Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 269
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 151(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39324436

RESUMO

The auxin signaling molecule regulates a range of plant growth and developmental processes. The core transcriptional machinery responsible for auxin-mediated responses is conserved across all land plants. Genetic, physiological and molecular exploration in bryophyte and angiosperm model species have shown both qualitative and quantitative differences in auxin responses. Given the highly divergent ontogeny of the dominant gametophyte (bryophytes) and sporophyte (angiosperms) generations, however, it is unclear whether such differences derive from distinct phylogeny or ontogeny. Here, we address this question by comparing a range of physiological, developmental and molecular responses to auxin in both generations of the model fern Ceratopteris richardii. We find that auxin response in Ceratopteris gametophytes closely resembles that of a thalloid bryophyte, whereas the sporophyte mimics auxin response in flowering plants. This resemblance manifests both at the phenotypic and transcriptional levels. Furthermore, we show that disrupting auxin transport can lead to ectopic sporophyte induction on the gametophyte, suggesting a role for auxin in the alternation of generations. Our study thus identifies developmental phase, rather than phylogeny, as a major determinant of auxin response properties in land plants.


Assuntos
Regulação da Expressão Gênica de Plantas , Células Germinativas Vegetais , Ácidos Indolacéticos , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Células Germinativas Vegetais/metabolismo , Células Germinativas Vegetais/crescimento & desenvolvimento , Gleiquênias/crescimento & desenvolvimento , Gleiquênias/genética , Gleiquênias/metabolismo , Filogenia , Pteridaceae/metabolismo , Pteridaceae/genética , Pteridaceae/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Transdução de Sinais , Transporte Biológico
2.
Plant J ; 120(1): 9-18, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39171845

RESUMO

Plants synthesize natural products via lineage-specific offshoots of their core metabolic pathways, including fatty acid synthesis. Recent studies have shed light on new fatty acid-derived natural products and their biosynthetic pathways in disparate plant species. Inspired by this progress, we set out to develop tools for exploring the evolution of fatty-acid derived products. We sampled multiple species from all major clades of euphyllophytes, including ferns, gymnosperms, and angiosperms (monocots and eudicots), and we show that the compositional profiles (though not necessarily the total amounts) of fatty-acid derived surface waxes from preserved plant specimens are consistent with those obtained from freshly collected tissue in a semi-quantitative and sometimes quantitative manner. We then sampled herbarium specimens representing 57 monocot species to assess the phylogenetic distribution and evolution, of two fatty acid-derived natural products found in that clade: beta-diketones and alkylresorcinols. These chemical data, combined with analyses of 26 monocot genomes, revealed a co-occurrence (though not necessarily a causal relationship) between whole genome duplication and the evolution of diketone synthases from an ancestral alkylresorcinol synthase-like polyketide synthase. Limitations of using herbarium specimen wax profiles as proxies for those of fresh tissue seem likely to include effects from loss of epicuticular wax crystals, effects from preservation techniques, and variation in wax chemical profiles due to genotype or environment. Nevertheless, this work reinforces the widespread utility of herbarium specimens for studying leaf surface waxes (and possibly other chemical classes) and reveals some of the evolutionary history of fatty acid-derived natural products within monocots.


Assuntos
Produtos Biológicos , Ácidos Graxos , Filogenia , Ácidos Graxos/metabolismo , Produtos Biológicos/metabolismo , Magnoliopsida/genética , Magnoliopsida/metabolismo , Gleiquênias/genética , Gleiquênias/metabolismo , Ceras/metabolismo , Ceras/química , Cycadopsida/genética , Cycadopsida/metabolismo , Evolução Molecular
3.
Biochem Cell Biol ; 102(3): 285-290, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38346284

RESUMO

Sperm nuclear basic proteins (SNBPs) were isolated from extracted antheridia-rich male gametophytes raised from spores of the swordfern, Polystichum munitum. Electrophoretic (acetic acid-urea PAGE and SDS-PAGE) and chromatographic (rp-HPLC) characterization of the nuclear proteins exhibited the characteristics of the histone (H-type). In both types of gel electrophoresis, histones H1, H2A, and H2B showed an altered electrophoretic mobility corresponding to that which is routinely observed for the histones in other plants. Histones present during spermatogenesis of the fern P. munitum were compared with the few current SNBPs known to be present in higher and lower evolutionary plant clades. A transition from an early protamine (P-type) SNBPs in charophytes and bryophytes to the (H-type) SNBP observed here is reminiscent of similar reversions observed in the animal kingdom.


Assuntos
Gleiquênias , Proteínas de Plantas , Gleiquênias/química , Gleiquênias/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Nucleares/metabolismo , Histonas/metabolismo , Sequência de Aminoácidos , Eletroforese em Gel de Poliacrilamida , Dados de Sequência Molecular
4.
Plant Cell Environ ; 47(7): 2675-2692, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38600764

RESUMO

The restriction of plant-symbiont dinitrogen fixation by an insect semiochemical had not been previously described. Here we report on a glycosylated triketide δ-lactone from Nephrotoma cornicina crane flies, cornicinine, that causes chlorosis in the floating-fern symbioses from the genus Azolla. Only the glycosylated trans-A form of chemically synthesized cornicinine was active: 500 nM cornicinine in the growth medium turned all cyanobacterial filaments from Nostoc azollae inside the host leaf-cavities into akinetes typically secreting CTB-bacteriocins. Cornicinine further inhibited akinete germination in Azolla sporelings, precluding re-establishment of the symbiosis during sexual reproduction. It did not impact development of the plant Arabidopsis thaliana or several free-living cyanobacteria from the genera Anabaena or Nostoc but affected the fern host without cyanobiont. Fern-host mRNA sequencing from isolated leaf cavities confirmed high NH4-assimilation and proanthocyanidin biosynthesis in this trichome-rich tissue. After cornicinine treatment, it revealed activation of Cullin-RING ubiquitin-ligase-pathways, known to mediate metabolite signaling and plant elicitation consistent with the chlorosis phenotype, and increased JA-oxidase, sulfate transport and exosome formation. The work begins to uncover molecular mechanisms of cyanobiont differentiation in a seed-free plant symbiosis important for wetland ecology or circular crop-production today, that once caused massive CO2 draw-down during the Eocene geological past.


Assuntos
Dípteros , Gleiquênias , Lactonas , Nostoc , Gleiquênias/citologia , Gleiquênias/metabolismo , Gleiquênias/microbiologia , Gleiquênias/fisiologia , Lactonas/química , Lactonas/metabolismo , Nostoc/genética , Nostoc/fisiologia , Dípteros/química , Simbiose , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Nitratos/metabolismo , RNA Bacteriano/metabolismo , Bacteriocinas/genética , Folhas de Planta/metabolismo
5.
J Exp Bot ; 75(8): 2403-2416, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38189579

RESUMO

Many ferns thrive even in low-light niches such as under an angiosperm forest canopy. However, the shade adaptation strategy of ferns is not well understood. Phytochrome 3/neochrome (phy3/neo) is an unconventional photoreceptor, found in the fern Adiantum capillus-veneris, that controls both red and blue light-dependent phototropism and chloroplast photorelocation, which are considered to improve photosynthetic efficiency in ferns. Here we show that phy3/neo localizes not only at the plasma membrane but also in the nucleus. Since both phototropism and chloroplast photorelocation are mediated by membrane-associated phototropin photoreceptors, we speculated that nucleus-localized phy3/neo possesses a previously undescribed biological function. We reveal that phy3/neo directly interacts with Adiantum cryptochrome 3 (cry3) in the nucleus. Plant cryptochromes are blue light receptors that transcriptionally regulate photomorphogenesis; therefore, phy3/neo may function via cry3 to synchronize light-mediated development with phototropism and chloroplast photorelocation to promote fern growth under low-light conditions. Furthermore, we demonstrate that phy3/neo regulates the expression of the Cyclin-like gene AcCyc1 and promotes prothallium expansion growth. These findings provide insight into the shade adaptation strategy of ferns and suggest that phy3/neo plays a substantial role in the survival and growth of ferns during the tiny gametophytic stage under low-light conditions, such as those on the forest floor.


Assuntos
Gleiquênias , Fitocromo , Fitocromo/genética , Fitocromo/metabolismo , Fototropinas/genética , Gleiquênias/metabolismo , Células Germinativas Vegetais , Fototropismo/fisiologia , Criptocromos , Luz
6.
Arch Microbiol ; 206(4): 170, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491263

RESUMO

There are many available reports of secondary metabolites as bioactive molecules from culturable endophytes, nevertheless, there are scarce research pertaining to the levels of metabolites in plants with respect to the incidence and colonisation of fungal endophytes in the same foliar tissues. Therefore, the study was focussed to examine whether fungal endophyte colonisation and the accumulation of secondary metabolites, such as flavonoids and phenols, in the plants are related in any way. For this reason, the study aims to analyse phenols and flavonoids from the fronds of eleven pteridophytes along with the culture-dependent isolation of fungal endophytes from the host plants subsequently assigning them to morphological category and their quantitative analysis and further resolving its identities through molecular affiliation. The results revealed that nine morpho-categories of fungal endophytes were allotted based on culture attributes, hyphal patterns and reproductive structural characters. Highest numbers of species were isolated from Adiantum capillus-veneris and least was recorded from Pteris vittata and Dicranopteris linearis. Maximum phenol content was analysed from the fronds of P. vittata and lowest was recorded in A. capillus-veneris. Highest flavonoid content was measured in D. linearis and lowest was detected in Christella dentata. Significant negative correlation was observed between phenol content of ferns and species richness of fungi. Moreover, significant positive correlation was observed with the relative abundance of Chaetomium globosum and flavonoid content of ferns and negative significant relation was found between relative abundance of Pseudopestalotiopsis chinensis and phenol content of pteridophytes. The occurrence and the quantitative aspects of endophytes in ferns and their secondary metabolites are discussed.


Assuntos
Endófitos , Gleiquênias , Endófitos/metabolismo , Fenóis/metabolismo , Fenol/metabolismo , Gleiquênias/metabolismo , Plantas , Flavonoides/metabolismo , Fungos/genética
7.
Ann Bot ; 133(4): 573-584, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38310542

RESUMO

BACKGROUND: Rare earth elements (REEs) are increasingly crucial for modern technologies. Plants could be used as a biogeochemical pathfinder and a tool to extract REEs from deposits. However, a paucity of information on suitable plants for these tasks exists. METHODS: We aimed to discover new REE-(hyper)accumulating plant species by performing an X-ray fluorescence (XRF) survey at the Herbarium of the Muséum national d'Histoire naturelle (MNHN, Paris, France). We selected specific families based on the likelihood of containing REE-hyperaccumulating species, using known taxa that accumulate REEs. A total of 4425 specimens, taken in the two main evolutionary lineages of extant vascular plants, were analysed, including the two fern families Blechnaceae (n = 561) and Gleicheniaceae (n = 1310), and the two flowering plant families Phytolaccaceae (n = 1137) and Juglandaceae (n = 1417). KEY RESULTS: Yttrium (Y) was used as a proxy for REEs for methodological reasons, and a total of 268 specimens belonging to the genera Blechnopsis (n = 149), Dicranopteris (n = 75), Gleichenella (n = 32), Phytolacca (n = 6), Carya (n = 4), Juglans (n = 1) and Sticherus (n = 1) were identified with Y concentrations ranging from the limit of detection (LOD) >49 µg g-1 up to 1424 µg g-1. Subsequently, analysis of fragments of selected specimens by inductively coupled plasma atomic emission spectroscopy (ICP-AES) revealed that this translated to up to 6423 µg total REEs g-1 in Dicranopteris linearis and up to 4278 µg total REEs g-1 in Blechnopsis orientalis which are among the highest values ever recorded for REE hyperaccumulation in plants. It also proved the validity of Y as an indicator for REEs in XRF analysis of herbarium specimens. The presence of manganese (Mn) and zinc (Zn) was also studied by XRF in the selected specimens. Mn was detected in 1440 specimens ranging from the detection limit at 116 µg g-1 up to 3807 µg g-1 whilst Zn was detected in 345 specimens ranging from the detection limit at 77 µg g-1 up to 938 µg g-1. CONCLUSIONS AND IMPLICATIONS: This study led to the discovery of REE accumulation in a range of plant species, substantially higher concentrations in species known to be REE hyperaccumulators, and records of REE hyperaccumulators outside of the well-studied populations in China.


Assuntos
Metais Terras Raras , Espectrometria por Raios X , Metais Terras Raras/metabolismo , Metais Terras Raras/análise , Espectrometria por Raios X/métodos , Paris , Gleiquênias/metabolismo , Gleiquênias/química
8.
Nature ; 623(7985): 11, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37884847
9.
Plant Cell Environ ; 46(9): 2884-2908, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37394786

RESUMO

Despite its small size, the water fern Azolla is a giant among plant symbioses. Within each of its leaflets, a specialized leaf cavity is home to a population of nitrogen-fixing cyanobacteria (cyanobionts). Although a number of plant-cyanobiont symbioses exist, Azolla is unique in that its symbiosis is perpetual: the cyanobionts are inherited during sexual and vegetative propagation. What underpins the communication between the two partners? In angiosperms, the phytohormone salicylic acid (SA) is a well-known regulator of plant-microbe interactions. Using high-performance liquid chromatography-tandem mass spectrometry, we pinpoint the presence of SA in the fern. Comparative genomics and phylogenetics on SA biosynthesis genes across Chloroplastida reveal that the entire Phenylalanine ammonia-lyase-dependent pathway likely existed in the last common ancestor of land plants. Indeed, Azolla filiculoides secondarily lost its isochorismate synthase but has the genetic competence to derive SA from benzoic acid; the presence of SA in artificially cyanobiont-free Azolla supports the existence of this route. Global gene expression data and SA levels from cyanobiont-containing and -free A. filiculoides link SA synthesis with the symbioses: SA appears to induce cyanobacterial proliferation, whereas removal of the symbiont results in reduced SA levels in a nitrogen-dependent manner.


Assuntos
Cianobactérias , Gleiquênias , Simbiose/genética , Ácido Salicílico/metabolismo , Cianobactérias/genética , Gleiquênias/metabolismo , Plantas , Nitrogênio/metabolismo
10.
Physiol Plant ; 175(1): e13848, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36628548

RESUMO

During fern spore germination, lipid hydrolysis primarily provides the energy to activate their metabolism. In this research, fatty acids (linoleic, oleic, palmitic and stearic) were quantified in the spores exposed or not to priming (hydration-dehydration treatments). Five fern species were investigated, two from xerophilous shrubland and three from a cloud forest. We hypothesised that during the priming hydration phase, the fatty acids profile would change in concentration, depending on the spore type (non-chlorophyllous and crypto-chlorophyllous). The fatty acid concentration was determined by gas chromatograph-mass spectrometer. Chlorophyll in spores was vizualised by epifluorescence microscopy and quantified by high-resolution liquid chromatography with a DAD-UV/Vis detector. Considering all five species and all the treatments, the oleic acid was the most catabolised. After priming, we identified two patterns in the fatty acid metabolism: (1) in non-chlorophyllous species, oleic, palmitic, and linoleic acids were catabolised during imbibition and (2) in crypto-chlorophyllous species, these fatty acids increased in concentration. These patterns suggest that crypto-chlorophyllous spores with homoiochlorophylly (chlorophyll retained after drying) might not require the assembly of new photosynthetic apparatus during dark imbibition. Thus, these spores might require less energy from pre-existing lipids and less fatty acids as 'building blocks' for cell membranes than non-chlorophyllous spores, which require de novo synthesis and structuring of the photosynthetic apparatus.


Assuntos
Ácidos Graxos , Gleiquênias , Ácidos Graxos/metabolismo , Gleiquênias/metabolismo , Esporos/fisiologia , Metabolismo dos Lipídeos , Ácido Oleico/metabolismo , Ácidos Esteáricos/metabolismo , Ácido Palmítico/metabolismo
11.
Environ Sci Technol ; 57(17): 6922-6933, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37071813

RESUMO

Rare earth elements (REEs) are critical for numerous modern technologies, and demand is increasing globally; however, production steps are resource-intensive and environmentally damaging. Some plant species are able to hyperaccumulate REEs, and understanding the biology behind this phenomenon could play a pivotal role in developing more environmentally friendly REE recovery technologies. Here, we identified a REE transporter NRAMP REE Transporter 1 (NREET1) from the REE hyperaccumulator fern Dicranopteris linearis. Although NREET1 belongs to the natural resistance-associated macrophage protein (NRAMP) family, it shares a low similarity with other NRAMP members. When expressed in yeast, NREET1 exhibited REE transport capacity, but it could not transport divalent metals, such as zinc, nickel, manganese, or iron. NREET1 is mainly expressed in D. linearis roots and predominantly localized in the plasma membrane. Expression studies in Arabidopsis thaliana revealed that NREET1 functions as a transporter mediating REE uptake and transfer from root cell walls into the cytoplasm. Moreover, NREET1 has a higher affinity for transporting light REEs compared to heavy REEs, which is consistent to the preferential enrichment of light REEs in field-grown D. linearis. We therefore conclude that NREET1 may play an important role in the uptake and consequently hyperaccumulation of REEs in D. linearis. These findings lay the foundation for the use of synthetic biology techniques to design and produce sustainable, plant-based REE recovery systems.


Assuntos
Gleiquênias , Proteínas de Membrana Transportadoras , Metais Terras Raras , Membrana Celular , Gleiquênias/metabolismo , Zinco/metabolismo
12.
Int J Phytoremediation ; 25(2): 207-220, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35501688

RESUMO

In this study, the potential of Azolla filiculoides, a freshwater fern species, on phenanthrene phytoremediation and biodegradation was investigated. Furthermore, the effect of phenanthrene on growth performance, photosynthetic activity and biosynthesis, and accumulation of secondary metabolites of A. filiculodes were evaluated. Plants were grown in a nitrogen-free Hoagland and exposed to different phenanthrene concentrations (0, 1, 5, and 10 mg/L). Exposure to 10 mg/L phenanthrene caused a significant reduction (42%) in Azolla filiculoides growth compared to control on day 14. The photosynthetic pigment content of A. filiculoides treated with 1 and 5 mg/L was almost the same as the control, while 10 mg/L phenanthrene was significantly reduced. In comparison to unplanted controls, the biodegradation percentages obtained from the planted growth medium were found to be 88, 69, and 60%, respectively, for the application of 1, 5, and 10 mg/L phenanthrene. Data on plant growth, photosynthetic pigments, secondary metabolite contents, and biodegradation percentages indicated the tolerance level and the effective phytoremediation potential of A. filiculoides for phenanthrene was <10 mg/L. The results indicated that A. filiculoides is highly effective in phytoremediation of low concentrations of phenanthrene pollution in a short time.


We explored the phenanthrene phytoremediation potential of freshwater fern Azolla filiculoides for the first time. Exposure to high phenanthrene induced accumulation of secondary metabolites, while reducing plant growth and photosynthetic pigment content. A. filiculoides is highly effective in phytoremediation of phenanthrene pollution at low concentrations in a short time. Biodegradation (≥60%) promoted by A. filiculoides indicates that this plant is a promising candidate for phenanthrene phytoremediation in aquatic environments.


Assuntos
Gleiquênias , Biodegradação Ambiental , Gleiquênias/metabolismo , Água Doce
13.
Int J Mol Sci ; 24(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37239901

RESUMO

Exposure to high light intensity (HL) and cold treatment (CT) induces reddish pigmentation in Azolla filiculoides, an aquatic fern. Nevertheless, how these conditions, alone or in combination, influence Azolla growth and pigment synthesis remains to be fully elucidated. Likewise, the regulatory network underpinning the accumulation of flavonoids in ferns is still unclear. Here, we grew A. filiculoides under HL and/or CT conditions for 20 days and evaluated the biomass doubling time, relative growth rate, photosynthetic and non-photosynthetic pigment contents, and photosynthetic efficiency by chlorophyll fluorescence measurements. Furthermore, from the A. filiculoides genome, we mined the homologs of MYB, bHLH, and WDR genes, which form the MBW flavonoid regulatory complex in higher plants, to investigate their expression by qRT-PCR. We report that A. filiculoides optimizes photosynthesis at lower light intensities, regardless of the temperature. In addition, we show that CT does not severely hamper Azolla growth, although it causes the onset of photoinhibition. Coupling CT with HL stimulates the accumulation of flavonoids, which likely prevents irreversible photoinhibition-induced damage. Although our data do not support the formation of MBW complexes, we identified candidate MYB and bHLH regulators of flavonoids. Overall, the present findings are of fundamental and pragmatic relevance to Azolla's biology.


Assuntos
Gleiquênias , Luz , Temperatura , Fotossíntese , Flavonoides/metabolismo , Gleiquênias/metabolismo
14.
Int J Mol Sci ; 24(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37569438

RESUMO

Progressive climate changes cause disturbance of water relations in tropical rainforests, where epiphytic ferns are an important element of biodiversity. In these plants, the efficiency of photosynthesis is closely related to the efficiency of water transport. In addition, due to the lack of contact with the soil, epiphytes are extremely susceptible to water-deficit stress. The aim of this experiment was to determine the response of the photosynthetic apparatus of Platycerium bifurcatum to a 6-week water deficit. The hydration and pigment composition of leaves were determined using reflectance spectroscopy and epifluorescence microscopy. Chlorophyll a fluorescence kinetics parameters, fluorescence induction curves (OJIP), low-temperature fluorescence curves at 77 K and proline concentration were analyzed at seven time points. After a decrease in leaf hydration by 10-15%, there were disturbances in the oxidation-reduction balance, especially in the initial photochemical reactions, a rapid decrease in plant vitality (PI) and significant fluctuations in chlorophyll a fluorescence parameters. The relative size of PSI antenna structures compared to PSII decreased in the following weeks of water deficit. Changes in photochemical reactions were accompanied by a decrease in gross photosynthesis and an increase in proline concentration. Changes in the functioning of photosynthesis light phase and the pigment composition of leaves are related to the resistance of elkhorn fern to long-term water deficit.


Assuntos
Clorofila , Gleiquênias , Clorofila A , Gleiquênias/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Água , Fluorescência , Complexo de Proteína do Fotossistema II/metabolismo
15.
New Phytol ; 233(6): 2488-2502, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35015902

RESUMO

Pteris vittata is an arsenic (As) hyperaccumulator that can accumulate several thousand mg As kg-1 DW in aboveground biomass. A key factor for its hyperaccumulation ability is its highly efficient As long-distance translocation system. However, the underlying molecular mechanisms remain unknown. We isolated PvAsE1 through the full-length cDNA over-expression library of P. vittata and characterized it through a yeast system, RNAi gametophytes and sporophytes, subcellular-location and in situ hybridization. Phylogenomic analysis was conducted to estimate the appearance time of PvAsE1. PvAsE1 was a plasma membrane-oriented arsenite (AsIII) effluxer. The silencing of PvAsE1 reduced AsIII long-distance translocation in P. vittata sporophytes. PvAsE1 was structurally similar to solute carrier (SLC)13 proteins. Its transcripts could be observed in parenchyma cells surrounding the xylem of roots. The appearance time was estimated at c. 52.7 Ma. PvAsE1 was a previously uncharacterized SLC13-like AsIII effluxer, which may contribute to AsIII long-distance translocation via xylem loading. PvAsE1 appeared late in fern evolution and might be an adaptive subject to the selection pressure at the Cretaceaou-Paleogene boundary. The identification of PvAsE1 provides clues for revealing the special As hyperaccumulation characteristics of P. vittata.


Assuntos
Arsênio , Arsenitos , Gleiquênias , Pteris , Poluentes do Solo , Arsênio/metabolismo , Arsenitos/metabolismo , Biodegradação Ambiental , Gleiquênias/metabolismo , Raízes de Plantas/metabolismo , Pteris/genética , Poluentes do Solo/análise , Poluentes do Solo/metabolismo
16.
Plant Cell Environ ; 45(2): 296-311, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34800300

RESUMO

Recent results suggest that metabolism-mediated stomatal closure mechanisms are important to regulate differentially the stomatal speediness between ferns and angiosperms. However, evidence directly linking mesophyll metabolism and the slower stomatal conductance (gs ) in ferns is missing. Here, we investigated the effect of exogenous application of abscisic acid (ABA), sucrose and mannitol on stomatal kinetics and carried out a metabolic fingerprinting analysis of ferns and angiosperms leaves harvested throughout a diel course. Fern stomata did not respond to ABA in the time period analysed. No differences in the relative decrease in gs was observed between ferns and the angiosperm following provision of sucrose or mannitol. However, ferns have slower gs responses to these compounds than angiosperms. Metabolomics analysis highlights that ferns have a higher accumulation of secondary rather than primary metabolites throughout the diel course, with the opposite being observed in angiosperms. Our results indicate that metabolism-mediated stomatal closure mechanisms underpin the differential stomatal speediness regulation among ferns and angiosperms, in which the slower stomatal closure in ferns is associated with the lack of ABA-responsiveness, to a reduced capacity to respond to mesophyll-derived sucrose and to a higher carbon allocation toward secondary metabolism, which likely modulates both photosynthesis-gs and growth-stress tolerance trade-offs.


Assuntos
Ácido Abscísico/farmacologia , Gleiquênias/fisiologia , Magnoliopsida/fisiologia , Manitol/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Estômatos de Plantas/fisiologia , Sacarose/farmacologia , Gleiquênias/metabolismo , Cinética , Magnoliopsida/metabolismo
17.
J Exp Bot ; 73(14): 4886-4896, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35436322

RESUMO

Studies investigating the mechanisms underlying the variation of photosynthesis along plant phylogeny and especially during domestication are of great importance, and may provide new insights to further improve crop photosynthesis. In the present study, we compiled a database including 542 sets of data of leaf gas exchange parameters and leaf structural and chemical traits in ferns and fern allies, gymnosperms, non-crop angiosperms, and crops. We found that photosynthesis was dramatically improved from ferns and fern allies to non-crop angiosperms, and further increased in crops. The improvement of photosynthesis during phylogeny and domestication was related to increases in carbon dioxide diffusional capacities and, to a lesser extent, biochemical capacity. Cell wall thickness rather than chloroplast surface area facing intercellular airspaces drives the variation of mesophyll conductance. The variation of the maximum carboxylation rate was not related to leaf nitrogen content. The slope of the relationship between mass-based photosynthesis and nitrogen was lower in crops than in non-crop angiosperms. These findings suggest that the manipulation of cell wall thickness is the most promising approach to further improve crop photosynthesis, and that an increase of leaf nitrogen will be less efficient in improving photosynthesis in crops than in non-crop angiosperms.


Assuntos
Gleiquênias , Magnoliopsida , Dióxido de Carbono/metabolismo , Cycadopsida/metabolismo , Domesticação , Gleiquênias/metabolismo , Magnoliopsida/metabolismo , Células do Mesofilo/metabolismo , Nitrogênio/metabolismo , Fotossíntese , Folhas de Planta/genética , Folhas de Planta/metabolismo , Estômatos de Plantas/metabolismo , Plantas/metabolismo
18.
Microb Cell Fact ; 21(1): 210, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36242071

RESUMO

BACKGROUND: Flavonoid C-glycosides have many beneficial effects and are widely used in food and medicine. However, plants contain a limited number of flavonoid C-glycosides, and it is challenging to create these substances chemically. RESULTS: To screen more robust C-glycosyltransferases (CGTs) for the biosynthesis of flavonoid C-glycosides, one CGT enzyme from Stenoloma chusanum (ScCGT1) was characterized. Biochemical analyses revealed that ScCGT1 showed the C-glycosylation activity for phloretin, 2-hydroxynaringenin, and 2-hydroxyeriodictyol. Structure modeling and mutagenesis experiments indicated that the glycosylation of ScCGT1 may be initiated by the synergistic action of conserved residue His26 and Asp14. The P164T mutation increased C-glycosylation activity by forming a hydrogen bond with the sugar donor. Furthermore, when using phloretin as a substrate, the extracellular nothofagin production obtained from the Escherichia coli strain ScCGT1-P164T reached 38 mg/L, which was 2.3-fold higher than that of the wild-type strain. Finally, it is proved that the coupling catalysis of CjFNS I/F2H and ScCGT1-P164T could convert naringenin into vitexin and isovitexin. CONCLUSION: This is the first time that C-glycosyltransferase has been characterized from fern species and provides a candidate gene and strategy for the efficient production of bioactive C-glycosides using enzyme catalysis and metabolic engineering.


Assuntos
Gleiquênias , Glicosiltransferases , Escherichia coli/metabolismo , Gleiquênias/metabolismo , Flavonoides/metabolismo , Glicosídeos , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Floretina , Açúcares
19.
Biometals ; 35(5): 1043-1057, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35913688

RESUMO

Copper (Cu) and zinc (Zn) have a high demand in the industry. However, these ions, at high concentrations, can cause severe damage to both fauna and flora. Phytoremediation has gained international importance because its relatively low cost and it is environmentally friendly. The aim of the present study was to evaluate the capacity of Salvinia minima of accumulating Cu and Zn from aqueous solutions of various external concentrations (20, 40 and 80 µmol L-1 of CuSO4 and ZnSO4, separately). In addition, to estimate the effect of exposure of S. minima plants to those metals, on various physiological parameters (growth potential, maximum quantum efficiency of PSII, electrolyte leakage: as a cell membrane integrity index). S. minima was able of accumulating more Zn than Cu in its tissues, reaching values of 6.96 mg Cu g-1 dry weight (DW) and 19.6 mg Zn g-1 DW when exposed to 80 µM of each metal during 96 h, that were stored mainly at roots. Despite accumulating less Cu in its tissues, Cu had more severe reductions in various physiological parameters than Zn (in maximum quantum efficiency, integrity of cell membranes, and growth). We conclude that this species can be useful in the phytoremediation for copper and zinc in relatively short time, as maximum accumulation occurred within the first 24 h. However, in the long term, the accumulation of such metals is accompanied by a negative impact in the appearance, physiology, and growth of this plant species, which was more severe for copper exposure than for zinc.


Assuntos
Gleiquênias , Zinco , Cobre/metabolismo , Gleiquênias/metabolismo , Íons/metabolismo , Metais/metabolismo , Plantas/metabolismo , Estresse Fisiológico , Zinco/metabolismo
20.
Int J Mol Sci ; 24(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36613740

RESUMO

The interactions between ferns and the environment have been frequently researched. However, detailed data on how ferns respond to specific stresses and a combination of stress factors during cultivation are lacking. This study assessed the effects of salinity and full sunlight and the combination of both stresses on the growth and selected metabolic parameters of two hardy ferns (Athyrium nipponicum cv. Red Beauty and Dryopteris erythrosora) under production conditions. Hardy ferns are highly interesting ornamental plants that can serve as a potential source of antioxidants for the pharmaceutical, cosmetic, and food industries. The results showed that in both ferns, salinity and salinity combined with full sunlight lowered the dry weight of the aerial part and potassium/sodium and calcium/potassium ratio compared with control plants. Salinity, full sunlight, and multi-stress did not affect the total polyphenol content in both ferns but increased the total free amino acids and flavonoids in D. erythrosora. In A. nipponicum cv. Red Beauty, all stressors decreased the total free amino acids content and the antioxidant activities determined by ABTS, DPPH, FRAP, and reducing power assays. By contrast, plants of D. erythrosora grown under full sunlight are characterized by higher antioxidant activities determined by DPPH, FRAP, and reducing power assays. Overall, a greater adaptive potential to abiotic stresses was found in D. erythrosora than in A. nipponicum cv. Red Beauty. Our findings shed some light on the physiological mechanisms responsible for sensitivity/tolerance to salinity, full sunlight, and combined stresses in hardy ferns.


Assuntos
Antioxidantes , Gleiquênias , Antioxidantes/metabolismo , Gleiquênias/metabolismo , Salinidade , Luz Solar , Estresse Fisiológico , Potássio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA