Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Am Chem Soc ; 141(25): 10091-10098, 2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31146522

RESUMO

Molybdenum nitrogenase catalyzes the reduction of dinitrogen into ammonia, which requires the coordinated transfer of eight electrons to the active site cofactor (FeMoco) through the intermediacy of an [8Fe-7S] cluster (P-cluster), both housed in the molybdenum-iron protein (MoFeP). Previous studies on MoFeP from two different organisms, Azotobacter vinelandii ( Av) and Gluconacetobacter diazotrophicus ( Gd), have established that the P-cluster is conformationally flexible and can undergo substantial structural changes upon two-electron oxidation to the POX state, whereby a backbone amidate and an oxygenic residue (Ser or Tyr) ligate to two of the cluster's Fe centers. This redox-dependent change in coordination has been implicated in the conformationally gated electron transfer in nitrogenase. Here, we have investigated the role of the oxygenic ligand in Av MoFeP, which natively contains a Ser ligand (ßSer188) to the P-cluster. Three variants were generated in which (1) the oxygenic ligand was eliminated (ßSer188Ala), (2) the P-cluster environment was converted to the one in Gd MoFeP (ßPhe99Tyr/ßSer188Ala), and (3) two oxygenic ligands were simultaneously included (ßPhe99Tyr). Our studies have revealed that the P-cluster can become compositionally labile upon oxidation and reversibly lose one or two Fe centers in the absence of the oxygenic ligand, while still retaining wild-type-like dinitrogen reduction activity. Our findings also suggest that Av and Gd MoFePs evolved with specific preferences for Ser and Tyr ligands, respectively, and that the structural control of these ligands must extend beyond the primary and secondary coordination spheres of the P-cluster. The P-cluster adds to the increasing number of examples of inherently labile Fe-S clusters whose compositional instability may be an obligatory feature to enable redox-linked conformational changes to facilitate multielectron redox reactions.


Assuntos
Proteínas de Bactérias/química , Proteínas Ferro-Enxofre/química , Nitrogenase/química , Azotobacter vinelandii/enzimologia , Proteínas de Bactérias/genética , Gluconacetobacter/enzimologia , Proteínas Ferro-Enxofre/genética , Mutação , Nitrogenase/genética , Oxirredução , Conformação Proteica , Estabilidade Proteica , Serina/química , Tirosina/química
2.
Int J Mol Sci ; 20(21)2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31652968

RESUMO

Gluconacetobacter diazotrophicus PAL5 (GDI) is an endophytic bacterium with potential biotechnological applications in industry and agronomy. The recent description of its complete genome and its principal metabolic enzymes suggests that glucose metabolism is accomplished through the pentose phosphate pathway (PPP); however, the enzymes participating in this pathway have not yet been characterized in detail. The objective of the present work was to clone, purify, and biochemically and physicochemically characterize glucose-6-phosphate dehydrogenase (G6PD) from GDI. The gene was cloned and expressed as a tagged protein in E. coli to be purified by affinity chromatography. The native state of the G6PD protein in the solution was found to be a tetramer with optimal activity at pH 8.8 and a temperature between 37 and 50 °C. The apparent Km values for G6P and nicotinamide adenine dinucleotide phosphate (NADP+) were 63 and 7.2 µM, respectively. Finally, from the amino acid sequence a three-dimensional (3D) model was obtained, which allowed the arrangement of the amino acids involved in the catalytic activity, which are conserved (RIDHYLGKE, GxGGDLT, and EKPxG) with those of other species, to be identified. This characterization of the enzyme could help to identify new environmental conditions for the knowledge of the plant-microorganism interactions and a better use of GDI in new technological applications.


Assuntos
Clonagem Molecular , Gluconacetobacter/enzimologia , Glucosefosfato Desidrogenase/metabolismo , Escherichia coli/metabolismo , Glucosefosfato Desidrogenase/química , Glucosefosfato Desidrogenase/genética , Concentração de Íons de Hidrogênio , Cinética , NADP/metabolismo , Estabilidade Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Temperatura
3.
J Am Chem Soc ; 138(32): 10124-7, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27487256

RESUMO

The P-cluster is a unique iron-sulfur center that likely functions as a dynamic electron (e(-)) relay site between the Fe-protein and the catalytic FeMo-cofactor in nitrogenase. The P-cluster has been shown to undergo large conformational changes upon 2-e(-) oxidation which entail the coordination of two of the Fe centers to a Ser side chain and a backbone amide N, respectively. Yet, how and if this 2-e(-) oxidized state (P(OX)) is involved in catalysis by nitrogenase is not well established. Here, we present the crystal structures of reduced and oxidized MoFe-protein (MoFeP) from Gluconacetobacter diazotrophicus (Gd), which natively possesses an Ala residue in the position of the Ser ligand to the P-cluster. While reduced Gd-MoFeP is structurally identical to previously characterized counterparts around the FeMo-cofactor, oxidized Gd-MoFeP features an unusual Tyr coordination to its P-cluster along with ligation by a backbone amide nitrogen. EPR analysis of the oxidized Gd-MoFeP P-cluster confirmed that it is a 2-e(-) oxidized, integer-spin species. Importantly, we have found that the sequence positions corresponding to the Ser and Tyr ligands are almost completely covariant among Group I nitrogenases. These findings strongly support the possibility that the P(OX) state is functionally relevant in nitrogenase catalysis and that a hard, O-based anionic ligand serves to stabilize this state in a switchable fashion.


Assuntos
Elétrons , Gluconacetobacter/enzimologia , Nitrogenase/química , Tirosina/química , Alanina/química , Proteínas de Bactérias/química , Sítios de Ligação , Catálise , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Proteínas Ferro-Enxofre/química , Ligantes , Molibdoferredoxina/metabolismo , Oxirredução , Oxigênio/química , Conformação Proteica
4.
Arch Microbiol ; 197(2): 223-33, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25323530

RESUMO

TonB-dependent receptors in concert with the TonB-ExbB-ExbD protein complex are responsible for the uptake of iron and substances such as vitamin B12 in several bacterial species. In this study, Tn5 mutagenesis of the sugarcane endophytic bacterium Gluconacetobacter diazotrophicus led to the isolation of a mutant with a single Tn5-insertion in the promoter region of a tonB gene ortholog. This mutant, named Gdiaa31, displayed a reduced growth rate and a lack of response to iron availability when compared to the wild-type strain PAL5(T). Several efforts to generate null-mutants for the tonB gene by insertional mutagenesis were without success. RT-qPCR analysis demonstrated reduced transcription of tonB in Gdiaa31 when compared to PAL5(T). tonB transcription was inhibited in the presence of Fe(3+) ions both in PAL5(T) and in Gdiaa31. In comparison with PAL5(T), Gdiaa31 also demonstrated decreased nitrogenase activity and biofilm formation capability, two iron-requiring physiological characteristics of G. diazotrophicus. Additionally, Gdiaa31 accumulated higher siderophore levels in culture supernatant. The genetic complementation of the Gdiaa31 strain with a plasmid that carried the tonB gene including its putative promoter region (pP(tonB)) restored nitrogenase activity and siderophore accumulation phenotypes. These results indicate that the TonB complex has a role in iron/siderophore transport and may be essential in the physiology of G. diazotrophicus.


Assuntos
Proteínas de Bactérias/genética , Gluconacetobacter/genética , Proteínas de Membrana/genética , Plasmídeos/genética , Regiões Promotoras Genéticas/genética , Sideróforos/genética , Transporte Biológico/genética , Meios de Cultura/química , Teste de Complementação Genética , Gluconacetobacter/enzimologia , Gluconacetobacter/metabolismo , Ferro/metabolismo , Mutagênese Insercional , Mutação , Nitrogenase/genética , Fenótipo , Sideróforos/análise , Sideróforos/metabolismo
5.
Int J Mol Sci ; 16(1): 1293-311, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25574602

RESUMO

Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH) and the aldehyde dehydrogenase (ALDH). We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa) of Ga. diazotrophicus is indeed a double function enzyme, which is able to use primary alcohols (C2-C6) and its respective aldehydes as alternate substrates. Moreover, the enzyme utilizes ethanol as a substrate in a reaction mechanism where this is subjected to a two-step oxidation process to produce acetic acid without releasing the acetaldehyde intermediary to the media. Moreover, we propose a mechanism that, under physiological conditions, might permit a massive conversion of ethanol to acetic acid, as usually occurs in the acetic acid bacteria, but without the transient accumulation of the highly toxic acetaldehyde.


Assuntos
Álcool Desidrogenase/metabolismo , Etanol/metabolismo , Gluconacetobacter/enzimologia , Acetatos/análise , Álcool Desidrogenase/química , Álcool Desidrogenase/isolamento & purificação , Aldeídos/análise , Sequência de Aminoácidos , Biocatálise , Radioisótopos de Carbono/química , Cromatografia Gasosa-Espectrometria de Massas , Marcação por Isótopo , Cinética , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Oxirredução , Desnaturação Proteica , Temperatura
6.
BMC Struct Biol ; 14: 21, 2014 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-25369873

RESUMO

BACKGROUND: Bacterial pyruvate decarboxylases (PDC) are rare. Their role in ethanol production and in bacterially mediated ethanologenic processes has, however, ensured a continued and growing interest. PDCs from Zymomonas mobilis (ZmPDC), Zymobacter palmae (ZpPDC) and Sarcina ventriculi (SvPDC) have been characterized and ZmPDC has been produced successfully in a range of heterologous hosts. PDCs from the Acetobacteraceae and their role in metabolism have not been characterized to the same extent. Examples include Gluconobacter oxydans (GoPDC), G. diazotrophicus (GdPDC) and Acetobacter pasteutrianus (ApPDC). All of these organisms are of commercial importance. RESULTS: This study reports the kinetic characterization and the crystal structure of a PDC from Gluconacetobacter diazotrophicus (GdPDC). Enzyme kinetic analysis indicates a high affinity for pyruvate (K M 0.06 mM at pH 5), high catalytic efficiencies (1.3 • 10(6) M(-1) • s(-1) at pH 5), pHopt of 5.5 and Topt at 45°C. The enzyme is not thermostable (T½ of 18 minutes at 60°C) and the calculated number of bonds between monomers and dimers do not give clear indications for the relatively lower thermostability compared to other PDCs. The structure is highly similar to those described for Z. mobilis (ZmPDC) and A. pasteurianus PDC (ApPDC) with a rmsd value of 0.57 Å for Cα when comparing GdPDC to that of ApPDC. Indole-3-pyruvate does not serve as a substrate for the enzyme. Structural differences occur in two loci, involving the regions Thr341 to Thr352 and Asn499 to Asp503. CONCLUSIONS: This is the first study of the PDC from G. diazotrophicus (PAL5) and lays the groundwork for future research into its role in this endosymbiont. The crystal structure of GdPDC indicates the enzyme to be evolutionarily closely related to homologues from Z. mobilis and A. pasteurianus and suggests strong selective pressure to keep the enzyme characteristics in a narrow range. The pH optimum together with reduced thermostability likely reflect the host organisms niche and conditions under which these properties have been naturally selected for. The lack of activity on indole-3-pyruvate excludes this decarboxylase as the enzyme responsible for indole acetic acid production in G. diazotrophicus.


Assuntos
Aminoácidos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Gluconacetobacter/enzimologia , Piruvato Descarboxilase/química , Piruvato Descarboxilase/metabolismo , Cristalografia por Raios X , Gluconacetobacter/química , Modelos Moleculares , Filogenia , Conformação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Sarcina/química , Sarcina/enzimologia , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Zymomonas/química , Zymomonas/enzimologia
7.
Mol Plant Microbe Interact ; 26(8): 937-45, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23634840

RESUMO

Gluconacetobacter diazotrophicus is an aerobic diazotrophic plant-growth-promoting bacterium isolated from different gramineous plants. We showed that reactive oxygen species (ROS) were produced at early stages of rice root colonization, a typical plant defense response against pathogens. The transcription of the pathogen-related-10 gene of the jasmonic acid (JA) pathway but not of the PR-1 gene of the salicylic acid pathway was activated by the endophytic colonization of rice roots by G. diazotrophicus strain PAL5. Quantitative polymerase chain reaction analyses showed that, at early stages of colonization, the bacteria upregulated the transcript levels of ROS-detoxifying genes such as superoxide dismutase (SOD) and glutathione reductase (GR). To proof the role of ROS-scavenging enzymes in the colonization and interaction process, transposon insertion mutants of the SOD and GR genes of strain PAL5 were constructed. The SOD and GR mutants were unable to efficiently colonize the roots, indicated by the decrease of tightly root-associated bacterial cell counts and endophytic colonization and by fluorescence in situ hybridization analysis. Interestingly, the mutants did not induce the PR-10 of the JA-pathway, probably due to the inability of endophytic colonization. Thus, ROS-scavenging enzymes of G. diazotrophicus strain PAL5 play an important role in the endophytic colonization of rice plants.


Assuntos
Regulação Enzimológica da Expressão Gênica/fisiologia , Gluconacetobacter/enzimologia , Glutationa Redutase/metabolismo , Oryza/microbiologia , Raízes de Plantas/microbiologia , Superóxido Dismutase/metabolismo , Clonagem Molecular , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/fisiologia , Gluconacetobacter/genética , Gluconacetobacter/metabolismo , Glutationa Redutase/genética , Hibridização in Situ Fluorescente , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio , Reação em Cadeia da Polimerase em Tempo Real , Superóxido Dismutase/genética , Simbiose , Fatores de Tempo
8.
Arch Biochem Biophys ; 529(2): 92-8, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23232080

RESUMO

The cellulose synthase protein (AcsAB) is encoded by a single gene in Gluconacetobacter hansenii ATCC 23769. We have examined the processing pattern of this enzyme and the localization of the cleavage products by heterologously expressing the truncated portions of the AcsAB protein and using specific antibodies generated against these regions. We found that the AcsAB protein is processed into three polypeptide subunits of molecular masses 46kDa, 34kDa and 95kDa. The 46kDa polypeptide (AcsA(cat)) harbors the conserved glycosyltransferase domain and hence contains the catalytic subunit of the enzyme. This polypeptide is localized in the cytoplasmic membrane. The 34kDa polypeptide (AcsA(reg)) is the regulatory subunit with the cyclic diGMP-binding PilZ domain. This polypeptide is largely cytoplasmic. The 95kDa subunit (AcsB) is of unknown function and contains a predicted signal peptide at its N-terminus. This subunit is localized in the outer membrane. In addition to this, we have also localized the AcsC protein in the outer membrane, confirming its predicted localization based on the OM-signal sequence at its N-terminus.


Assuntos
Gluconacetobacter/enzimologia , Gluconacetobacter/ultraestrutura , Glucosiltransferases/biossíntese , Glucosiltransferases/química , Frações Subcelulares/química , Frações Subcelulares/enzimologia , Gluconacetobacter/classificação , Especificidade da Espécie
9.
Appl Microbiol Biotechnol ; 97(16): 7369-76, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23760531

RESUMO

A membrane-bound, pyrroloquinoline quinone (PQQ)-dependent alcohol dehydrogenase (ADH) was purified from Frateuria aurantia LMG 1558(T). Although F. aurantia belongs to a group of γ-Proteobacteria, the characteristics of its PQQ-ADH were similar to the enzyme characteristics of the typical high-acetic acid-resistant bacterium Gluconacetobacter europaeus from the group of α-Proteobacteria. The PQQ-dependent ADH was solubilized from the membranes and purified after anionic, cationic, and affinity chromatography with specific activity of 117 U/mg. The purified enzyme was estimated to be composed of two subunits of ca. 72 and 45 kDa, as judged by SDS-polyacrylamide gel electrophoresis. The purified enzyme had maximum activity at pH 4.5 and showed the highest substrate specificity to ethanol, isoamyl alcohol, 1-butanol, and 1-propanol. The deduced sequences of cloned genes adhA and adhB encoding subunits I and II of PQQ-ADH showed 80 % amino acid (AA) identity to AdhA and 68 % AA identity to AdhB of Ga. europaeus V3 (LMG 18494). Because of the high similarity between genes encoding subunits I and II of PQQ-ADH and its homologous genes found in a distantly related taxonomic group of acetic acid bacteria, the results suggest the possibility of horizontal gene transfer between these two groups of genera.


Assuntos
Oxirredutases do Álcool/metabolismo , Xanthomonadaceae/enzimologia , Oxirredutases do Álcool/química , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/isolamento & purificação , Sequência de Aminoácidos , Cromatografia de Afinidade , Cromatografia por Troca Iônica , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , Gluconacetobacter/enzimologia , Gluconacetobacter/genética , Dados de Sequência Molecular , Peso Molecular , Filogenia , Multimerização Proteica , Subunidades Proteicas , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Xanthomonadaceae/genética
10.
Arch Microbiol ; 193(2): 137-49, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21103984

RESUMO

Gluconacetobacter diazotrophicus is a nitrogen-fixing bacterium and endophyte of sugarcane, which expresses levansucrase, a fructosyltransferase exoenzyme with sucrose hydrolytic and levan biosynthetic activities. As a result of their physical properties, the levan can provide protection against stress caused by abiotic or biotic factors and participate in the formation of biofilms. In this study, we investigated the construction and function of a levansucrase-defective mutant of G. diazotrophicus. The lsdA mutant showed a decreased tolerance (65.5%) to 50-150 mM NaCl and a decrease of 89% in 876 mM (30%) sucrose, a reduction (99%) in tolerance to desiccation after 18 h, and a decrease (36.9-58.5%) in the ability to form cell aggregates on abiotic surfaces. Complementation of the mutant with the complete lsdA gene leads to a recovery of the ability to grow on sucrose-containing medium and to form slimy colonies, the ability to form the cell aggregates on abiotic surfaces and the tolerance to NaCl. This report demonstrates the importance of levansucrase in environmental adaptation of G. diazotrophicus under high osmotic stress and in biofilm formation.


Assuntos
Biofilmes/crescimento & desenvolvimento , Gluconacetobacter/enzimologia , Hexosiltransferases/metabolismo , Soluções Hipertônicas/farmacologia , Biofilmes/efeitos dos fármacos , Dessecação , Frutanos/biossíntese , Teste de Complementação Genética , Gluconacetobacter/genética , Gluconacetobacter/fisiologia , Hexosiltransferases/genética , Mutação , Polietilenoglicóis/farmacologia , Cloreto de Sódio/farmacologia , Sacarose/farmacologia
11.
FEBS J ; 288(4): 1286-1304, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32621793

RESUMO

The enzyme 6-phosphogluconate dehydrogenase catalyzes the conversion of 6-phosphogluconate to ribulose-5-phosphate. It represents an important reaction in the oxidative pentose phosphate pathway, producing a ribose precursor essential for nucleotide and nucleic acid synthesis. We succeeded, for the first time, to determine the three-dimensional structure of this enzyme from an acetic acid bacterium, Gluconacetobacter diazotrophicus (Gd6PGD). Active Gd6PGD, a homodimer (70 kDa), was present in both the soluble and the membrane fractions of the nitrogen-fixing microorganism. The Gd6PGD belongs to the newly described subfamily of short-chain (333 AA) 6PGDs, compared to the long-chain subfamily (480 AA; e.g., Ovis aries, Homo sapiens). The shorter amino acid sequence in Gd6PGD induces the exposition of hydrophobic residues in the C-terminal domain. This distinct structural feature is key for the protein to associate with the membrane. Furthermore, in terms of function, the short-chain 6PGD seems to prefer NAD+ over NADP+ , delivering NADH to the membrane-bound NADH dehydrogenase of the microorganisms required by the terminal oxidases to reduce dioxygen to water for energy conservation. ENZYME: ECnonbreakingspace1.1.1.343. DATABASE: Structural data are available in PDB database under the accession number 6VPB.


Assuntos
Proteínas de Bactérias/metabolismo , Gluconacetobacter/enzimologia , Gluconatos/metabolismo , Fosfogluconato Desidrogenase/metabolismo , Ribulosefosfatos/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Gluconacetobacter/genética , Gluconatos/química , Humanos , Modelos Químicos , Modelos Moleculares , Estrutura Molecular , NAD/metabolismo , NADP/metabolismo , Fosfogluconato Desidrogenase/classificação , Fosfogluconato Desidrogenase/genética , Filogenia , Domínios Proteicos , Multimerização Proteica , Ribulosefosfatos/química , Homologia de Sequência de Aminoácidos
12.
Microbiol Res ; 243: 126654, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33285429

RESUMO

The use of plant growth-promoting bacteria represents an alternative to the massive use of mineral fertilizers in agriculture. However, some abiotic stresses commonly found in the environment, like salinity, can affect the efficiency of this approach. Here, we investigated the key mechanisms involved in the response of the plant growth-promoting bacterium Gluconacetobacter diazotrophicus to salt stress by using morphological and cell viability analyses, comparative proteomics, and reverse genetics. Our results revealed that the bacteria produce filamentous cells in response to salt at 100 mM and 150 mM NaCl. However, such a response was not observed at higher concentrations, where cell viability was severely affected. Proteomic analysis showed that salt stress modulates proteins involved in several pathways, including iron uptake, outer membrane efflux, osmotic adjustment, cell division and elongation, and protein transport and quality control. Proteomic data also revealed the repression of several extracytoplasmic proteins, especially those located at periplasm and outer membrane. The role of such pathways in the tolerance to salt stress was analyzed by the use of mutant defectives for Δtbdr (iron uptake), ΔmtlK and ΔotsA (compatible solutes synthesis), and ΔdegP (quality control of nascent extracytoplasmic proteins). ΔdegP presented the highest sensitivity to salt stress, Δtbdr, andΔmtlK also showed increased sensitivity, but ΔotsA was not affected. This is the first demonstration that DegP protein, a protease with minor chaperone activity, is essential for tolerance to salt stress in G. diazotrophicus. Our data contribute to a better understanding of the molecular bases that control the bacterial response/tolerance to salt stress, shedding light on quality control of nascent extracytoplasmic proteins.


Assuntos
Proteínas de Bactérias/metabolismo , Gluconacetobacter/metabolismo , Proteínas de Choque Térmico/metabolismo , Peptídeo Hidrolases/metabolismo , Proteínas Periplásmicas/metabolismo , Serina Endopeptidases/metabolismo , Cloreto de Sódio/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Gluconacetobacter/enzimologia , Gluconacetobacter/genética , Proteínas de Choque Térmico/genética , Ferro/metabolismo , Peptídeo Hidrolases/genética , Proteínas Periplásmicas/genética , Serina Endopeptidases/genética
13.
J Bacteriol ; 192(21): 5718-24, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20802042

RESUMO

Several aldehyde dehydrogenase (ALDH) complexes have been purified from the membranes of acetic acid bacteria. The enzyme structures and the chemical nature of the prosthetic groups associated with these enzymes remain a matter of debate. We report here on the molecular and catalytic properties of the membrane-bound ALDH complex of the diazotrophic bacterium Gluconacetobacter diazotrophicus. The purified ALDH complex is a heterodimer comprising two subunits of 79.7 and 50 kDa, respectively. Reversed-phase high-pressure liquid chromatography (HPLC) and electron paramagnetic resonance spectroscopy led us to demonstrate, for the first time, the unequivocal presence of a pyrroloquinoline quinone prosthetic group associated with an ALDH complex from acetic acid bacteria. In addition, heme b was detected by UV-visible light (UV-Vis) spectroscopy and confirmed by reversed-phase HPLC. The smaller subunit bears three cytochromes c. Aliphatic aldehydes, but not formaldehyde, were suitable substrates. Using ferricyanide as an electron acceptor, the enzyme showed an optimum pH of 3.5 that shifted to pH 7.0 when phenazine methosulfate plus 2,6-dichlorophenolindophenol were the electron acceptors. Acetaldehyde did not reduce measurable levels of the cytochrome b and c centers; however, the dithionite-reduced hemes were conveniently oxidized by ubiquinone-1; this finding suggests that cytochrome b and the cytochromes c constitute an intramolecular redox sequence that delivers electrons to the membrane ubiquinone.


Assuntos
Aldeído Desidrogenase/metabolismo , Citocromos b/metabolismo , Citocromos c/metabolismo , Gluconacetobacter/enzimologia , Cofator PQQ/química , Aldeído Desidrogenase/química , Aldeído Desidrogenase/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Membrana Celular , Citocromos b/química , Citocromos c/química , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , NADH NADPH Oxirredutases/metabolismo , Oxirredução
14.
Biochemistry ; 49(11): 2409-15, 2010 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-20148520

RESUMO

Gluconacetobacter diazotrophicus stands out among the acetic acid bacteria as it fixes dinitrogen and is a true endophyte. It has a set of constitutive enzymes to oxidize ethanol and acetaldehyde which is upregulated during N(2)-dependent growth. The membrane-bound alcohol dehydrogenase (ADH) is a heterodimer (subunit I approximately 72 kDa, subunit II approximately 44 kDa) and constitutes an important component of this organism. ADH of Ga. diazotrophicus is a typical quinohemoprotein with one pyrroloquinoline quinone (PQQ) and four c-type cytochromes. For the first time, a [2Fe-2S] cluster has been identified by EPR spectroscopy in this type of enzyme. This finding is supported by quantitative chemical analysis, revealing 5.90 +/- 0.15 Fe and 2.06 +/- 0.10 acid-labile sulfurs per ADH heterodimer. The X-band EPR spectrum of ADH (as isolated in the presence of dioxygen, 20 K) showed three broad resonances at g 2.007, 1.941, and 1.920 (g(av) 1.956), as well as an intense narrow line centered at g = 2.0034. The latter signal, which was still detected at 100 K, was attributed to the PQQ semiquinone radical (PQQ(sq)). The broad resonances observed at lower temperature were assigned to the [2Fe-2S] cluster in the one-electron reduced state. The oxidation-reduction potentials E(m) (pH 6.0 vs SHE) of the four c-type cytochromes were estimated to E(m1) = -64 (+/-2) mV, E(m2) = -8 (+/-2) mV, E(m3) = +185 (+/-15) mV, and E(m4) = +210 (+/-10) mV (spectroelectrochemistry), E(mFeS) = -250 (+/-5) mV for the [2Fe-2S] cluster, and E(mPQQ) = -210 (+/-5) mV for the PQQ/PQQH(2) couple (EPR spectroscopy). We propose a model for the membrane-bound ADH of Ga. diazotrophicus showing hypothetical intra- and intermolecular electron pathways. Subunit I binds the PQQ cofactor, the [2Fe-2S] cluster, and one c-type cytochrome. Subunit II harbors three c-type cytochromes, thus providing an efficient electron transfer route to quinones located in the cytoplasmic membrane.


Assuntos
Álcool Desidrogenase/química , Álcool Desidrogenase/metabolismo , Membrana Celular/metabolismo , Gluconacetobacter/citologia , Gluconacetobacter/enzimologia , Ferro , Enxofre , Coenzimas/metabolismo , Citocromos/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Peso Molecular , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Espectrofotometria Ultravioleta
15.
BMC Genomics ; 11 Suppl 5: S7, 2010 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-21210973

RESUMO

BACKGROUND: G. diazotrophicus and A. vinelandii are aerobic nitrogen-fixing bacteria. Although oxygen is essential for the survival of these organisms, it irreversibly inhibits nitrogenase, the complex responsible for nitrogen fixation. Both microorganisms deal with this paradox through compensatory mechanisms. In A. vinelandii a conformational protection mechanism occurs through the interaction between the nitrogenase complex and the FeSII protein. Previous studies suggested the existence of a similar system in G. diazotrophicus, but the putative protein involved was not yet described. This study intends to identify the protein coding gene in the recently sequenced genome of G. diazotrophicus and also provide detailed structural information of nitrogenase conformational protection in both organisms. RESULTS: Genomic analysis of G. diazotrophicus sequences revealed a protein coding ORF (Gdia0615) enclosing a conserved "fer2" domain, typical of the ferredoxin family and found in A. vinelandii FeSII. Comparative models of both FeSII and Gdia0615 disclosed a conserved beta-grasp fold. Cysteine residues that coordinate the 2[Fe-S] cluster are in conserved positions towards the metallocluster. Analysis of solvent accessible residues and electrostatic surfaces unveiled an hydrophobic dimerization interface. Dimers assembled by molecular docking presented a stable behaviour and a proper accommodation of regions possibly involved in binding of FeSII to nitrogenase throughout molecular dynamics simulations in aqueous solution. Molecular modeling of the nitrogenase complex of G. diazotrophicus was performed and models were compared to the crystal structure of A. vinelandii nitrogenase. Docking experiments of FeSII and Gdia0615 with its corresponding nitrogenase complex pointed out in both systems a putative binding site presenting shape and charge complementarities at the Fe-protein/MoFe-protein complex interface. CONCLUSIONS: The identification of the putative FeSII coding gene in G. diazotrophicus genome represents a large step towards the understanding of the conformational protection mechanism of nitrogenase against oxygen. In addition, this is the first study regarding the structural complementarities of FeSII-nitrogenase interactions in diazotrophic bacteria. The combination of bioinformatic tools for genome analysis, comparative protein modeling, docking calculations and molecular dynamics provided a powerful strategy for the elucidation of molecular mechanisms and structural features of FeSII-nitrogenase interaction.


Assuntos
Azotobacter vinelandii/enzimologia , Gluconacetobacter/enzimologia , Modelos Moleculares , Nitrogenase/metabolismo , Oxigênio/metabolismo , Conformação Proteica , Sequência de Aminoácidos , Azotobacter vinelandii/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biologia Computacional , Genômica , Gluconacetobacter/genética , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Fixação de Nitrogênio , Nitrogenase/química , Nitrogenase/genética , Ligação Proteica , Eletricidade Estática
16.
Arch Microbiol ; 192(10): 835-41, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20697694

RESUMO

Gluconacetobacter diazotrophicus, an endophyte isolated from sugarcane, is a strict aerobe that fixates N(2). This process is catalyzed by nitrogenase and requires copious amounts of ATP. Nitrogenase activity is extremely sensitive to inhibition by oxygen and reactive oxygen species (ROS). However, the elevated oxidative metabolic rates required to sustain biological nitrogen fixation (BNF) may favor an increased production of ROS. Here, we explored this paradox and observed that ROS levels are, in fact, decreased in nitrogen-fixing cells due to the up-regulation of transcript levels of six ROS-detoxifying genes. A cluster analyses based on common expression patterns revealed the existence of a stable cluster with 99.8% similarity made up of the genes encoding the α-subunit of nitrogenase Mo-Fe protein (nifD), superoxide dismutase (sodA) and catalase type E (katE). Finally, nitrogenase activity was inhibited in a dose-dependent manner by paraquat, a redox cycler that increases cellular ROS levels. Our data revealed that ROS can strongly inhibit nitrogenase activity, and G. diazotrophicus alters its redox metabolism during BNF by increasing antioxidant transcript levels resulting in a lower ROS generation. We suggest that careful controlled ROS production during this critical phase is an adaptive mechanism to allow nitrogen fixation.


Assuntos
Antioxidantes/metabolismo , Gluconacetobacter/enzimologia , Nitrogenase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Análise por Conglomerados , Genes Bacterianos , Gluconacetobacter/crescimento & desenvolvimento , Fixação de Nitrogênio , Paraquat/metabolismo , Regulação para Cima
17.
Carbohydr Polym ; 247: 116710, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32829838

RESUMO

Enzymatic glycosylation is an efficient way to increase the water solubility and the bioavailability of flavonoids. Levansucrases from Bacillus subtilis (Bs_SacB), Gluconacetobacter diazotrophicus (Gd_LsdA), Leuconostoc mesenteroides (Lm_LevS) and Zymomonas mobilis (Zm_LevU) were screened for puerarin (daidzein-8-C-glucoside) fructosylation. Gd_LsdA transferred the fructosyl unit of sucrose onto the glucosyl unit of the acceptor forming ß-d-fructofuranosyl-(2→6)-puerarin (P1a), while Bs_SacB, Lm_LevS and Zm_LevU synthesized puerarin-4'-O-ß-D-fructofuranoside (P1b) and traces of P1a. The Gd_LsdA product P1a was purified and assayed as precursor for the synthesis of puerarin polyfructosides (PPFs). Bs_SacB elongated P1a more competently forming a linear series of water-soluble PPFs reaching at least 21 fructosyl units, as characterized by HPLC-UV-MS, HPSEC and MALDI-TOF-MS. Simultaneous or sequential Gd_LsdA/Bs_SacB reactions yielded PPFs directly from puerarin with the acceptor conversion ranging 82-92 %. The bi-enzymatic cascade synthesis of PPFs in the same reactor avoided the isolation of the intermediate product P1a and it is appropriate for use at industrial scale.


Assuntos
Bacillus subtilis/enzimologia , Gluconacetobacter/enzimologia , Hexosiltransferases/metabolismo , Isoflavonas/síntese química , Polissacarídeos/síntese química , Glicosilação , Hidrólise , Sacarose/metabolismo
18.
Enzyme Microb Technol ; 137: 109511, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32423666

RESUMO

Membrane-bound sorbosone dehydrogenase (SNDH) of Gluconacetobacter liquefaciens oxidizes l-sorbosone to 2-keto-l-gulonic acid (2KGLA), a key intermediate in vitamin C production. We constructed recombinant Escherichia coli and Gluconobacter strains harboring plasmids carrying the sndh gene from Ga. liquefaciens strain RCTMR10 to identify the prosthetic group of SNDH. The membranes of the recombinant E. coli showed l-sorbosone oxidation activity, only after the holo-enzyme formation with pyrroloquinoline quinone (PQQ), indicating that SNDH is a PQQ-dependent enzyme. The sorbosone-oxidizing respiratory chain was thus heterologously reconstituted in the E. coli membranes. The membranes that contained SNDH showed the activity of sorbosone:ubiquinone analogue oxidoreductase. These results suggest that the natural electron acceptor for SNDH is membranous ubiquinone, and it functions as the primary dehydrogenase in the sorbosone oxidation respiratory chain in Ga. liquefaciens. A biotransformation experiment showed l-sorbosone oxidation to 2KGLA in a nearly quantitative manner. Phylogenetic analysis for prokaryotic SNDH homologues revealed that they are found only in the Proteobacteria phylum and those of the Acetobacteraceae family are clustered in a group where all members possess a transmembrane segment. A three-dimensional structure model of the SNDH constructed with an in silico fold recognition method was similar to the crystal structure of the PQQ-dependent pyranose dehydrogenase from Coprinopsis cinerea. The structural similarity suggests a reaction mechanism under which PQQ participates in l-sorbosone oxidation.


Assuntos
Membrana Celular/enzimologia , Gluconacetobacter/enzimologia , Oxirredutases/metabolismo , Sorbose/análogos & derivados , Ácido Ascórbico/metabolismo , Proteínas de Bactérias/metabolismo , Simulação por Computador , Cristalização , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Metabólica , Filogenia , Sorbose/metabolismo , Açúcares Ácidos/metabolismo
19.
Appl Environ Microbiol ; 75(6): 1782-5, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19139238

RESUMO

Gluconacetobacter diazotrophicus utilizes plant sucrose with a constitutively expressed levansucrase (LsdA), producing extracellular levan, which may be degraded under energetically unfavored conditions. Reverse transcriptase-PCR analysis revealed that lsdA and the downstream exolevanase gene (lsdB) form an operon. lsdB transcription was induced during growth with low fructose concentrations (0.44 to 33 mM) and repressed by glucose. Transport of LsdB to the periplasm involved N-terminal signal peptide cleavage. Type II secretion mutants failed to transfer LsdB across the outer membrane, impeding levan hydrolysis.


Assuntos
Proteínas de Bactérias/biossíntese , Regulação Bacteriana da Expressão Gênica , Gluconacetobacter/enzimologia , Gluconacetobacter/genética , Glicosídeo Hidrolases/biossíntese , Transcrição Gênica , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sequência de Bases , Frutanos/metabolismo , Frutose/metabolismo , Ordem dos Genes , Glucose/metabolismo , Glicosídeo Hidrolases/genética , Dados de Sequência Molecular , Óperon , Periplasma/enzimologia , Sinais Direcionadores de Proteínas , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
J Appl Microbiol ; 106(2): 666-74, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19200331

RESUMO

AIMS: The aim of this study was to develop a reliable system to analyse the expression of the pyrroloquinoline quinone (PQQ)-alcohol dehydrogenase (ADH) and test its ability to predict the growth and oxidative activity of some acetic acid bacteria (AAB). METHODS AND RESULTS: Specific primers were designed for use in RT-PCR to quantify ADH expression and several housekeeping genes in four species of AAB. 16S rRNA gene was selected as an internal control. The relative expression of adhA was measured in Acetobacter aceti, Acetobacter pasteurianus, Gluconacetobacter hansenii and Gluconobacter oxydans grown in two media that had glucose or ethanol as the carbon source. AAB adhA expression was shown to be related to the two Acetobacter species' ability to oxidise and grow on ethanol, whereas G. oxydans were unable to grow on ethanol and the growth of Ga. hansenii was not related to adhA expression. CONCLUSIONS: The differential expression of ADH could be a marker to analyse both growth and oxidation ability in some AAB, especially those of the genus Acetobacter. SIGNIFICANCE AND IMPACT OF THE STUDY: Several housekeeping genes were tested in AAB and after growth in different media and it was evident that only the ribosomal coding genes were adequate as reference genes for RT-PCR.


Assuntos
Acetobacter/genética , Álcool Desidrogenase/genética , Gluconacetobacter/genética , Gluconobacter oxydans/genética , Acetatos/metabolismo , Acetobacter/enzimologia , Acetobacter/crescimento & desenvolvimento , Álcool Desidrogenase/metabolismo , Meios de Cultura , Primers do DNA , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Etanol/metabolismo , Regulação Bacteriana da Expressão Gênica , Gluconacetobacter/enzimologia , Gluconacetobacter/crescimento & desenvolvimento , Gluconobacter oxydans/enzimologia , Gluconobacter oxydans/crescimento & desenvolvimento , Oxirredução , Cofator PQQ/genética , Cofator PQQ/metabolismo , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA