyl-CoA pathway and the reversed oxidative CAC) corroborated chemolithoautotrophic growth of G. sulfurreducens with formate or hydrogen and CO2 , and provided novel insight into chemolithoautotrophic growth of G. sulfurreducens.


Assuntos
Acetatos/metabolismo , Crescimento Quimioautotrófico/fisiologia , Compostos Férricos/metabolismo , Formiatos/metabolismo , Geobacter/metabolismo , Ciclo do Ácido Cítrico/fisiologia , Transporte de Elétrons/fisiologia , Elétrons , Formiato Desidrogenases/metabolismo , Geobacter/genética , Geobacter/crescimento & desenvolvimento , Gluconeogênese/fisiologia , Hidrogênio/química , Compostos Orgânicos/metabolismo , Oxirredução , Proteômica
5.
Appl Environ Microbiol ; 87(17): e0070621, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34190605

RESUMO

A strain of Geobacter sulfurreducens, an organism capable of respiring solid extracellular substrates, lacking four of five outer membrane cytochrome complexes (extABCD+ strain) grows faster and produces greater current density than the wild type grown under identical conditions. To understand cellular and biofilm modifications in the extABCD+ strain responsible for this increased performance, biofilms grown using electrodes as terminal electron acceptors were sectioned and imaged using electron microscopy to determine changes in thickness and cell density, while parallel biofilms incubated in the presence of nitrogen and carbon isotopes were analyzed using NanoSIMS (nanoscale secondary ion mass spectrometry) to quantify and localize anabolic activity. Long-distance electron transfer parameters were measured for wild-type and extABCD+ biofilms spanning 5-µm gaps. Our results reveal that extABCD+ biofilms achieved higher current densities through the additive effects of denser cell packing close to the electrode (based on electron microscopy), combined with higher metabolic rates per cell compared to the wild type (based on increased rates of 15N incorporation). We also observed an increased rate of electron transfer through extABCD+ versus wild-type biofilms, suggesting that denser biofilms resulting from the deletion of unnecessary multiheme cytochromes streamline electron transfer to electrodes. The combination of imaging, physiological, and electrochemical data confirms that engineered electrogenic bacteria are capable of producing more current per cell and, in combination with higher biofilm density and electron diffusion rates, can produce a higher final current density than the wild type. IMPORTANCE Current-producing biofilms in microbial electrochemical systems could potentially sustain technologies ranging from wastewater treatment to bioproduction of electricity if the maximum current produced could be increased and current production start-up times after inoculation could be reduced. Enhancing the current output of microbial electrochemical systems has been mostly approached by engineering physical components of reactors and electrodes. Here, we show that biofilms formed by a Geobacter sulfurreducens strain producing ∼1.4× higher current than the wild type results from a combination of denser cell packing and higher anabolic activity, enabled by an increased rate of electron diffusion through the biofilms. Our results confirm that it is possible to engineer electrode-specific G. sulfurreducens strains with both faster growth on electrodes and streamlined electron transfer pathways for enhanced current production.


Assuntos
Biofilmes , Espaço Extracelular/metabolismo , Geobacter/química , Geobacter/fisiologia , Eletricidade , Eletrodos , Transporte de Elétrons , Espaço Extracelular/química , Geobacter/crescimento & desenvolvimento
6.
Environ Microbiol ; 22(1): 243-254, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31657092

RESUMO

Geobacter species can secrete free redox-active flavins, but the role of these flavins in the interspecies electron transfer (IET) of Geobacter direct interspecies electron transfer (DIET) co-culture is unknown. Here, we report the presence of a new riboflavin-mediated interspecies electron transfer (RMIET) process in a traditional Geobacter DIET co-culture; in this process, riboflavin contributes to IET by acting as a free-form electron shuttle between free Geobacter species and serving as a bound cofactor of some cytochromes in Geobacter co-culture aggregates. Multiple lines of evidence indicate that RMIET facilitates the primary initiation of syntrophic growth between Geobacter species before establishing the DIET co-culture and provides additional ways alongside the DIET to transfer electrons to achieve electric syntrophy between Geobacter species. Redox kinetic analysis of riboflavin on either Geobacter species demonstrated that the Gmet_2896 cytochrome acts as the key riboflavin reduction site, while riboflavin oxidation by Geobacter sulfurreducens is the rate-limiting step in RMIET, and the RMIET makes only a minor contribution to IET in Geobacter DIET co-culture. The discovery of a new RMIET process in Geobacter DIET co-culture suggests the complexity of IET in syntrophic bacterial communities and provides suggestions for the careful examination of the IET of other syntrophic co-cultures.


Assuntos
Geobacter/metabolismo , Riboflavina/metabolismo , Técnicas de Cocultura , Citocromos/metabolismo , Transporte de Elétrons , Geobacter/crescimento & desenvolvimento , Cinética , Oxirredução
7.
Ecotoxicol Environ Saf ; 205: 111174, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32853867

RESUMO

Smelting wastewater is characterized with high concentration of toxic heavy metals and high acidity, which must be properly treated before discharge. Here, bioelectrochemical system (BES) coupled with thermoelectric generator (TEG) was first demonstrated to simultaneously treat organic wastewater and smelting wastewater by utilizing the simulated waste heat that was abundant in smelting factories. By modulating the input voltage generated from simulated waste heat via TEG to 0, 1.0 and 2.0 V, almost all the Cu2+, Cd2+ and Co2+ in smelting wastewater were sequentially recovered with a respective rate of 121.17, 158.20 and 193.87 mg L-1 d-1. Cu2+ was bioelectrochemically recovered as Cu0. While, Cd2+ and Co2+ were recovered by electrodeposition as Cd(OH)2, CdCO3 or Co(OH)2 on cathodic surface. High throughput sequencing analysis showed that the microbial community of anodic biofilm was greatly shifted after successive treatment by batch-mode. Desulfovibrio (17.00%), Megasphaera (11.81%), Geobacter (10.36%) and Propionibacterium (8.64%) were predominant genera in anodic biofilm enriched from activated sludge in BES before treatment. After successive treatment by batch-mode, Geobacter (34.76%), Microbacter (8.60%) and Desulfovibrio (5.33%) were shifted as the major genera. Economic analysis revealed that it was feasible to use TEG to substitute electrical grid energy to integrate with BES for wastewater treatment. In addition, literature review indicated that it was not uncommon for the coexistence of waste heat with typical pollutants (e.g. heavy metal ions and various biodegradation-resistant organic wastes) that could be treated by BES in different kinds of factories or geothermal sites. This study provides novel insights to expand the application potentials of BES by integrating with TEG to utilize widespread waste heat.


Assuntos
Reatores Biológicos/microbiologia , Técnicas Eletroquímicas/métodos , Metais Pesados/análise , Águas Residuárias/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Fontes de Energia Bioelétrica , Biofilmes/crescimento & desenvolvimento , Eletrodos , Geobacter/crescimento & desenvolvimento , Temperatura Alta , Esgotos/microbiologia
8.
Bioprocess Biosyst Eng ; 43(5): 851-861, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31919604

RESUMO

Conductive magnetite (Fe3O4) has been applied into some anaerobic bioprocesses to accelerate direct interspecies electron transfer (DIET), however, Fe3O4 is usually dissolved by iron-reducing bacteria under anaerobic conditions, resulting in the loss of magnetite. Therefore, submicron magnetite particles were added to the sequencing batch reactor (SBR) to build a Fe3O4/SBR system, which could alleviate magnetite dissolution and simultaneously remove tribromophenol (TBP) effectively. The average removal efficiencies of chemical oxygen demand (COD) and TBP in Fe3O4/SBR system were 81% and 91%, respectively, which were 51% and 18% higher than those of the control group without Fe3O4 (SBR system). The enhanced TBP biodegradation was likely related to potential DIET, which was supported by the scanning electron microscopy (SEM) analysis, the increase of dehydrogenase and heme c (fivefold and 1.7-fold), and the enrichment of iron-redoxing bacteria (Geobacter and Thiobacillus). Furthermore, magnetite mainly remained intact in structure as indicated by X-ray diffraction (XRD), which might be ascribed to in situ iron redox cycle and magnetite biosynthesis via Magnetospirillum. Notably, the content of hydrogen peroxide (H2O2) and hydroxyl radical (⋅OH) in Fe3O4/SBR system was 4-5 times higher than that of SBR system. These findings could provide insights into the development of cost-effective strategy for the removal of refractory organic pollutants.


Assuntos
Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Óxido Ferroso-Férrico/química , Geobacter/crescimento & desenvolvimento , Hidrocarbonetos Bromados/metabolismo , Fenol/metabolismo , Thiobacillus/crescimento & desenvolvimento , Hidrocarbonetos Bromados/química , Fenol/química
9.
Appl Environ Microbiol ; 85(23)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31562171

RESUMO

Conductive nanomaterials have been reported to accelerate methanogenesis by promoting direct interspecies electron transfer (DIET), while their effects seem to vary depending on operational conditions. The present study examined the effects of magnetite nanoparticles (MNPs) on methanogenesis from acetate by soil-derived anaerobic cultures under continuous agitation. We found that MNPs accelerated methanogenesis in agitated cultures, as has been observed previously for static cultures. Metabarcoding of 16S rRNA gene amplicons showed that Methanosarcina substantially increased in the presence of MNPs, while DIET-related Geobacter did not occur. Metagenomic and metatranscriptomic analyses confirmed the predominance of Methanosarcina in MNP-supplemented agitated cultures. In addition, genes coding for acetoclastic methanogenesis, but not those for hydrogenotrophic methanogenesis, were abundantly expressed in the dominant Methanosarcina in the presence of MNPs. These results suggest that MNPs stimulate acetoclastic methanogenesis under continuous agitation.IMPORTANCE Previous studies have shown that conductive nanoparticles, such as MNPs, accelerate methanogenesis and suggested that MNPs facilitate DIET between exoelectrogenic bacteria and methanogenic archaea. In these methanogens, electrons thus obtained are considered to be used for hydrogenotrophic methanogenesis. However, the present work provides evidence that shows that MNPs accelerate DIET-independent acetoclastic methanogenesis under continuous agitation. Since most of previous studies have examined effects of MNPs in static or weakly agitated methanogenic cultures, results obtained in the present work suggest that hydraulic conditions definitively determine how MNPs accelerate methanogenesis. In addition, the knowledge obtained in this study is useful for engineers operating stirred-tank anaerobic digesters, since we show that MNPs accelerate methanogenesis under continuous agitation.


Assuntos
Acetatos/metabolismo , Geobacter/crescimento & desenvolvimento , Nanopartículas de Magnetita/química , Metano/metabolismo , Methanosarcina/crescimento & desenvolvimento , Crescimento Quimioautotrófico
10.
Microb Ecol ; 78(3): 618-630, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30759269

RESUMO

Geobacter sulfurreducens pili enable extracellular electron transfer and play a role in secretion of c-type cytochromes such as OmcZ. PilA-deficient mutants of G. sulfurreducens have previously been shown to accumulate cytochromes within their membranes. This cytochrome retaining phenotype allowed for enhanced growth of PilA-deficient mutants in electron donor and carbon-limited conditions where formate and fumarate are provided as the sole electron donor and acceptor with no supplementary carbon source. Conversely, wild-type G. sulfurreducens, which has normal secretion of cytochromes, has comparative limited growth in these conditions. This growth is further impeded for OmcZ-deficient and OmcS-deficient mutants. A PilB-deficient mutant which prevents pilin production but allows for secretion of OmcZ had moderate growth in these conditions, indicating a role for cytochrome localization to enabling survival in the electron donor and carbon-limited conditions. To determine which pathways enhanced growth using formate, Sequential Window Acquisition of all Theoretical Mass Spectra mass spectrometry (SWATH-MS) proteomics of formate adapted PilA-deficient mutants and acetate grown wild type was performed. PilA-deficient mutants had an overall decrease in tricarboxylic acid (TCA) cycle enzymes and significant upregulation of electron transport chain associated proteins including many c-type cytochromes and [NiFe]-hydrogenases. Whole genome sequencing of the mutants shows strong convergent evolution and emergence of genetic subpopulations during adaptation to growth on formate. The results described here suggest a role for membrane constrained c-type cytochromes to the enhancement of survival and growth in electron donor and carbon-limited conditions.


Assuntos
Carbono/metabolismo , Proteínas de Fímbrias/genética , Geobacter/crescimento & desenvolvimento , Citocromos/metabolismo , Transporte de Elétrons , Elétrons , Proteínas de Fímbrias/química , Proteínas de Fímbrias/deficiência , Fímbrias Bacterianas/química , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Geobacter/química , Geobacter/genética , Geobacter/metabolismo , Espectrometria de Massas , Mutação , Proteômica
11.
Microb Ecol ; 76(3): 660-667, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29500492

RESUMO

Previous studies of acetate-promoted bioremediation of uranium-contaminated aquifers focused on Geobacter because no other microorganisms that can couple the oxidation of acetate with U(VI) reduction had been detected in situ. Monitoring the levels of methyl CoM reductase subunit A (mcrA) transcripts during an acetate-injection field experiment demonstrated that acetoclastic methanogens from the genus Methanosarcina were enriched after 40 days of acetate amendment. The increased abundance of Methanosarcina corresponded with an accumulation of methane in the groundwater. In order to determine whether Methanosarcina species could be participating in U(VI) reduction in the subsurface, cell suspensions of Methanosarcina barkeri were incubated in the presence of U(VI) with acetate provided as the electron donor. U(VI) was reduced by metabolically active M. barkeri cells; however, no U(VI) reduction was observed in inactive controls. These results demonstrate that Methanosarcina species could play an important role in the long-term bioremediation of uranium-contaminated aquifers after depletion of Fe(III) oxides limits the growth of Geobacter species. The results also suggest that Methanosarcina have the potential to influence uranium geochemistry in a diversity of anaerobic sedimentary environments.


Assuntos
Acetatos/metabolismo , Água Subterrânea/microbiologia , Methanosarcina/metabolismo , Urânio/metabolismo , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Geobacter/crescimento & desenvolvimento , Geobacter/metabolismo , Água Subterrânea/química , Metano/análise , Methanosarcina/genética , Methanosarcina/crescimento & desenvolvimento , Oxirredução , Urânio/análise , Poluentes Químicos da Água/análise
12.
J Bacteriol ; 199(19)2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28674067

RESUMO

Geobacter sulfurreducens generates electrical current by coupling intracellular oxidation of organic acids to the reduction of proteins on the cell surface that are able to interface with electrodes. This ability is attributed to the bacterium's capacity to respire other extracellular electron acceptors that require contact, such as insoluble metal oxides. To directly investigate the genetic basis of electrode-based respiration, we constructed Geobacter sulfurreducens transposon-insertion sequencing (Tn-Seq) libraries for growth, with soluble fumarate or an electrode as the electron acceptor. Libraries with >33,000 unique insertions and an average of 9 insertions/kb allowed an assessment of each gene's fitness in a single experiment. Mutations in 1,214 different genomic features impaired growth with fumarate, and the significance of 270 genes unresolved by annotation due to the presence of one or more functional homologs was determined. Tn-Seq analysis of -0.1 V versus standard hydrogen electrode (SHE) electrode-grown cells identified mutations in a subset of genes encoding cytochromes, processing systems for proline-rich proteins, sensory networks, extracellular structures, polysaccharides, and metabolic enzymes that caused at least a 50% reduction in apparent growth rate. Scarless deletion mutants of select genes identified via Tn-Seq revealed a new putative porin-cytochrome conduit complex (extABCD) crucial for growth with electrodes, which was not required for Fe(III) oxide reduction. In addition, four mutants lacking components of a putative methyl-accepting chemotaxis-cyclic dinucleotide sensing network (esnABCD) were defective in electrode colonization but grew normally with Fe(III) oxides. These results suggest that G. sulfurreducens possesses distinct mechanisms for recognition, colonization, and reduction of electrodes compared to Fe(III) oxides.IMPORTANCE Since metal oxide electron acceptors are insoluble, one hypothesis is that cells sense and reduce metals using the same molecular mechanisms used to form biofilms on electrodes and produce electricity. However, by simultaneously comparing thousands of Geobacter sulfurreducens transposon mutants undergoing electrode-dependent respiration, we discovered new cytochromes and chemosensory proteins supporting growth with electrodes that are not required for metal respiration. This supports an emerging model where G. sulfurreducens recognizes surfaces and forms conductive biofilms using mechanisms distinct from those used for growth with metal oxides. These findings provide a possible explanation for studies that correlate electricity generation with syntrophic interspecies electron transfer by Geobacter and reveal many previously unrecognized targets for engineering this useful capability in other organisms.


Assuntos
Compostos Férricos/metabolismo , Genoma Bacteriano , Geobacter/genética , Geobacter/metabolismo , Mutação , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Elementos de DNA Transponíveis , Eletrodos , Transporte de Elétrons , Fumaratos/metabolismo , Fumaratos/farmacologia , Biblioteca Genômica , Geobacter/efeitos dos fármacos , Geobacter/crescimento & desenvolvimento , Oxirredução
13.
Appl Environ Microbiol ; 83(6)2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28087529

RESUMO

Anode-associated multispecies exoelectrogenic biofilms are essential for the function of bioelectrochemical systems (BESs). The individual activities of anode-associated organisms and physiological responses resulting from coculturing are often hard to assess due to the high microbial diversity in these systems. Therefore, we developed a model multispecies biofilm comprising three exoelectrogenic proteobacteria, Shewanella oneidensis, Geobacter sulfurreducens, and Geobacter metallireducens, with the aim to study in detail the biofilm formation dynamics, the interactions between the organisms, and the overall activity of an exoelectrogenic biofilm as a consequence of the applied anode potential. The experiments revealed that the organisms build a stable biofilm on an electrode surface that is rather resilient to changes in the redox potential of the anode. The community operated at maximum electron transfer rates at electrode potentials that were higher than 0.04 V versus a normal hydrogen electrode. Current densities decreased gradually with lower potentials and reached half-maximal values at -0.08 V. Transcriptomic results point toward a positive interaction among the individual strains. S. oneidensis and G. sulfurreducens upregulated their central metabolisms as a response to cultivation under mixed-species conditions. G. sulfurreducens was detected in the planktonic phase of the bioelectrochemical reactors in mixed-culture experiments but not when it was grown in the absence of the other two organisms.IMPORTANCE In many cases, multispecies communities can convert organic substrates into electric power more efficiently than axenic cultures, a phenomenon that remains unresolved. In this study, we aimed to elucidate the potential mutual effects of multispecies communities in bioelectrochemical systems to understand how microbes interact in the coculture anodic network and to improve the community's conversion efficiency for organic substrates into electrical energy. The results reveal positive interactions that might lead to accelerated electron transfer in mixed-species anode communities. The observations made within this model biofilm might be applicable to a variety of nonaxenic systems in the field.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Biofilmes/crescimento & desenvolvimento , Técnicas Eletroquímicas/métodos , Geobacter/metabolismo , Shewanella/metabolismo , Técnicas de Cocultura , Eletricidade , Eletrodos/microbiologia , Transporte de Elétrons , Geobacter/crescimento & desenvolvimento , Oxirredução , Shewanella/crescimento & desenvolvimento
14.
Appl Environ Microbiol ; 83(9)2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28258137

RESUMO

The possibility that Methanothrix (formerly Methanosaeta) and Geobacter species cooperate via direct interspecies electron transfer (DIET) in terrestrial methanogenic environments was investigated in rice paddy soils. Genes with high sequence similarity to the gene for the PilA pilin monomer of the electrically conductive pili (e-pili) of Geobacter sulfurreducens accounted for over half of the PilA gene sequences in metagenomic libraries and 42% of the mRNA transcripts in RNA sequencing (RNA-seq) libraries. This abundance of e-pilin genes and transcripts is significant because e-pili can serve as conduits for DIET. Most of the e-pilin genes and transcripts were affiliated with Geobacter species, but sequences most closely related to putative e-pilin genes from genera such as Desulfobacterium, Deferribacter, Geoalkalibacter, and Desulfobacula, were also detected. Approximately 17% of all metagenomic and metatranscriptomic bacterial sequences clustered with Geobacter species, and the finding that Geobacter spp. were actively transcribing growth-related genes indicated that they were metabolically active in the soils. Genes coding for e-pilin were among the most highly transcribed Geobacter genes. In addition, homologs of genes encoding OmcS, a c-type cytochrome associated with the e-pili of G. sulfurreducens and required for DIET, were also highly expressed in the soils. Methanothrix species in the soils highly expressed genes for enzymes involved in the reduction of carbon dioxide to methane. DIET is the only electron donor known to support CO2 reduction in Methanothrix Thus, these results are consistent with a model in which Geobacter species were providing electrons to Methanothrix species for methane production through electrical connections of e-pili.IMPORTANCEMethanothrix species are some of the most important microbial contributors to global methane production, but surprisingly little is known about their physiology and ecology. The possibility that DIET is a source of electrons for Methanothrix in methanogenic rice paddy soils is important because it demonstrates that the contribution that Methanothrix makes to methane production in terrestrial environments may extend beyond the conversion of acetate to methane. Furthermore, defined coculture studies have suggested that when Methanothrix species receive some of their energy from DIET, they grow faster than when acetate is their sole energy source. Thus, Methanothrix growth and metabolism in methanogenic soils may be faster and more robust than generally considered. The results also suggest that the reason that Geobacter species are repeatedly found to be among the most metabolically active microorganisms in methanogenic soils is that they grow syntrophically in cooperation with Methanothrix spp., and possibly other methanogens, via DIET.


Assuntos
Transporte de Elétrons , Geobacter/metabolismo , Methanosarcinaceae/metabolismo , Microbiologia do Solo , Dióxido de Carbono/metabolismo , Proteínas de Fímbrias/análise , Proteínas de Fímbrias/genética , Perfilação da Expressão Gênica , Geobacter/crescimento & desenvolvimento , Metagenoma , Metano/metabolismo , Methanosarcinaceae/crescimento & desenvolvimento , Oryza/crescimento & desenvolvimento
15.
Appl Microbiol Biotechnol ; 100(2): 997-1007, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26481622

RESUMO

This study shows that Geobacter sulfurreducens grows on carbon monoxide (CO) as electron donor with fumarate as electron acceptor. Geobacter sulfurreducens was tolerant to high CO levels, with up to 150 kPa in the headspace tested. During growth, hydrogen was detected in very slight amounts (∼5 Pa). In assays with cell-free extract of cells grown with CO and fumarate, production of hydrogen from CO was not observed, and hydrogenase activity with benzyl viologen as electron acceptor was very low. Taken together, this suggested that CO is not utilized via hydrogen as intermediate. In the presence of CO, reduction of NADP(+) was observed at a rate comparable to CO oxidation coupled to fumarate reduction in vivo. The G. sulfurreducens genome contains a single putative carbon monoxide dehydrogenase-encoding gene. The gene is part of a predicted operon also comprising a putative Fe-S cluster-binding subunit (CooF) and a FAD-NAD(P) oxidoreductase and is preceded by a putative CO-sensing transcription factor. This cluster may be involved in a novel pathway for CO oxidation, but further studies are necessary to ascertain this. Similar gene clusters are present in several other species belonging to the Deltaproteobacteria and Firmicutes, for which CO utilization is currently not known.


Assuntos
Monóxido de Carbono/metabolismo , Geobacter/crescimento & desenvolvimento , Geobacter/metabolismo , Benzil Viologênio , Deltaproteobacteria/genética , Compostos Férricos , Firmicutes/genética , Fumaratos , Genoma Bacteriano , Geobacter/enzimologia , Geobacter/genética , Hidrogênio/metabolismo , Família Multigênica , Óperon , Oxirredução , Oxirredutases/genética
16.
Appl Environ Microbiol ; 81(10): 3288-98, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25746987

RESUMO

During the industrial scale-up of bioprocesses it is important to establish that the biological system has not changed significantly when moving from small laboratory-scale shake flasks or culturing bottles to an industrially relevant production level. Therefore, during upscaling of biomass production for a range of metal transformations, including the production of biogenic magnetite nanoparticles by Geobacter sulfurreducens, from 100-ml bench-scale to 5-liter fermentors, we applied Fourier transform infrared (FTIR) spectroscopy as a metabolic fingerprinting approach followed by the analysis of bacterial cell extracts by gas chromatography-mass spectrometry (GC-MS) for metabolic profiling. FTIR results clearly differentiated between the phenotypic changes associated with different growth phases as well as the two culturing conditions. Furthermore, the clustering patterns displayed by multivariate analysis were in agreement with the turbidimetric measurements, which displayed an extended lag phase for cells grown in a 5-liter bioreactor (24 h) compared to those grown in 100-ml serum bottles (6 h). GC-MS analysis of the cell extracts demonstrated an overall accumulation of fumarate during the lag phase under both culturing conditions, coinciding with the detected concentrations of oxaloacetate, pyruvate, nicotinamide, and glycerol-3-phosphate being at their lowest levels compared to other growth phases. These metabolites were overlaid onto a metabolic network of G. sulfurreducens, and taking into account the levels of these metabolites throughout the fermentation process, the limited availability of oxaloacetate and nicotinamide would seem to be the main metabolic bottleneck resulting from this scale-up process. Additional metabolite-feeding experiments were carried out to validate the above hypothesis. Nicotinamide supplementation (1 mM) did not display any significant effects on the lag phase of G. sulfurreducens cells grown in the 100-ml serum bottles. However, it significantly improved the growth behavior of cells grown in the 5-liter bioreactor by reducing the lag phase from 24 h to 6 h, while providing higher yield than in the 100-ml serum bottles.


Assuntos
Geobacter/metabolismo , Reatores Biológicos/microbiologia , Fumaratos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Geobacter/química , Geobacter/genética , Geobacter/crescimento & desenvolvimento , Microbiologia Industrial , Metabolômica , Niacinamida/metabolismo , Ácido Oxaloacético/metabolismo , Ácido Pirúvico/metabolismo
17.
Biochim Biophys Acta ; 1827(4): 484-92, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23313804

RESUMO

Extracellular electron transfer is one of the physiological hallmarks of Geobacteraceae. Most of the Geobacter species encode for more than 100 c-type cytochromes which are, in general, poorly conserved between individual species. An exception to this is the PpcA family of periplasmic triheme c-type cytochromes, which are the most abundant proteins in these bacteria. The functional characterization of PpcA showed that it has the necessary properties to couple electron/proton transfer, a fundamental step for ATP synthesis. The detailed thermodynamic characterization of a PpcA mutant, in which the strictly conserved residue phenylalanine 15 was replaced by leucine, showed that the global redox network of cooperativities among heme groups is altered, preventing the mutant from performing a concerted electron/proton transfer. In this work, we determined the solution structure of PpcA F15L mutant in the fully reduced state using NMR spectroscopy by producing (15)N-labeled protein. In addition, pH-dependent conformational changes were mapped onto the structure. The mutant structure obtained is well defined, with an average pairwise root-mean-square deviation of 0.36Å for the backbone atoms and 1.14Å for all heavy atoms. Comparison between the mutant and wild-type structures elucidated the contribution of phenylalanine 15 in the modulation of the functional properties of PpcA.


Assuntos
Grupo dos Citocromos c/química , Geobacter/metabolismo , Heme/química , Proteínas Mutantes/química , Periplasma/metabolismo , Fenilalanina/química , Grupo dos Citocromos c/genética , Grupo dos Citocromos c/metabolismo , Geobacter/crescimento & desenvolvimento , Heme/metabolismo , Concentração de Íons de Hidrogênio , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ressonância Magnética Nuclear Biomolecular , Oxirredução , Fenilalanina/genética , Fenilalanina/metabolismo , Conformação Proteica , Termodinâmica
18.
Chemphyschem ; 15(2): 320-7, 2014 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-24402861

RESUMO

When grown on the surface of an anode electrode, Geobacter sulfurreducens forms a multi-cell thick biofilm in which all cells appear to couple the oxidation of acetate with electron transport to the anode, which serves as the terminal metabolic electron acceptor. Just how electrons are transported through such a biofilm from cells to the underlying anode surface over distances that can exceed 20 microns remains unresolved. Current evidence suggests it may occur by electron hopping through a proposed network of redox cofactors composed of immobile outer membrane and/or extracellular multi-heme c-type cytochromes. In the present work, we perform a spatially resolved confocal resonant Raman (CRR) microscopic analysis to investigate anode-grown Geobacter biofilms. The results confirm the presence of an intra-biofilm redox gradient whereby the probability that a heme is in the reduced state increases with increasing distance from the anode surface. Such a gradient is required to drive electron transport toward the anode surface by electron hopping via cytochromes. The results also indicate that at open circuit, when electrons are expected to accumulate in redox cofactors involved in electron transport due to the inability of the anode to accept electrons, nearly all c-type cytochrome hemes detected in the biofilm are oxidized. The same outcome occurs when a comparable potential to that measured at open circuit (-0.30 V vs. SHE) is applied to the anode, whereas nearly all hemes are reduced when an exceedingly negative potential (-0.50 V vs. SHE) is applied to the anode. These results suggest that nearly all c-type cytochrome hemes detected in the biofilm can be electrochemically accessed by the electrode, but most have oxidation potentials too negative to transport electrons originating from acetate metabolism. The results also reveal a lateral heterogeneity (x-y dimensions) in the type of c-type cytochromes within the biofilm that may affect electron transport to the electrode.


Assuntos
Geobacter/fisiologia , Biofilmes , Citocromos c/química , Citocromos c/metabolismo , Técnicas Eletroquímicas , Eletrodos , Transporte de Elétrons , Geobacter/crescimento & desenvolvimento , Heme/química , Microscopia Confocal , Oxirredução , Análise Espectral Raman
19.
Biotechnol Bioeng ; 111(11): 2349-54, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24771104

RESUMO

Mesoporous structures can increase catalytic activity by maximizing the ratio of surface area to volume, but current synthesis techniques utilize expensive polymers and toxic chemicals. A Geobacter sulfurreducens biofilm was used as a sustainable template to form mesoporous Pd structures while eliminating the need for synthetic chemicals. The bulk of the biofilm material was removed by thermal treatments after nanoparticle formation, producing a catalytic Pd mesoporous (pore size 9.7 ± 0.1 nm) structure attached to the graphite electrode with a 1.5-2 µm thick backbone composed of nanoparticles (∼200 nm). A control electrode electrochemically plated with Pd in the absence of a biofilm exhibited a variable planar Pd base (∼0.5-3 µm thick) with sporadic Pd extrusions (∼2 µm across, 1-5 µm tall) from the surface. The biotemplated mesoporous structure produced 15-20% higher stable current densities during H2 oxidation tests than the electrochemically plated control electrode, even though 30% less Pd was present in the biotemplated catalyst. These results indicate that electroactive biofilms can be used as a sustainable base material to produce nanoporous structures without the need for synthetic polymers. Biotechnol. Bioeng. 2014;111: 2349-2354. © 2014 Wiley Periodicals, Inc.


Assuntos
Fontes de Energia Bioelétrica , Biofilmes/crescimento & desenvolvimento , Geobacter/fisiologia , Nanopartículas/metabolismo , Paládio/metabolismo , Eletricidade , Eletrodos/microbiologia , Geobacter/crescimento & desenvolvimento , Geobacter/metabolismo , Hidrogênio/metabolismo , Oxirredução
20.
Biotechnol Bioeng ; 111(2): 223-31, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23893620

RESUMO

We investigated the role of green sulfur bacteria inlight-responsive electricity generation in microbial electrochemical cells (MXCs). We operated MXCs containing either monocultures or defined cocultures of previously enriched phototrophic Chlorobium and anode-respiring Geobacter under anaerobic conditions in the absence of electron donor. Monoculture control MXCs containing Geobacter or Chlorobium neither responded to light nor produced current, respectively. Instead, light-responsive current generation occurred only in coculture MXCs. Current increased above background levels only in the dark and declined slowly over 96 h. This pattern suggested that Chlorobium exhausted intracellular glycogen reserves via dark fermentation to supply an electron donor, presumably acetate, to Geobacter. With medium containing sulfide as the sole photosynthetic electron donor, current generation had a similar and reproducible negative light response. To investigate whether this metabolic interaction also occurred without an electrode, we performed coculture experiments in batch serum bottles. In this setup, sulfide served as the sole electron donor, whose oxidation by Chlorobium was required to provide S(0) as the electron acceptor to Geobacter. Copies of Geobacter 16S rDNA increased approximately 14-fold in batch bottle cocultures containing sulfide compared to those lacking sulfide, and did not decline after termination of sulfide feeding. These results suggest that products of both photosynthesis and dark fermentation by Chlorobium were sufficient both to yield an electrochemical response by Geobacter biofilms, and to promote Geobacter growthin batch cocultures. Our work expands upon the fusion of MXCs with coculture techniques and reinforces the utility of microbial electrochemistry for sensitive, real-time monitoring of microbial interactions in which a metabolic intermediate can be converted to electrical current.


Assuntos
Fontes de Energia Bioelétrica , Chlorobium/fisiologia , Eletricidade , Geobacter/fisiologia , Anaerobiose , Técnicas de Cultura Celular por Lotes , Chlorobi , Chlorobium/crescimento & desenvolvimento , Chlorobium/metabolismo , Meios de Cultura/química , Escuridão , Fermentação , Geobacter/crescimento & desenvolvimento , Geobacter/metabolismo , Luz , Fotossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA