Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 553
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Bull Entomol Res ; 114(2): 210-229, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38444234

RESUMO

The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), is the key vector insect transmitting the Candidatus Liberibacter asiaticus (CLas) bacterium that causes the devastating citrus greening disease (Huanglongbing, HLB) worldwide. The D. citri salivary glands (SG) exhibit an important barrier against the transmission of HLB pathogen. However, knowledge on the molecular mechanism of SG defence against CLas infection is still limited. In the present study, we compared the SG transcriptomic response of CLas-free and CLas-infected D. citri using an illumine paired-end RNA sequencing. In total of 861 differentially expressed genes (DEGs) in the SG upon CLas infection, including 202 upregulated DEGs and 659 downregulated DEGs were identified. Functional annotation analysis showed that most of the DEGs were associated with cellular processes, metabolic processes, and the immune response. Gene ontology and Kyoto Encyclopaedia of Genes and Genomes enrichment analyses revealed that these DEGs were enriched in pathways involving carbohydrate metabolism, amino acid metabolism, the immune system, the digestive system, the lysosome, and endocytosis. A total of 16 DEGs were randomly selected to further validate the accuracy of RNA-Seq dataset by reverse-transcription quantitative polymerase chain reaction. This study provides substantial transcriptomic information regarding the SG of D. citri in response to CLas infection, which may shed light on the molecular interaction between D. citri and CLas, and provides new ideas for the prevention and control of citrus psyllid.


Assuntos
Hemípteros , Glândulas Salivares , Transcriptoma , Animais , Hemípteros/microbiologia , Hemípteros/genética , Glândulas Salivares/microbiologia , Glândulas Salivares/metabolismo , Doenças das Plantas/microbiologia , Citrus/microbiologia , Liberibacter
2.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36674613

RESUMO

The ectoparasite Ixodes ricinus is an important vector for many tick-borne diseases (TBD) in the northern hemisphere, such as Lyme borreliosis, rickettsiosis, human granulocytic anaplasmosis, or tick-borne encephalitis virus. As climate change will lead to rising temperatures in the next years, we expect an increase in tick activity, tick population, and thus in the spread of TBD. Consequently, it has never been more critical to understand relationships within the microbial communities in ticks that might contribute to the tick's fitness and the occurrence of TBD. Therefore, we analyzed the microbiota in different tick tissues such as midgut, salivary glands, and residual tick material, as well as the microbiota in complete Ixodes ricinus ticks using 16S rRNA gene amplicon sequencing. By using a newly developed DNA extraction protocol for tick tissue samples and a self-designed mock community, we were able to detect endosymbionts and pathogens that have been described in the literature previously. Further, this study displayed the usefulness of including a mock community during bioinformatic analysis to identify essential bacteria within the tick.


Assuntos
Ixodes , Doença de Lyme , Microbiota , Doenças Transmitidas por Carrapatos , Animais , Feminino , Humanos , Ixodes/genética , RNA Ribossômico 16S/genética , Glândulas Salivares/microbiologia
3.
Parasite Immunol ; 43(5): e12816, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33368329

RESUMO

The bacterial pathogen Borrelia burgdorferi is the causative agent of Lyme disease and is transmitted to humans through an Ixodes tick vector. B. burgdorferi is able to survive in both mammalian and tick hosts through careful modulation of its gene expression. This allows B. burgdorferi to adapt to the environmental and nutritional changes that occur when it is transmitted between the two hosts. Distinct interactions between the spirochete and its host occur at every step of the enzootic cycle and dictate the ability of the spirochete to survive until the next stage of the cycle. Studying the interface between B. burgdorferi, the Ixodes tick vector and the natural mammalian reservoirs has been made significantly more feasible through the complete genome sequences of the organisms and the advent of high throughput screening technologies. Ultimately, a thorough investigation of the interplay between the two domains (and two phyla within one domain) is necessary in order to completely understand how the pathogen is transmitted.


Assuntos
Vetores Aracnídeos/microbiologia , Borrelia burgdorferi/fisiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Ixodes/microbiologia , Doença de Lyme/microbiologia , Mamíferos/microbiologia , Animais , Vetores Aracnídeos/imunologia , Borrelia burgdorferi/genética , Expressão Gênica , Humanos , Ixodes/imunologia , Doença de Lyme/epidemiologia , Doença de Lyme/transmissão , Mamíferos/sangue , Mamíferos/parasitologia , Microbiota , Ninfa/microbiologia , Glândulas Salivares/microbiologia
4.
J Autoimmun ; 107: 102354, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31677965

RESUMO

Mothers giving birth to children with manifestations of neonatal lupus (NL) represent a unique population at risk for the development of clinically evident pathologic autoimmunity since many are asymptomatic and only become aware of anti-SSA/Ro positivity (anti-Ro+) based on heart block in their fetus. Accordingly, we hypothesized that the microbiome in saliva is associated with the development of autoreactivity and in some cases the progression in health status from benign to overt clinical disease including Sjögren's syndrome (SS) and systemic lupus erythematosus (SLE). The study comprised a clinical spectrum of anti-Ro+ mothers, all of whom gave birth to a child with NL: 9 were asymptomatic or had an undifferentiated autoimmune disease (Asym/UAS) and 16 fulfilled criteria for SS and/or SLE. Microbial diversity was reduced across all levels from kingdom to species for the anti-Ro+ mothers vs healthy controls; however, there were no significant differences between Asym/UAS and SS/SLE mothers. Relative abundance of Proteobacteria and more specifically class Betaproteobacteria decreased with clinical severity (healthy controls < Asym/UAS < SS/SLE). These ordered differences were maintained through the taxonomic hierarchy to three genera (Lautropia, Comamonas, and Neisseria) and species within these genera (L. mirabilis, N. flavescens and N. oralis). Biometric analysis comparing von Willebrand Factor domains present in human Ro60 with L. mirabilis proteins support the hypothesis of molecular mimicry. These data position the microbiome in the development of anti-Ro reactivity and subsequent clinical spectrum of disease.


Assuntos
Anticorpos Antinucleares/imunologia , Disbiose , Lúpus Eritematoso Sistêmico/congênito , Efeitos Tardios da Exposição Pré-Natal , Glândulas Salivares/microbiologia , Adulto , Sequência de Aminoácidos , Autoanticorpos/imunologia , Autoimunidade , Biodiversidade , Feminino , Antígenos HLA/imunologia , Humanos , Recém-Nascido , Lúpus Eritematoso Sistêmico/etiologia , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/terapia , Masculino , Microbiota , Peptídeos/química , Peptídeos/imunologia , Gravidez , Adulto Jovem
5.
Insect Mol Biol ; 29(1): 1-8, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31194893

RESUMO

Culex quinquefasciatus is an important mosquito vector of a number of viral and protozoan pathogens of humans and animals, and naturally carries the endosymbiont Wolbachia pipientis, strain wPip. Wolbachia are used in two distinct vector control strategies: firstly, population suppression caused by mating incompatibilities between mass-released transinfected males and wild females; and secondly, the spread of pathogen transmission-blocking strains through populations. Using embryonic microinjection, two novel Wolbachia transinfections were generated in C. quinquefasciatus using strains native to the mosquito Aedes albopictus: a wAlbB single infection, and a wPip plus wAlbA superinfection. The wAlbB infection showed full bidirectional cytoplasmic incompatibility (CI) with wild-type C. quinquefasciatus in reciprocal crosses. The wPipwAlbA superinfection showed complete unidirectional CI, and therefore population invasion potential. Whereas the wAlbB strain showed comparatively low overall densities, similar to the native wPip, the wPipwAlbA superinfection reached over 400-fold higher densities in the salivary glands compared to the native wPip, suggesting it may be a candidate for pathogen transmission blocking.


Assuntos
Culex/microbiologia , Wolbachia/fisiologia , Aedes/microbiologia , Animais , Feminino , Masculino , Controle de Mosquitos/métodos , Mosquitos Vetores/microbiologia , Controle Biológico de Vetores/métodos , Glândulas Salivares/microbiologia , Simbiose , Wolbachia/classificação
6.
Cell Microbiol ; 21(2): e12987, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30489694

RESUMO

The relapsing fever spirochete Borrelia turicatae possesses a complex life cycle in its soft-bodied tick vector, Ornithodoros turicata. Spirochetes enter the tick midgut during a blood meal, and, during the following weeks, spirochetes disseminate throughout O. turicata. A population persists in the salivary glands allowing for rapid transmission to the mammalian hosts during tick feeding. Little is known about the physiological environment within the salivary glands acini in which B. turicatae persists. In this study, we examined the salivary gland transcriptome of O. turicata ticks and detected the expression of 57 genes involved in oxidant metabolism or antioxidant defences. We confirmed the expression of five of the most highly expressed genes, including glutathione peroxidase (gpx), thioredoxin peroxidase (tpx), manganese superoxide dismutase (sod-1), copper-zinc superoxide dismutase (sod-2), and catalase (cat) by reverse-transcriptase droplet digital polymerase chain reaction (RT-ddPCR). We also found distinct differences in the expression of these genes when comparing the salivary glands and midguts of unfed O. turicata ticks. Our results indicate that the salivary glands of unfed O. turicata nymphs are highly oxidative environments where reactive oxygen species (ROS) predominate, whereas midgut tissues comprise a primarily nitrosative environment where nitric oxide synthase is highly expressed. Additionally, B. turicatae was found to be hyperresistant to ROS compared with the Lyme disease spirochete Borrelia burgdorferi, suggesting it is uniquely adapted to the highly oxidative environment of O. turicata salivary gland acini.


Assuntos
Borrelia/crescimento & desenvolvimento , Borrelia/fisiologia , Ornithodoros/microbiologia , Febre Recorrente/transmissão , Glândulas Salivares/metabolismo , Animais , Catalase/biossíntese , Catalase/genética , Regulação da Expressão Gênica/genética , Glutationa Peroxidase/biossíntese , Glutationa Peroxidase/genética , Estresse Oxidativo/fisiologia , Peroxirredoxinas/biossíntese , Peroxirredoxinas/genética , Espécies Reativas de Oxigênio/metabolismo , Febre Recorrente/microbiologia , Glândulas Salivares/microbiologia , Superóxido Dismutase-1/biossíntese , Superóxido Dismutase-1/genética
7.
Lasers Med Sci ; 35(1): 193-203, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31325124

RESUMO

Dental caries is a complex multifactorial chronic infectious disease guided by several risk or protective factors. Saliva has an important role in caries and the remineralization process. Caries risk assessment is defined as the probability of new caries lesion development or the existing lesion progression in a given time period. Caries diagnostics and risk factor assessment are followed by targeted elimination of risk factors and less conservative but abundant preventive therapeutic measures. The aim of our prospective randomized study was to elucidate on how photobiomodulation of major salivary glands with polychromatic light or LED light affects caries risk factors in high caries-risk patients. Thirty-six patients were assigned to one of the following three experimental groups: the first, irradiated with polarized polychromatic light (40 mW/cm2, wavelengths 480-3400 nm); the second, a continuous LED light (16 mW/cm2, wavelengths 625, 660, 850 nm); the third, same LED light in a pulsed mode. The fourth group was the control, for which a non-therapeutic visible light was used. Light was administered extra-orally bilaterally above the parotid and submandibular glands for 10 min and intra-orally above the sublingual glands for 5 min, 3 times a week, for 4 consecutive weeks. Each patient's caries risk was assessed according to Cariogram before and after therapy. Caries risk factors were determined from samples of saliva before therapy, two weeks after it commenced, at the end of therapy, and four weeks after the end of therapy. At the end of treatment, the following findings were obtained: In the group irradiated with polarized polychromatic light and in the group irradiated with continuous LED light, the Streptococcus mutans and Lactobacillus counts decreased and salivary buffering capacity increased (p < 0.05). In the group irradiated with pulsed LED light, Streptococcus mutans counts decreased and unstimulated salivary flow and salivary buffering capacity increased (p < 0.05). In all three experimental groups, caries risk was lower (p < 0.05). In the placebo control group, there were no statistically significant differences between parameters before and after therapy. We concluded that photobiomodulation of major salivary glands in high caries-risk patients can reduce the cariogenic bacteria in saliva and improve some salivary parameters, thus reducing caries risk.


Assuntos
Cárie Dentária/microbiologia , Cárie Dentária/prevenção & controle , Terapia com Luz de Baixa Intensidade , Glândulas Salivares/microbiologia , Glândulas Salivares/efeitos da radiação , Carga Bacteriana/efeitos da radiação , Feminino , Humanos , Lactobacillus/fisiologia , Lactobacillus/efeitos da radiação , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Medição de Risco , Streptococcus mutans/fisiologia , Streptococcus mutans/efeitos da radiação
8.
Infect Immun ; 87(4)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30642897

RESUMO

Tick vectors are capable of transmitting several rickettsial species to vertebrate hosts, resulting in various levels of disease. Studies have demonstrated the transmissibility of both rickettsial pathogens and novel Rickettsia species or strains with unknown pathogenicity to vertebrate hosts during tick blood meal acquisition; however, the quantitative nature of transmission remains unknown. We tested the hypothesis that if infection severity is a function of the rickettsial load delivered during tick transmission, then a more virulent spotted fever group (SFG) Rickettsia species is transmitted at higher levels during tick feeding. Using Amblyomma maculatum cohorts infected with Rickettsia parkeri or "Candidatus Rickettsia andeanae," a quantitative PCR (qPCR) assay was employed to quantify rickettsiae in tick salivary glands and saliva, as well as in the vertebrate hosts at the tick attachment site over the duration of tick feeding. Significantly greater numbers of R. parkeri than of "Ca Rickettsia andeanae" rickettsiae were present in tick saliva and salivary glands and in the vertebrate hosts at the feeding site during tick feeding. Microscopy demonstrated the presence of both rickettsial species in tick salivary glands, and immunohistochemical analysis of the attachment site identified localized R. parkeri, but not "Ca Rickettsia andeanae," in the vertebrate host. Lesions were also distinct and more severe in vertebrate hosts exposed to R. parkeri than in those exposed to "Ca Rickettsia andeanae." The specific factors that contribute to the generation of a sustained rickettsial infection and subsequent disease have yet to be elucidated, but the results of this study suggest that the rickettsial load in ticks and during transmission may be an important element.


Assuntos
Vetores Aracnídeos/microbiologia , Ixodidae/microbiologia , Rickettsia/fisiologia , Rickettsiose do Grupo da Febre Maculosa/transmissão , Animais , Vetores Aracnídeos/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Comportamento Alimentar , Feminino , Humanos , Ixodidae/fisiologia , Masculino , Ninfa/microbiologia , Rickettsia/genética , Rickettsia/isolamento & purificação , Saliva/microbiologia , Glândulas Salivares/microbiologia , Rickettsiose do Grupo da Febre Maculosa/microbiologia
9.
BMC Genomics ; 20(1): 491, 2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31195975

RESUMO

BACKGROUND: Mycobacterium avium subsp. paratuberculosis (MAP), the etiologic agent of Johne's disease is spread between cattle via the fecal-oral route, yet the functional changes in the salivary gland associated with infection remain uncharacterized. In this study, we hypothesized that experimental challenge with MAP would induce stable changes in gene expression patterns in the salivary gland that may shed light on the mucosal immune response as well as the regional variation in immune capacity of this extensive gland. Holstein-Friesian cattle were euthanized 33 months' post oral challenge with MAP strain CIT003 and both the parotid and mandibular salivary glands were collected from healthy control (n = 5) and MAP exposed cattle (n = 5) for histopathological and transcriptomic analysis. RESULTS: A total of 205, 21, 61, and 135 genes were significantly differentially expressed between control and MAP exposed cattle in dorsal mandibular (M1), ventral mandibular (M2), dorsal parotid (P1) and ventral parotid salivary glands (P2), respectively. Expression profiles varied between the structurally divergent parotid and mandibular gland sections which was also reflected in the enriched biological pathways identified. Changes in gene expression associated with MAP exposure were detected with significantly elevated expression of BoLA DR-ALPHA, BOLA-DRB3 and complement factors in MAP exposed cattle. In contrast, reduced expression of genes such as polymeric immunoglobin receptor (PIGR), TNFSF13, and the antimicrobial genes lactoferrin (LF) and lactoperoxidase (LPO) was detected in MAP exposed animals. CONCLUSIONS: This first analysis of the transcriptomic profile of salivary glands in cattle adds an important layer to our understanding of salivary gland immune function. Transcriptomic changes associated with MAP exposure have been identified including reduced LF and LPO. These critical antimicrobial and immunoregulatory proteins are known to be secreted into saliva and their downregulation may contribute to disease susceptibility. Future work will focus on the validation of their expression levels in saliva from additional cattle of known infection status as a potential strategy to augment disease diagnosis.


Assuntos
Perfilação da Expressão Gênica , Mycobacterium avium subsp. paratuberculosis/fisiologia , Glândulas Salivares/metabolismo , Glândulas Salivares/microbiologia , Animais , Bovinos , Ontologia Genética , Genômica , Glândulas Salivares/citologia , Alinhamento de Sequência , Análise de Sequência
10.
Am J Gastroenterol ; 114(7): 1080-1090, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30816877

RESUMO

OBJECTIVES: Minimal hepatic encephalopathy (MHE) is epidemic in cirrhosis, but testing strategies often have poor concordance. Altered gut/salivary microbiota occur in cirrhosis and could be related to MHE. Our aim was to determine microbial signatures of individual cognitive tests and define the role of microbiota in the diagnosis of MHE. METHODS: Outpatients with cirrhosis underwent stool collection and MHE testing with psychometric hepatic encephalopathy score (PHES), inhibitory control test, and EncephalApp Stroop. A subset provided saliva samples. Minimal hepatic encephalopathy diagnosis/concordance between tests was compared. Stool/salivary microbiota were analyzed using 16srRNA sequencing. Microbial profiles were compared between patients with/without MHE on individual tests. Logistic regression was used to evaluate clinical and microbial predictors of MHE diagnosis. RESULTS: Two hundred forty-seven patients with cirrhosis (123 prior overt HE, MELD 13) underwent stool collection and PHES testing; 175 underwent inhibitory control test and 125 underwent Stroop testing. One hundred twelve patients also provided saliva samples. Depending on the modality, 59%-82% of patients had MHE. Intertest Kappa for MHE was 0.15-0.35. Stool and salivary microbiota profiles with MHE were different from those without MHE. Individual microbiota signatures were associated with MHE in specific modalities. However, the relative abundance of Lactobacillaceae in the stool and saliva samples was higher in MHE, regardless of the modality used, whereas autochthonous Lachnospiraceae were higher in those without MHE, especially on PHES. On logistic regression, stool and salivary Lachnospiraceae genera (Ruminococcus and Clostridium XIVb) were associated with good cognition independent of clinical variables. DISCUSSION: Specific stool and salivary microbial signatures exist for individual cognitive testing strategies in MHE. The presence of specific taxa associated with good cognitive function regardless of modality could potentially be used to circumvent MHE testing.


Assuntos
Transtornos Cognitivos/diagnóstico , Microbioma Gastrointestinal/fisiologia , Encefalopatia Hepática/diagnóstico , Glândulas Salivares/microbiologia , Biomarcadores/análise , Estudos de Coortes , Fezes/microbiologia , Feminino , Humanos , Modelos Logísticos , Masculino , Microbiota/fisiologia , Pessoa de Meia-Idade , Pacientes Ambulatoriais/estatística & dados numéricos , Prognóstico , Estudos Prospectivos , Psicometria , Valores de Referência , Medição de Risco , Sensibilidade e Especificidade , Índice de Gravidade de Doença
11.
PLoS Pathog ; 13(12): e1006751, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29216317

RESUMO

Wolbachia pipientis from Drosophila melanogaster (wMel) is an endosymbiotic bacterium that restricts transmission of human pathogenic flaviviruses and alphaviruses, including dengue, Zika, and chikungunya viruses, when introduced into the mosquito vector Aedes aegypti. To date, wMel-infected Ae. aegypti have been released in field trials in 5 countries to evaluate the effectiveness of this strategy for disease control. Despite the success in establishing wMel-infected mosquitoes in wild populations, and the well-characterized antiviral capabilities of wMel, transinfecting different or additional Wolbachia strains into Ae. aegypti may improve disease impact, and perhaps more importantly, could provide a strategy to account for the possible evolution of resistant arboviruses. Here, we report the successful transinfection of Ae. aegypti with the Wolbachia strains wMelCS (D. melanogaster), wRi (D. simulans) and wPip (Culex quinquefasciatus) and assess the effects on Ae. aegypti fitness, cytoplasmic incompatibility, tissue tropism and pathogen blocking in a laboratory setting. The results demonstrate that wMelCS provides a similar degree of protection against dengue virus as wMel following an infectious blood meal, and significantly reduces viral RNA levels beyond that of wMel following a direct challenge with infectious virus in mosquitoes, with no additional fitness cost to the host. The protection provided by wRi is markedly weaker than that of wMelCS, consistent with previous characterisations of these lines in Drosophila, while wPip was found to substantially reduce the fitness of Ae. aegypti. Thus, we determine wMelCS as a key candidate for further testing in field-relevant fitness tests and viremic blood feeding challenges in a clinical setting to determine if it may represent an alternative Wolbachia strain with more desirable attributes than wMel for future field testing.


Assuntos
Aedes/microbiologia , Transmissão Vertical de Doenças Infecciosas/veterinária , Mosquitos Vetores/microbiologia , Wolbachia/crescimento & desenvolvimento , Aedes/crescimento & desenvolvimento , Aedes/fisiologia , Aedes/virologia , Animais , Controle de Doenças Transmissíveis/métodos , Culex/microbiologia , Vírus da Dengue/isolamento & purificação , Vírus da Dengue/fisiologia , Drosophila melanogaster/microbiologia , Drosophila simulans/microbiologia , Feminino , Fertilidade , Masculino , Controle de Mosquitos/métodos , Mosquitos Vetores/fisiologia , Mosquitos Vetores/virologia , Especificidade de Órgãos , Ovário/microbiologia , Ovário/fisiologia , RNA Viral/isolamento & purificação , Glândulas Salivares/microbiologia , Glândulas Salivares/fisiologia , Caracteres Sexuais , Especificidade da Espécie , Análise de Sobrevida , Tropismo Viral , Wolbachia/isolamento & purificação
12.
BMC Microbiol ; 19(1): 85, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-31035931

RESUMO

BACKGROUND: Anopheles mosquitoes are of great importance to human health. A number of studies have shown that midgut and salivary gland microflora have an impact on malaria parasite burden through colonization mechanisms, involving either direct Plasmodium microbiota interaction or bacterial-mediated induction of mosquito immune response. The objective of this study was to isolate and identify the microflora from the midgut and salivary glands of Anopheles species. METHODS: A total of 20 pools (ten per pool) from insectary-reared and 56 pools (five per pool) of field-collected Anopheles mosquitoes were anesthetized by chloroform and dissected. 70% of ethanol was used for surface sterilization of mosquitoes and laboratory equipment, followed by rinsing Anopheles mosquitoes four times with 1X PBS. Each pool of dissected midgut and salivary gland sample was transferred in 1X PBS and squashed, incubated in the water bath and enriched in tryptic soya broth for 24 h at 35 ± 2 °C. As a control, the PBS solutions used to rinse the mosquitoes were also incubated in tryptic soya broth in the same conditions as the sample. After enrichment, a loopful of each sample was taken and inoculated on Blood, Chocolate, MacConkey, and Sabouraud Dextrose agar. Finally, the microbiota was isolated by colony characteristics, biochemical tests, and automated VITEK 2 Compact Analyzer. RESULTS: From all field and laboratory mosquitoes, Pseudomonas was found to be the dominant microbiota identified from all species of Anopheles mosquitoes. Acinetobacter and Klebsiellapneumonia and other families of gram-positive and gram-negative bacteria were identified. CONCLUSIONS: A number of bacteria were isolated and identified. This is the first report on isolation and identification of microbiota from midgut and salivary glands of Anopheles species in Ethiopia. It can be used as a baseline for studying the relationship between microbiota and mosquitoes, and for the development of a new malaria biological control.


Assuntos
Anopheles/microbiologia , Sistema Digestório/microbiologia , Microbioma Gastrointestinal , Bactérias Gram-Negativas/isolamento & purificação , Bactérias Gram-Positivas/isolamento & purificação , Glândulas Salivares/microbiologia , Animais , Etiópia , Feminino , Bactérias Gram-Negativas/classificação , Bactérias Gram-Positivas/classificação , Malária , Mosquitos Vetores/microbiologia , RNA Ribossômico 16S
13.
Support Care Cancer ; 27(10): 3667-3679, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31222393

RESUMO

Febrile neutropenia (FN) is an inflammatory response causing fever that may develop during cancer therapy-induced neutropenia. FN may herald life-threatening infectious complications and should therefore be considered a medical emergency. Patients presenting with FN are routinely subjected to careful history taking and physical examination including X-rays and microbiological evaluations. Nevertheless, an infection is documented clinically in only 20-30% of cases, whereas a causative microbial pathogen is not identified in over 70% of FN cases. The oral cavity is generally only visually inspected. Although it is recognized that ulcerative oral mucositis may be involved in the development of FN, the contribution of infections of the periodontium, the dentition, and salivary glands may be underestimated. These infections can be easily overlooked, as symptoms and signs of inflammation may be limited or absent during neutropenia. This narrative review is aimed to inform the clinician on the potential role of the oral cavity as a potential source in the development of FN. Areas for future research directed to advancing optimal management strategies are discussed.


Assuntos
Antineoplásicos/efeitos adversos , Neutropenia Febril/induzido quimicamente , Neutropenia Febril/microbiologia , Boca/microbiologia , Estomatite/microbiologia , Antineoplásicos/uso terapêutico , Dentição , Feminino , Febre/induzido quimicamente , Febre/microbiologia , Humanos , Masculino , Boca/patologia , Neoplasias/tratamento farmacológico , Periodonto/microbiologia , Glândulas Salivares/microbiologia , Estomatite/patologia
14.
Curr Microbiol ; 76(2): 133-143, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30426159

RESUMO

Wolbachia is gram negative obligate endosymbiont known for reproductive manipulation in the host. It is important to study the presence of natural Wolbachia in mosquitoes which can later help in understanding the effect of transfected strain on indigenous strain. With this view, the present study is undertaken to focus on the prevalence, diversity, infection frequencies, phylogeny and density of indigenous Wolbachia strains in wild mosquito species of Odisha. Our study confirms Wolbachia presence in Ae. albopictus, Cx. quinquefasciatus, Cx. vishnui, Cx. gelidus, Ar. subalbatus, Mn. uniformis, and Mn. indiana. Wolbachia in the above mosquitoes were separated into two supergroups (A and B). Ae. albopictus, the major vector of dengue and chikungungunya had both super-infection and mono-infection. The ovaries of Ae. albopictus were highest in density of Wolbachia as compared to midguts or salivary glands. wAlBA and wAlbB density were variable in mosquitoes of F1 generation for both the sex and at different age. We also found that Wolbachia super-infection in females tends to increase whereas wAlbA density reduced completely as compared to wAlbB in males when they grew old. Giemsa stained squashed ovaries revealed pink pleomorphic Wolbachia cells with different shapes and forms. This study is unique in its kind covering the major aspects of the endosymbiont Wolbachia and focusing on its potential as a biocontrol agent in arboviral outbreaks. Knowledge on potential of the indigenous strain and interactions between Wolbachia and viruses can be utilized further to reduce the global burden of vector borne diseases.


Assuntos
Controle de Doenças Transmissíveis/métodos , Dengue/prevenção & controle , Mosquitos Vetores/microbiologia , Wolbachia/fisiologia , Aedes/microbiologia , Animais , Agentes de Controle Biológico , Dengue/transmissão , Feminino , Índia , Masculino , Mosquitos Vetores/classificação , Ovário/microbiologia , Reação em Cadeia da Polimerase , Prevalência , Glândulas Salivares/microbiologia , Simbiose , Wolbachia/genética
15.
Euro Surveill ; 24(18)2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31064634

RESUMO

BackgroundBorrelia miyamotoi clusters phylogenetically among relapsing fever borreliae, but is transmitted by hard ticks. Recent recognition as a human pathogen has intensified research into its ecology and pathogenic potential.AimsWe aimed to provide a timely critical integrative evaluation of our knowledge on B. miyamotoi, to assess its public health relevance and guide future research.MethodsThis narrative review used peer-reviewed literature in English from January 1994 to December 2018.ResultsBorrelia miyamotoi occurs in the world's northern hemisphere where it co-circulates with B. burgdorferi sensu lato, which causes Lyme disease. The two borreliae have overlapping vertebrate and tick hosts. While ticks serve as vectors for both species, they are also reservoirs for B. miyamotoi. Three B. miyamotoi genotypes are described, but further diversity is being recognised. The lack of sufficient cultivable isolates and vertebrate models compromise investigation of human infection and its consequences. Our understanding mainly originates from limited case series. In these, human infections mostly present as influenza-like illness, with relapsing fever in sporadic cases and neurological disease reported in immunocompromised patients. Unspecific clinical presentation, also occasionally resulting from Lyme- or other co-infections, complicates diagnosis, likely contributing to under-reporting. Diagnostics mainly employ PCR and serology. Borrelia miyamotoi infections are treated with antimicrobials according to regimes used for Lyme disease.ConclusionsWith co-infection of tick-borne pathogens being commonplace, diagnostic improvements remain important. Developing in vivo models might allow more insight into human pathogenesis. Continued ecological and human case studies are key to better epidemiological understanding, guiding intervention strategies.


Assuntos
Infecções por Borrelia/microbiologia , Borrelia , Ixodidae/microbiologia , Amoxicilina/uso terapêutico , Animais , Antibacterianos/uso terapêutico , Borrelia/classificação , Borrelia/isolamento & purificação , Infecções por Borrelia/diagnóstico , Infecções por Borrelia/epidemiologia , Infecções por Borrelia/terapia , Borrelia burgdorferi/isolamento & purificação , Reservatórios de Doenças/microbiologia , Vetores de Doenças , Humanos , Ixodidae/genética , Glândulas Salivares/microbiologia , Picadas de Carrapatos/epidemiologia , Carrapatos/microbiologia
16.
Appl Environ Microbiol ; 84(21)2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30143510

RESUMO

Vector competence refers to the ability of an arthropod to acquire, maintain, and successfully transmit a microbial pathogen. Tick-borne relapsing fever (TBRF) spirochetes are globally distributed pathogens, and most species are transmitted by argasid ticks of the genus Ornithodoros. A defining characteristic in vector competence is an apparent specificity of a species of TBRF spirochete to a given tick species. In arid regions of the southern United States, Borrelia turicatae is the primary cause of TBRF. Interestingly, there are two populations of the tick vector distributed throughout this region. Ornithodoros turicata is a western population that ranges from California to Texas. There is a gap through Louisiana, Mississippi, and Alabama where the tick has not been identified. An isolated eastern population exists in Florida and was designated a subspecies, O. turicata americanus. A knowledge gap that exists is the poor understanding of vector competence between western and eastern populations of ticks for B. turicatae. In this study, we generated uninfected colonies of O. turicata that originated in Texas and Kansas and of O. turicataamericanus. B. turicatae acquisition, maintenance through the molt, and subsequent transmission were evaluated. Our findings revealed significant differences in murine infection after feeding infected O. turicata and O. turicataamericanus ticks on the animals. Interestingly, the salivary glands of both tick populations were colonized with B. turicatae to similar densities. Our results suggest that the salivary glands of the tick colonies assessed in this study impact vector competence of the evaluated B. turicatae isolates.IMPORTANCE Several knowledge gaps exist in the vector competence of various geographical populations of O. turicata that transmit B. turicatae A western population of this tick is distributed from California to Texas, and an eastern population exists in Florida. Utilizing western and eastern populations of the vector, we studied acquisition and transmission of two B. turicatae isolates. Regardless of the isolate used, infection frequencies were poor in mice after the eastern population feeding on them. Since salivary gland colonization is essential for B. turicatae transmission, these tissues were further evaluated. Interestingly, the salivary glands from the two populations were similarly colonized with B. turicatae. These findings suggest the role of tick saliva in the establishment of infection and that the salivary glands may be a bottleneck for successful transmission.


Assuntos
Vetores Aracnídeos/fisiologia , Ornithodoros/fisiologia , Febre Recorrente/transmissão , Animais , Vetores Aracnídeos/microbiologia , Borrelia/genética , Borrelia/isolamento & purificação , Borrelia/fisiologia , Feminino , Humanos , Masculino , Ornithodoros/microbiologia , Febre Recorrente/epidemiologia , Febre Recorrente/microbiologia , Glândulas Salivares/microbiologia , Estados Unidos/epidemiologia
17.
Appl Environ Microbiol ; 84(8)2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29439985

RESUMO

Phytoplasmas are uncultivated plant pathogens and cell wall-less bacteria and are transmitted from plant to plant by hemipteran insects. The phytoplasma's circulative propagative cycle in insects requires the crossing of the midgut and salivary glands, and primary adhesion to cells is an initial step toward the invasion process. The flavescence dorée (FD) phytoplasma possesses a set of variable membrane proteins (Vmps) exposed on its surface, and this pathogen is suspected to interact with insect cells. The results showed that VmpA is expressed by the flavescence dorée phytoplasma present in the midgut and salivary glands. Phytoplasmas cannot be cultivated at present, and no mutant can be produced to investigate the putative role of Vmps in the adhesion of phytoplasma to insect cells. To overcome this difficulty, we engineered the Spiroplasma citri mutant G/6, which lacks the ScARP adhesins, for VmpA expression and used VmpA-coated fluorescent beads to determine if VmpA acts as an adhesin in ex vivo adhesion assays and in vivo ingestion assays. VmpA specifically interacted with Euscelidiusvariegatus insect cells in culture and promoted the retention of VmpA-coated beads to the midgut of E. variegatus In this latest case, VmpA-coated fluorescent beads were localized and embedded in the perimicrovillar membrane of the insect midgut. Thus, VmpA functions as an adhesin that could be essential in the colonization of the insect by the FD phytoplasmas.IMPORTANCE Phytoplasmas infect a wide variety of plants, ranging from wild plants to cultivated species, and are transmitted by different leafhoppers, planthoppers, and psyllids. The specificity of the phytoplasma-insect vector interaction has a major impact on the phytoplasma plant host range. As entry into insect cells is an obligate process for phytoplasma transmission, the bacterial adhesion to insect cells is a key step. Thus, studying surface-exposed proteins of phytoplasma will help to identify the adhesins implicated in the specific recognition of insect vectors. In this study, it is shown that the membrane protein VmpA of the flavescence dorée (FD) phytoplasma acts as an adhesin that is able to interact with cells of Euscelidiusvariegatus, the experimental vector of the FD phytoplasma.


Assuntos
Adesinas Bacterianas/genética , Aderência Bacteriana/fisiologia , Hemípteros/microbiologia , Proteínas de Membrana/genética , Phytoplasma/fisiologia , Adesinas Bacterianas/metabolismo , Animais , Células Epiteliais , Trato Gastrointestinal/microbiologia , Proteínas de Membrana/metabolismo , Microrganismos Geneticamente Modificados , Phytoplasma/genética , Doenças das Plantas/microbiologia , Glândulas Salivares/microbiologia
18.
PLoS Genet ; 11(3): e1005120, 2015 03.
Artigo em Inglês | MEDLINE | ID: mdl-25815810

RESUMO

Anaplasma phagocytophilum is an emerging pathogen that causes human granulocytic anaplasmosis. Infection with this zoonotic pathogen affects cell function in both vertebrate host and the tick vector, Ixodes scapularis. Global tissue-specific response and apoptosis signaling pathways were characterized in I. scapularis nymphs and adult female midguts and salivary glands infected with A. phagocytophilum using a systems biology approach combining transcriptomics and proteomics. Apoptosis was selected for pathway-focused analysis due to its role in bacterial infection of tick cells. The results showed tissue-specific differences in tick response to infection and revealed differentiated regulation of apoptosis pathways. The impact of bacterial infection was more pronounced in tick nymphs and midguts than in salivary glands, probably reflecting bacterial developmental cycle. All apoptosis pathways described in other organisms were identified in I. scapularis, except for the absence of the Perforin ortholog. Functional characterization using RNA interference showed that Porin knockdown significantly increases tick colonization by A. phagocytophilum. Infection with A. phagocytophilum produced complex tissue-specific alterations in transcript and protein levels. In tick nymphs, the results suggested a possible effect of bacterial infection on the inhibition of tick immune response. In tick midguts, the results suggested that A. phagocytophilum infection inhibited cell apoptosis to facilitate and establish infection through up-regulation of the JAK/STAT pathway. Bacterial infection inhibited the intrinsic apoptosis pathway in tick salivary glands by down-regulating Porin expression that resulted in the inhibition of Cytochrome c release as the anti-apoptotic mechanism to facilitate bacterial infection. However, tick salivary glands may promote apoptosis to limit bacterial infection through induction of the extrinsic apoptosis pathway. These dynamic changes in response to A. phagocytophilum in I. scapularis tissue-specific transcriptome and proteome demonstrated the complexity of the tick response to infection and will contribute to characterize gene regulation in ticks.


Assuntos
Anaplasma phagocytophilum/genética , Anaplasmose/genética , Apoptose/genética , Biologia de Sistemas , Anaplasma phagocytophilum/patogenicidade , Anaplasmose/microbiologia , Anaplasmose/transmissão , Animais , Diferenciação Celular/genética , Feminino , Regulação da Expressão Gênica , Humanos , Insetos Vetores/genética , Insetos Vetores/microbiologia , Ixodes/microbiologia , Especificidade de Órgãos , Interferência de RNA , Glândulas Salivares/metabolismo , Glândulas Salivares/microbiologia , Transdução de Sinais/genética , Transcriptoma/genética
19.
Int J Mol Sci ; 19(10)2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30347705

RESUMO

Gut commensal microorganisms have been linked with chronic inflammation at the extra-intestinal niche of the body. The object of the study was to investigate on the chronic effects of a gut commensal Escherichia coli on extra-intestinal glands. The presence of autoimmune response was diagnosed by autoantibody levels and histological methods. Repeated injection of E. coli induced mononuclear cell inflammation in the Harderian and submandibular salivary glands of female C57BL/6 mice. Inflammation was reproduced by adoptive transfer of splenocytes to immune-deficient Rag2 knockout mice and CD4⁺ T cells to mature T cell-deficient TCRß-TCRδ knockout mice. MALDI TOF mass spectrometry of the protein to which sera of E. coli-treated mice reacted was determined as the outer membrane protein A (OmpA) of E. coli. Multiple genera of the Enterobacteriaceae possessed OmpA with high amino-acid sequence similarities. Repeated injection of recombinant OmpA reproduced mononuclear cell inflammation of the Harderian and salivary glands in mice and elevation of autoantibodies against Sjögren's-syndrome-related antigens SSA/Ro and SSB/La. The results indicated the possibility of chronic stimuli from commensal bacteria-originated components as a pathogenic factor to elicit extra-intestinal autoimmunity.


Assuntos
Autoanticorpos/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Microbioma Gastrointestinal/imunologia , Glândulas Salivares/imunologia , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Glândulas Salivares/microbiologia
20.
Exp Appl Acarol ; 76(2): 229-241, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30302627

RESUMO

Rhipicephalus microplus (formerly Boophilus microplus) ticks are potential vectors of several pathogens of livestock especially in tropical and subtropical regions where may have substantial effects on economic development. Among tick-borne pathogens, Anaplasma marginale is considered one of the most important in domestic and wild ruminants worldwide. Different molecular mechanisms have been employed by both ticks and these intracellular pathogens, in order to be able to adapt and survive. Subolesin, originally called 4D8, is an evolutionarily well-preserved protein among ixodid tick species. This new antigen was found to be protective against tick infestations when used as a vaccine, as it has an essential role in tick blood digestion, development and infection of host cells by A. marginale. Recent studies have demonstrated that infection of both tick and vertebrate host cells with this microorganism changed gene expression. Therefore, the main objective of this study was to investigate subolesin expression in uninfected and A. marginale-infected R. microplus salivary glands by real-time reverse transcriptase (RT)-PCR. To analyze the differential expression of the recombinant protein subolesin, the gene was previously expressed from ticks infected with A. marginale. Results from this study revealed that, the expression of subolesin was significantly higher in salivary glands of infected R. microplus in comparison to uninfected ones.


Assuntos
Anaplasma marginale/fisiologia , Antígenos/genética , Proteínas de Artrópodes/genética , Expressão Gênica , Rhipicephalus/genética , Rhipicephalus/microbiologia , Anaplasmose/imunologia , Anaplasmose/microbiologia , Animais , Antígenos/metabolismo , Proteínas de Artrópodes/metabolismo , Bovinos , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/microbiologia , Feminino , Reação em Cadeia da Polimerase/veterinária , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rhipicephalus/metabolismo , Glândulas Salivares/metabolismo , Glândulas Salivares/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA