Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 38(4): 66, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35246768

RESUMO

We evaluated the leishmanicidal activity of commercially available 5α-cholest-7-en-3ß-ol [5α-chol], (+)-4-cholesten-3-one [(+)-4-chol] and the equimolar mixture of the two of them in promastigotes and amastigotes of two different strains of Leishmania mexicana (LCL) and (DCL). The leishmanicidal effectiveness of these sterols was determined by promastigote growth-kinetic experiments and promastigote viability using the propidium iodide staining procedure. The proliferation test was performed using the CFSE (5-Carboxyfluorescein N-succinimidyl ester) staining of parasites at different time points. To determine the leishmanicidal effectiveness of these sterols in amastigotes, we evaluated parasite killing inside of macrophages at different time points. The trypan blue exclusion test was used to determine cytotoxicity of sterols in uninfected macrophages. We included in all experiments a control group of parasites treated with 2% DMSO (Dimethyl Sulfoxide) and another one treated with the reference drug sodium stibogluconate (Sb). Our results showed that the equimolar mixture at 2000 times lower concentration presented similar leishmanicidal activity as Sb. This mixture was similarly effective at 100 times lower concentration than individual sterols tested separately indicating the existence of a synergistic effect against LCL and DCL parasites. The therapeutic index of the equimolar mixture was 10,000-16,000 times higher than the one recorded by Sb and was not cytotoxic to macrophages. Therefore, the equimolar mixture of 5α-Chol and (+)-4-chol may represent a potential alternative for the treatment of cutaneous leishmaniasis.


Assuntos
Leishmania mexicana , Leishmaniose Cutânea , Gluconato de Antimônio e Sódio/farmacologia , Colesterol , Humanos , Leishmaniose Cutânea/tratamento farmacológico , Esteróis/farmacologia
2.
Exp Parasitol ; 220: 108033, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33166530

RESUMO

Infection with Leishmania infantum causes the disease visceral leishmaniasis (VL), which is a serious clinical and veterinary problem. The drugs used to treat canine leishmaniasis (CanL) do not cause complete parasite clearance; they can be toxic, and emerging drug resistance in parasite populations limits their clinical utility. Therefore, in this study we have evaluated the toxicity and efficacy of joint treatment with a 1:1 mixture of sodium stibogluconate-NIV (SSG-NIV, 10 mg Sbv/day) and paromomycin-NIV (PMM-NIV, 10 mg PMM/kg/day), given intravenously daily for seven days from day 270 post-infection, to nine-month-old female beagle dogs (n = 6) experimentally infected with Leishmania infantum. Treatment significantly improved the clinical symptoms of VL infection in all the treated dogs, reduced parasite burdens in lymph nodes and bone marrow, and all symptomatic treated dogs, were asymptomatic at 90 days post-treatment. Treatment was associated with a progressive and significant decrease in specific IgG anti-Leishmania antibodies using parasite soluble antigen (p < 0.01) or rK39 (p < 0.01) as the target antigen. In addition, all dogs were classified as parasite negative based on Leishmania nested PCR and quantitative real time PCR tests and as well as an inability to culture of promastigote parasites from lymph nodes and bone marrow tissue samples taken at day 90 post-treatment. However, treatment did not cure the dogs as parasites were detected at 10 months post-treatment, indicating that a different dosing regimen is required to cause long term cure or prevent relapse.


Assuntos
Gluconato de Antimônio e Sódio/uso terapêutico , Antiprotozoários/uso terapêutico , Leishmania donovani/efeitos dos fármacos , Leishmania infantum/efeitos dos fármacos , Paromomicina/uso terapêutico , Administração Intravenosa , Análise de Variância , Animais , Gluconato de Antimônio e Sódio/administração & dosagem , Gluconato de Antimônio e Sódio/farmacologia , Antiprotozoários/administração & dosagem , Antiprotozoários/farmacologia , Contagem de Células Sanguíneas , Análise Química do Sangue , Medula Óssea/parasitologia , Cricetinae , Reservatórios de Doenças , Cães , Feminino , Leishmania donovani/imunologia , Leishmania donovani/isolamento & purificação , Leishmania infantum/imunologia , Leishmania infantum/isolamento & purificação , Fígado/parasitologia , Linfonodos/parasitologia , Masculino , Mesocricetus , Camundongos , Camundongos Endogâmicos BALB C , Paromomicina/administração & dosagem , Paromomicina/farmacologia , Pele/parasitologia , Baço/parasitologia
3.
Exp Parasitol ; 217: 107948, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32698076

RESUMO

Immunomodulation is an emerging concept to combat infection in recent years. Immunomodulators like arabinosylated-lipoarabinomannan (Ara-LAM) and glycyrrhizic-acid (GA) possess anti-leishmanial property, whereas sodium-antimony-gluconate (SAG) is still considered as the first choice for chemotherapy against leishmaniasis. During infection, invasion of Leishmania donovani needs the potential requirement of Ca2+, which is further responsible for apoptosis in intracellular amastigotes. However, suppression of elevated intracellular calcium by the activation of plasma-membrane-calcium-ATPase (PMCA4) facilitates survival of L. donovani in the host. In the present study, SAG, Ara-LAM, and GA were found to evoke significant increase in intracellular Ca2+ in L. donovani infected macrophages by inhibiting PMCA4. Moreover, PMCA4 inhibition by TFP or PMCA4 siRNA elevated the level of PKCß, whereas calcium-independent upregulation of PKCζ remained unchanged in infected macrophages. Furthermore, application of immunomodulators in infected macrophages resulted in down-regulation of PKCζ, conversion of anti-inflammatory to pro-inflammatory cytokines and inhibition of PMCA4. Plasma membrane-associated ceramide which is known to be elevated during leishmaniasis, triggered upregulation of PMCA4 via PKCζ activation. Interestingly, immunomodulators attenuated ceramide generation, which resulted into reduced PKCζ activation leading to the decreased PMCA expression in infected macrophages. Therefore, our study elucidated the efficacy of SAG, Ara-LAM, and GA in the reduction of parasite burden in macrophages by suppressing PMCA activation through inhibition of ceramide mediated upregulation of PKCζ.


Assuntos
Antiprotozoários/uso terapêutico , ATPases Transportadoras de Cálcio/sangue , Membrana Celular/enzimologia , Fatores Imunológicos/farmacologia , Leishmania donovani/efeitos dos fármacos , Leishmaniose Visceral/tratamento farmacológico , Animais , Gluconato de Antimônio e Sódio/farmacologia , Gluconato de Antimônio e Sódio/uso terapêutico , Antiprotozoários/farmacologia , Cálcio/metabolismo , ATPases Transportadoras de Cálcio/efeitos dos fármacos , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Ceramidas/metabolismo , Meios de Cultura Livres de Soro , Densitometria , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Ácido Glicirrízico/farmacologia , Ácido Glicirrízico/uso terapêutico , Imipramina/farmacologia , Immunoblotting , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/uso terapêutico , Macrófagos/fisiologia , Camundongos , RNA de Protozoário/genética , RNA de Protozoário/isolamento & purificação , RNA Interferente Pequeno/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Reversa , Transfecção
4.
Artigo em Inglês | MEDLINE | ID: mdl-31160283

RESUMO

The arsenal of drugs used to treat leishmaniasis, caused by Leishmania spp., is limited and beset by toxicity and emergent resistance. Furthermore, our understanding of drug mode of action and potential routes to resistance is limited. Forward genetic approaches have revolutionized our understanding of drug mode of action in the related kinetoplastid parasite Trypanosoma brucei Therefore, we screened our genome-scale T. brucei RNA interference (RNAi) library against the current antileishmanial drugs sodium stibogluconate (antimonial), paromomycin, miltefosine, and amphotericin B. Identification of T. brucei orthologues of the known Leishmania antimonial and miltefosine plasma membrane transporters effectively validated our approach, while a cohort of 42 novel drug efficacy determinants provides new insights and serves as a resource. Follow-up analyses revealed the antimonial selectivity of the aquaglyceroporin TbAQP3. A lysosomal major facilitator superfamily transporter contributes to paromomycin-aminoglycoside efficacy. The vesicle-associated membrane protein TbVAMP7B and a flippase contribute to amphotericin B and miltefosine action and are potential cross-resistance determinants. Finally, multiple phospholipid-transporting flippases, including the T. brucei orthologue of the Leishmania miltefosine transporter, a putative ß-subunit/CDC50 cofactor, and additional membrane-associated hits, affect amphotericin B efficacy, providing new insights into mechanisms of drug uptake and action. The findings from this orthology-based chemogenomic profiling approach substantially advance our understanding of antileishmanial drug action and potential resistance mechanisms and should facilitate the development of improved therapies as well as surveillance for drug-resistant parasites.


Assuntos
Antiprotozoários/farmacologia , Trypanosoma brucei brucei/metabolismo , Adenosina Trifosfatases/metabolismo , Anfotericina B/farmacologia , Gluconato de Antimônio e Sódio/farmacologia , Leishmania/parasitologia , Paromomicina/farmacologia , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacologia , Proteínas R-SNARE/metabolismo , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/genética
5.
BMC Genomics ; 19(1): 843, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30486770

RESUMO

BACKGROUND: Leishmaniasis is a neglected tropical disease with diverse clinical phenotypes, determined by parasite, host and vector interactions. Despite the advances in molecular biology and the availability of more Leishmania genome references in recent years, the association between parasite species and distinct clinical phenotypes remains poorly understood. We present a genomic comparison of an atypical variant of Leishmania donovani from a South Asian focus, where it mostly causes cutaneous form of leishmaniasis. RESULTS: Clinical isolates from six cutaneous leishmaniasis patients (CL-SL); 2 of whom were poor responders to antimony (CL-PR), and two visceral leishmaniasis patients (VL-SL) were sequenced on an Illumina MiSeq platform. Chromosome aneuploidy was observed in both groups but was more frequent in CL-SL. 248 genes differed by 2 fold or more in copy number among the two groups. Genes involved in amino acid use (LdBPK_271940) and energy metabolism (LdBPK_271950), predominated the VL-SL group with the same distribution pattern reflected in gene tandem arrays. Genes encoding amastins were present in higher copy numbers in VL-SL and CL-PR as well as being among predicted pseudogenes in CL-SL. Both chromosome and SNP profiles showed CL-SL and VL-SL to form two distinct groups. While expected heterozygosity was much higher in VL-SL, SNP allele frequency patterns did not suggest potential recent recombination breakpoints. The SNP/indel profile obtained using the more recently generated PacBio sequence did not vary markedly from that based on the standard LdBPK282A1 reference. Several genes previously associated with resistance to antimonials were observed in higher copy numbers in the analysis of CL-PR. H-locus amplification was seen in one cutaneous isolate which however did not belong to the CL-PR group. CONCLUSIONS: The data presented suggests that intra species variations at chromosome and gene level are more likely to influence differences in tropism as well as response to treatment, and contributes to greater understanding of parasite molecular mechanisms underpinning these differences. These findings should be substantiated with a larger sample number and expression/functional studies.


Assuntos
Genoma , Leishmania donovani/genética , Leishmania donovani/patogenicidade , Aneuploidia , Gluconato de Antimônio e Sódio/farmacologia , Gluconato de Antimônio e Sódio/uso terapêutico , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Sequência de Bases , Cromossomos/genética , Dosagem de Genes , Ontologia Genética , Heterozigoto , Homozigoto , Humanos , Mutação INDEL/genética , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/isolamento & purificação , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/parasitologia , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/parasitologia , Fases de Leitura Aberta/genética , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Virulência/efeitos dos fármacos , Virulência/genética
6.
World J Microbiol Biotechnol ; 34(3): 38, 2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-29460068

RESUMO

We evaluated, for the first time, the leishmanicidal potential of decanethiol functionalized silver nanoparticles (AgNps-SCH) on promastigotes and amastigotes of different strains and species of Leishmania: L. mexicana and L. major isolated from different patients suffering from localized cutaneous leishmaniasis (CL) and L. mexicana isolated from a patient suffering from diffuse cutaneous leishmaniasis (DCL). We recorded the kinetics of promastigote growth by daily parasite counting for 5 days, promastigote mobility, parasite reproduction by CFSE staining's protocol and promastigote killing using the propidium iodide assay. We also recorded IC50's of promastigotes and amastigotes, therapeutic index, and cytotoxicity by co-culturing macrophages with AgNps-SCH or sodium stibogluconate (Sb) used as reference drug. We used Sb as a reference drug since it is used as the first line treatment for all different types of leishmaniasis. At concentrations 10,000 times lower than those used with Sb, AgNps-SCH had a remarkable leishmanicidal effect in all tested strains of parasites and there was no toxicity to J774A.1 macrophages since > 85% were viable at the concentrations used. Therapeutic index was about 20,000 fold greater than the corresponding one for Sb treated cells. AgNps-SCH inhibited > 80% promastigote proliferation in all tested parasites. These results demonstrate there is a high leishmanicidal potential of AgNps-SCH at concentrations of 0.04 µM. Although more studies are needed, including in vivo testing of AgNps-SCH against different types of leishmaniasis, they can be considered a potential new treatment alternative.


Assuntos
Antiprotozoários/farmacologia , Leishmania/efeitos dos fármacos , Nanopartículas Metálicas/química , Prata/farmacologia , Animais , Gluconato de Antimônio e Sódio/farmacologia , Antiprotozoários/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Cinética , Leishmania/crescimento & desenvolvimento , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/parasitologia , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Prata/administração & dosagem
7.
Exp Parasitol ; 176: 30-45, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28263760

RESUMO

Resistance of human pathogens like Leishmania to drugs is a growing concern where the multidrug-resistant phenotype renders chemotherapy ineffective. The acquired resistance of Leishmania to antimony has promoted intense research on the mechanisms involved but the question has not been resolved yet. In this study we have explored host-pathogen- drug interactions leading to identification of pharmacological determinants of host macrophages that resist the sodium antimony gluconate (SAG) mediated intracellular parasite killing. mRNA profiling of mammalian host stage amastigotes of sodium antimony gluconate (SAG) 'sensitive' and 'resistant' parasite lines was carried out using Affymetrix GeneChip® Human Genome U133 Plus 2.0 Array. Patient sera was used to identify immunogenic proteins by two-dimensional gel analysis (2DE) and mass spectrometric analysis (LC-MS/MS). Immunofluorescence microscopy confirmed the identities on 'sensitive' and 'resistant' parasite lines. A total of nine immunogenic proteins whose intensities changed significantly and consistently in multiple experiments were detected, suggesting that a cohort of proteins are altered in expression levels in the 'resistant' parasites. Global expression profiling using microarrays revealed this regulation was not reflected by changes in the levels of the cognate mRNAs. Following identification of proteins by mass spectrometry, one such regulated protein, enolase, was chosen for more detailed analysis. Immunofluorescence microscopy employing antisera against this enzyme confirmed that its level was differentially regulated in the 'resistant' isolate. We show that high serum level of immunoreactive protein is associated with 'resistant' phenotype. Differentially expressed proteins with immunomodulatory activities were found to be associated with the 'resistant phenotype'.


Assuntos
Antígenos de Protozoários/análise , Resistência a Medicamentos/imunologia , Genômica , Epitopos Imunodominantes/análise , Leishmania donovani/efeitos dos fármacos , Leishmaniose Visceral/parasitologia , Proteômica , Gluconato de Antimônio e Sódio/farmacologia , Antiprotozoários/farmacologia , Western Blotting , Eletroforese em Gel Bidimensional , Humanos , Soros Imunes/imunologia , Imunoglobulina G/imunologia , Índia , Leishmania donovani/imunologia , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/imunologia , Macrófagos/imunologia , Macrófagos/parasitologia , Espectrometria de Massas , Microscopia de Fluorescência , Proteínas de Protozoários/imunologia
8.
Antimicrob Agents Chemother ; 60(9): 5262-75, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27324767

RESUMO

The mechanisms underlying the drug resistance of Leishmania spp. are manifold and not completely identified. Apart from the highly conserved multidrug resistance gene family known from higher eukaryotes, Leishmania spp. also possess genus-specific resistance marker genes. One of them, ARM58, was first identified in Leishmania braziliensis using a functional cloning approach, and its domain structure was characterized in L. infantum Here we report that L. infantum ARM58 is part of a gene cluster at the telomeric end of chromosome 34 also comprising the neighboring genes ARM56 and HSP23. We show that overexpression of all three genes can confer antimony resistance to intracellular amastigotes. Upon overexpression in L. donovani, ARM58 and ARM56 are secreted via exosomes, suggesting a scavenger/secretion mechanism of action. Using a combination of functional cloning and next-generation sequencing, we found that the gene cluster was selected only under antimonyl tartrate challenge and weakly under Cu(2+) challenge but not under sodium arsenite, Cd(2+), or miltefosine challenge. The selective advantage is less pronounced in intracellular amastigotes treated with the sodium stibogluconate, possibly due to the known macrophage-stimulatory activity of this drug, against which these resistance markers may not be active. Our data point to the specificity of these three genes for antimony resistance.


Assuntos
Antimônio/farmacologia , Antiprotozoários/farmacologia , Resistência a Medicamentos/genética , Leishmania infantum/efeitos dos fármacos , Proteínas de Protozoários/genética , Telômero/química , Gluconato de Antimônio e Sódio/farmacologia , Cádmio/farmacologia , Clonagem Molecular , Cobre/farmacologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Exossomos/química , Exossomos/efeitos dos fármacos , Exossomos/metabolismo , Expressão Gênica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Leishmania infantum/genética , Leishmania infantum/crescimento & desenvolvimento , Leishmania infantum/metabolismo , Estágios do Ciclo de Vida/efeitos dos fármacos , Estágios do Ciclo de Vida/genética , Família Multigênica , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacologia , Proteínas de Protozoários/metabolismo , Telômero/metabolismo
9.
J Immunol ; 193(8): 4083-94, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25217162

RESUMO

The efflux of antimony through multidrug resistance protein (MDR)-1 is the key factor in the failure of metalloid treatment in kala-azar patients infected with antimony-resistant Leishmania donovani (Sb(R)LD). Previously we showed that MDR-1 upregulation in Sb(R)LD infection is IL-10-dependent. Imipramine, a drug in use for the treatment of depression and nocturnal enuresis in children, inhibits IL-10 production from Sb(R)LD-infected macrophages (Sb(R)LD-Mϕs) and favors accumulation of surrogates of antimonials. It inhibits IL-10-driven nuclear translocation of c-Fos/c-Jun, critical for enhanced MDR-1 expression. The drug upregulates histone deacetylase 11, which inhibits acetylation of IL-10 promoter, leading to a decrease in IL-10 production from Sb(R)LD-Mϕs. It abrogates Sb(R)LD-mediated p50/c-Rel binding to IL-10 promoter and preferentially recruits p65/RelB to IL-12 p35 and p40 promoters, causing a decrease in IL-10 and overproduction of IL-12 in Sb(R)LD-Mϕs. Histone deacetylase 11 per se does not influence IL-12 promoter activity. Instead, a imipramine-mediated decreased IL-10 level allows optimal IL-12 production in Sb(R)LD-Mϕs. Furthermore, exogenous rIL-12 inhibits intracellular Sb(R)LD replication, which can be mimicked by the presence of Ab to IL-10. This observation indicated that reciprocity exists between IL-10 and IL-12 and that imipramine tips the balance toward an increased IL-12/IL-10 ratio in Sb(R)LD-Mϕs. Oral treatment of infected BALB/c mice with imipramine in combination with sodium stibogluconate cleared organ Sb(R)LD parasites and caused an expansion of the antileishmanial T cell repertoire where sodium stibogluconate alone had no effect. Our study deciphers a detailed molecular mechanism of imipramine-mediated regulation of IL-10/IL-12 reciprocity and its impact on Sb(R)LD clearance from infected hosts.


Assuntos
Gluconato de Antimônio e Sódio/farmacologia , Imipramina/uso terapêutico , Interleucina-10/biossíntese , Interleucina-12/biossíntese , Leishmania donovani/efeitos dos fármacos , Tripanossomicidas/uso terapêutico , Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Acetilação/efeitos dos fármacos , Animais , Anticorpos/imunologia , Antimônio/farmacologia , Células Cultivadas , Cricetinae , Resistência a Medicamentos , Desacetilase 6 de Histona , Histona Desacetilases/biossíntese , Interleucina-10/imunologia , Interleucina-10/metabolismo , Interleucina-12/metabolismo , Interleucina-12/farmacologia , Subunidade p35 da Interleucina-12/genética , Subunidade p40 da Interleucina-12/genética , Leishmania donovani/imunologia , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/parasitologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Subunidade p50 de NF-kappa B/metabolismo , Regiões Promotoras Genéticas , Transdução de Sinais , Linfócitos T/imunologia , Fator de Transcrição RelA/metabolismo
10.
Antimicrob Agents Chemother ; 59(1): 344-55, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25367907

RESUMO

Pentavalent antimonials have been the first-line treatment for leishmaniasis for decades. However, the development of resistance to sodium stibogluconate (SSG) has limited its use, especially for treating visceral leishmaniasis (VL). The present work aims to optimize a cationic liposomal formulation of SSG for the treatment of both SSG-sensitive (AG83) and SSG-resistant (GE1F8R and CK1R) Leishmania donovani infections. Parasite killing was determined by the 3-(4,5-dimethylthiazol-2)-2,5-diphenyltetrazolium bromide (MTT) assay and microscopic counting of Giemsa-stained macrophages. Macrophage uptake studies were carried out by confocal microscopic imaging. Parasite-liposome interactions were visualized through transmission electron microscopy. Toxicity tests were performed using assay kits. Organ parasite burdens were determined by microscopic counting and limiting dilution assays. Cytokines were measured by enzyme-linked immunosorbent assays (ELISAs) and flow cytometry. Although all cationic liposomes studied demonstrated leishmanicidal activity, phosphatidylcholine (PC)-dimethyldioctadecylammonium bromide (DDAB) vesicles were most effective, followed by PC-stearylamine (SA) liposomes. Since entrapment of SSG in PC-DDAB liposomes demonstrated enhanced ultrastructural alterations in promastigotes, PC-DDAB-SSG vesicles were further investigated in vitro and in vivo. PC-DDAB-SSG could effectively alleviate SSG-sensitive and SSG-resistant L. donovani infections in the liver, spleen, and bone marrow of BALB/c mice at a dose of SSG (3 mg/kg body weight) not reported previously. The parasiticidal activity of these vesicles was attributed to better interactions with the parasite membranes, resulting in direct killing, and generation of a strong host-protective environment, necessitating a very low dose of SSG for effective cures.


Assuntos
Gluconato de Antimônio e Sódio/uso terapêutico , Antiprotozoários/uso terapêutico , Leishmania donovani/efeitos dos fármacos , Leishmaniose Visceral/tratamento farmacológico , Lipossomos/uso terapêutico , Animais , Gluconato de Antimônio e Sódio/química , Gluconato de Antimônio e Sódio/farmacologia , Antiprotozoários/química , Antiprotozoários/farmacologia , Medula Óssea/parasitologia , Cricetinae , Resistência a Medicamentos , Humanos , Leishmaniose Visceral/parasitologia , Lipossomos/farmacologia , Fígado/parasitologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Parasitária , Baço/parasitologia
11.
Bioorg Med Chem Lett ; 25(2): 410-3, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25475205

RESUMO

Some novel heteroretinoid-bisbenzylidine ketone hybrids have been synthesized and evaluated for their in vitro antileishmanial activity against intramacrophagic amastigotes of Leishmania donovani. Among all the nine synthetic compounds, five compounds (7c, 7d and 7f-h) have shown significant (less than 7µM) activity against intramacrophagic amastigotes. The IC50 values of these compounds were found better than the reference drugs sodium stibogluconate (SSG) and miltefosine. This study helped us in identifying the new class of compounds that could be exploited as potent antileishmanial agents.


Assuntos
Antiprotozoários/síntese química , Antiprotozoários/farmacologia , Cetonas/síntese química , Leishmania donovani/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Retinoides/química , Animais , Gluconato de Antimônio e Sódio/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Chlorocebus aethiops , Concentração Inibidora 50 , Leishmaniose/parasitologia , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Camundongos , Estrutura Molecular , Testes de Sensibilidade Parasitária , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacologia , Relação Estrutura-Atividade , Células Vero
12.
Exp Parasitol ; 154: 93-7, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25911243

RESUMO

In this study, in vitro anti-leishmanial activity of buparvaquone was evaluated against promastigotes and intracellular amastigotes of Pakistani Leishmania tropica isolate KWH23 in relation to the current standard chemotherapy for leishmaniasis (sodium stibogluconate, sodium stibogluconate, amphotericin B and miltefosine). For buparvaquone, mean % inhibition in intracellular amastigotes at four different concentrations (1.35 µM, 0.51 µM, 0.17 µM and 0.057 µM) was 78%, 44%, 20% and 14% respectively, whereas, against promastigotes it was 89%, 77%, 45% and 35% respectively. IC50 values calculated to estimate the anti-leishmanial activity of buparvaquone against intra-cellular amastigotes and promastigotes was 0.53 µM (95% C.I. = 0.32-0.89) and 0.15 µM (95% C.I. = 0.01-1.84) respectively. Amphotericin B was the most potent in-vitro drug tested, with an IC50 of 0.075 µM (95% C.I. = 0.006-0.907) against promastigotes, and 0.065 µM (95% C.I. = 0.048-0.089) against intra-cellular amastigotes. Amphotericin B was more cytotoxic against THP1 cells, with an IC50 of 0.15 µM (95% C.I. = 0.01-0.95) and an apparent in-vitro therapeutic index of 2.0, than was buparvaquone, with an IC50 of 12.03 µM (95% C.I. = 5.36-26.96) against THP1 cells and a therapeutic index of 80.2. The study proposes that buparvaquone may be further investigated as a candidate drug for treatment of cutaneous leishmaniasis.


Assuntos
Antiprotozoários/farmacologia , Leishmania tropica/efeitos dos fármacos , Naftoquinonas/farmacologia , Anfotericina B/farmacologia , Anfotericina B/toxicidade , Gluconato de Antimônio e Sódio/farmacologia , Gluconato de Antimônio e Sódio/toxicidade , Antiprotozoários/toxicidade , Linhagem Celular Tumoral/efeitos dos fármacos , Criança , Humanos , Concentração Inibidora 50 , Leishmania tropica/crescimento & desenvolvimento , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/parasitologia , Macrófagos/parasitologia , Masculino , Meglumina/farmacologia , Meglumina/toxicidade , Antimoniato de Meglumina , Naftoquinonas/toxicidade , Compostos Organometálicos/farmacologia , Compostos Organometálicos/toxicidade , Paquistão , Testes de Sensibilidade Parasitária
13.
Mol Microbiol ; 90(2): 428-42, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24020363

RESUMO

Antimonial (sodium stibogluconate, SSG) resistance and differentiation have been shown to be closely linked in Leishmania donovani, with SSG-resistant strains showing an increased capacity to generate infectious (metacyclic) forms. This is the first untargeted LC-MS metabolomics study which integrated both phenomena in one experimental design and provided insights into metabolic differences between three clinical L. donovani strains with a similar genetic background but different SSG-susceptibilities. We performed this analysis at different stages during promastigote growth and in the absence or presence of drug pressure. When comparing SSG-resistant and SSG-sensitive strains, a number of metabolic changes appeared to be constitutively present in all growth stages, pointing towards a clear link with SSG-resistance, whereas most metabolic changes were only detected in the stationary stage. These changes reflect the close intertwinement between SSG-resistance and an increased metacyclogenesis in resistant parasites. The metabolic changes suggest that SSG-resistant parasites have (i) an increased capacity for protection against oxidative stress; (ii) a higher fluidity of the plasma membrane; and (iii) a metabolic survival kit to better endure infection. These changes were even more pronounced in a resistant strain kept under Sb(III) drug pressure.


Assuntos
Adaptação Fisiológica , Gluconato de Antimônio e Sódio/farmacologia , Antiprotozoários/farmacologia , Leishmania donovani/metabolismo , Diferenciação Celular , Membrana Celular/fisiologia , Cromatografia Líquida , Resistência a Medicamentos , Humanos , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/genética , Leishmania donovani/crescimento & desenvolvimento , Leishmaniose Visceral/parasitologia , Espectrometria de Massas , Fluidez de Membrana , Metabolômica , Estresse Oxidativo , Fenótipo , Transdução de Sinais
14.
Antimicrob Agents Chemother ; 58(6): 2997-3007, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24614385

RESUMO

Previously, through a proteomic analysis, proliferating cell nuclear antigen (PCNA) was found to be overexpressed in the sodium antimony gluconate (SAG)-resistant clinical isolate compared to that in the SAG-sensitive clinical isolate of Leishmania donovani. The present study was designed to explore the potential role of the PCNA protein in SAG resistance in L. donovani. For this purpose, the protein was cloned, overexpressed, purified, and modeled. Western blot (WB) and real-time PCR (RT-PCR) analyses confirmed that PCNA was overexpressed by ≥ 3-fold in the log phase, stationary phase, and peanut agglutinin isolated procyclic and metacyclic stages of the promastigote form and by ~5-fold in the amastigote form of the SAG-resistant isolate compared to that in the SAG-sensitive isolate. L. donovani PCNA (LdPCNA) was overexpressed as a green fluorescent protein (GFP) fusion protein in a SAG-sensitive clinical isolate of L. donovani, and modulation of the sensitivities of the transfectants to pentavalent antimonial (Sb(V)) and trivalent antimonial (Sb(III)) drugs was assessed in vitro against promastigotes and intracellular (J774A.1 cell line) amastigotes, respectively. Overexpression of LdPCNA in the SAG-sensitive isolate resulted in an increase in the 50% inhibitory concentrations (IC50) of Sb(V) (from 41.2 ± 0.6 µg/ml to 66.5 ± 3.9 µg/ml) and Sb(III) (from 24.0 ± 0.3 µg/ml to 43.4 ± 1.8 µg/ml). Moreover, PCNA-overexpressing promastigote transfectants exhibited less DNA fragmentation compared to that of wild-type SAG-sensitive parasites upon Sb(III) treatment. In addition, SAG-induced nitric oxide (NO) production was found to be significantly inhibited in the macrophages infected with the transfectants compared with that in wild-type SAG-sensitive parasites. Consequently, we infer that LdPCNA has a significant role in SAG resistance in L. donovani clinical isolates, which warrants detailed investigations regarding its mechanism.


Assuntos
Antígenos de Protozoários/genética , Gluconato de Antimônio e Sódio/farmacologia , Antiprotozoários/farmacologia , Leishmania donovani/imunologia , Leishmaniose Visceral/tratamento farmacológico , Antígeno Nuclear de Célula em Proliferação/genética , Animais , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/metabolismo , Sequência de Bases , Linhagem Celular , Cricetinae , Resistência a Medicamentos , Expressão Gênica , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/genética , Leishmaniose Visceral/parasitologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Modelos Moleculares , Dados de Sequência Molecular , Óxido Nítrico/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteômica , Análise de Sequência de DNA
15.
Parasitology ; 141(4): 554-62, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24618257

RESUMO

It is well established that visceral leishmaniasis (VL; also known as Kala azar) causes immunosuppression, and a successful drug treatment is associated with the development of cell-mediated immunity. Therefore combining a drug with an immune enhancer can provide a better approach for the treatment of the disease. Keeping this in mind, the in vivo antileishmanial efficacy of immunochemotherapy was evaluated with the use of a 78 kDa antigen with or without monophosphoryl lipid A (MPL-A) along with a traditional drug sodium stibogluconate (SSG) in Leishmania donovani infected BALB/c mice. Mice were infected intracardially with promastigotes of L. donovani, and 30 days after infection, these animals were given specific immunotherapy (78 kDa/78 kDa+MPL-A) or chemotherapy (SSG) or immunochemotherapy (SSG+78 kDa/SSG+78 kDa+MPL-A). Animals were euthanased on 1, 15 and 30 post-treatment days. The antileishmanial potential of the immunochemotherapy was revealed by significant reduction in the parasite burden (P<0·001). These animals were also found to exhibit increased delayed type hypersensitivity (DTH) responses, higher IgG2a levels, lower IgG1 levels and greater cytokine (IFN-γ and IL-2) concentrations compared with chemotherapy or immunotherapy alone, pointing towards the generation of a strong protective (Th1) type of immune response. Immunochemotherapy with SSG+78 kDa+MPL-A was found to be most effective in protecting mice against VL and therefore can be an alternative option for treatment of VL.


Assuntos
Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Antiprotozoários/uso terapêutico , Leishmania donovani/imunologia , Vacinas contra Leishmaniose/farmacologia , Leishmaniose Visceral/imunologia , Animais , Gluconato de Antimônio e Sódio/farmacologia , Citocinas/imunologia , Quimioterapia Combinada , Feminino , Imunidade Celular , Leishmania donovani/efeitos dos fármacos , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/parasitologia , Lipídeo A/análogos & derivados , Lipídeo A/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Carga Parasitária
16.
Int J Clin Pharmacol Ther ; 52(10): 880-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25109414

RESUMO

BACKGROUND: Leishmania is a unicellular protozoan parasite causing a wide range of human diseases ranging from localized self-healing cutaneous lesions to fatal visceral infections. OBJECTIVE: The aim of the present study is to assess the cytotoxic, anti-proliferative, and apoptotic effects of oleuropein on Leishmania major promastigotes (MHOM/SA/84/JISH) and to compare its effects with the reference drug sodium stibogluconate (pentostam). METHODS: Cytotoxicity and promastigote proliferation were measured using MTT colorimetric assay. Furthermore, the Annexin V/propidium iodide staining technique followed by flow cytometry was used for studying the cell death properties of oleuropein. RESULTS: In the present report we have shown that oleuropein, a pharmacologically safe, natural product of olive leaf, has a potent leishmanicidal effect. Indeed, oleuropein exhibits cytotoxic and anti-proliferative effects against Leishmania major promastigotes. Moreover, oleuropein triggers death through apoptosis, whereas pentostam induces death mainly via necrosis on Leishmania major promastigotes. CONCLUSION: Here we demonstrate for the first time that the non-toxic, natural product oleuropein has apoptotic properties against Leishmania major promastigotes. Further studies are needed to investigate its molecular pathway.


Assuntos
Antiprotozoários/farmacologia , Apoptose/efeitos dos fármacos , Iridoides/farmacologia , Leishmania major/efeitos dos fármacos , Gluconato de Antimônio e Sódio/farmacologia , Relação Dose-Resposta a Droga , Glucosídeos Iridoides
17.
Microbiol Spectr ; 12(6): e0402623, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38712926

RESUMO

Post-kala-azar dermal leishmaniasis (PKDL) patients are a key source of Leishmania donovani parasites, hindering the goal of eliminating visceral leishmaniasis (VL). Monitoring treatment response and parasite susceptibility is essential due to increasing drug resistance. We assessed the drug susceptibility of PKDL isolates (n = 18) from pre-miltefosine (MIL) era (1997-2004) with isolates (n = 16) from the post-miltefosine era (2010-2019) and post-miltefosine treatment relapse isolates (n = 5) towards miltefosine and amphotericin B (AmB) at promastigote stage and towards sodium antimony gluconate (SAG) at amastigote stage. PKDL isolates were examined for mutation in gene-encoding AQP1 transporter, C26882T mutation on chromosome 24, and miltefosine-transporter (MT). PKDL isolates from the post-miltefosine era were significantly more susceptible to SAG than SAG-resistant isolates from the pre-miltefosine era (P = 0.0002). There was no significant difference in the susceptibility of parasites to miltefosine between pre- and post-miltefosine era isolates. The susceptibility of PKDL isolates towards AmB remained unchanged between the pre- and post-miltefosine era. However, the post-miltefosine era isolates had a higher IC50 value towards AmB compared with PKDL relapse isolates. We did not find any association between AQP1 gene sequence variation and susceptibility to SAG, or between miltefosine susceptibility and single nucleotide polymorphisms (SNPs in the MT gene. This study demonstrates that recent isolates of Leishmania have resumed susceptibility to antimonials in vitro. The study also offers significant insights into the intrinsic drug susceptibility of Leishmania parasites over the past two decades, covering the period before the introduction of miltefosine and after its extensive use. IMPORTANCE: Post-kala-azar dermal leishmaniasis (PKDL) patients, a key source of Leishmania donovani parasites, hinder eliminating visceral-leishmaniasis. Assessment of the susceptibility of PKDL isolates to antimony, miltefosine (MIL), and amphotericin-B indicated that recent isolates remain susceptible to antimony, enabling its use with other drugs for treating PKDL.


Assuntos
Anfotericina B , Antimônio , Antiprotozoários , Resistência a Medicamentos , Leishmania donovani , Leishmaniose Cutânea , Leishmaniose Visceral , Fosforilcolina , Humanos , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/genética , Leishmania donovani/isolamento & purificação , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacologia , Fosforilcolina/uso terapêutico , Leishmaniose Visceral/parasitologia , Leishmaniose Visceral/tratamento farmacológico , Antiprotozoários/farmacologia , Antimônio/farmacologia , Antimônio/uso terapêutico , Leishmaniose Cutânea/parasitologia , Leishmaniose Cutânea/tratamento farmacológico , Resistência a Medicamentos/genética , Anfotericina B/farmacologia , Testes de Sensibilidade Parasitária , Gluconato de Antimônio e Sódio/farmacologia , Gluconato de Antimônio e Sódio/uso terapêutico , Mutação
18.
Antimicrob Agents Chemother ; 57(8): 3719-30, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23716044

RESUMO

The characterization of ABCI4, a new intracellular ATP-binding cassette (ABC) half-transporter in Leishmania major, is described. We show that ABCI4 is involved in heavy metal export, thereby conferring resistance to Pentostam, to Sb(III), and to As(III) and Cd(II). Parasites overexpressing ABCI4 showed a lower mitochondrial toxic effect of antimony by decreasing reactive oxygen species production and maintained higher values of both the mitochondrial electrochemical potential and total ATP levels with respect to controls. The ABCI4 half-transporter forms homodimers as determined by a coimmunoprecipitation assay. A combination of subcellular localization studies under a confocal microscope and a surface biotinylation assay using parasites expressing green fluorescent protein- and FLAG-tagged ABCI4 suggests that the transporter presents a dual localization in both mitochondria and the plasma membrane. Parasites overexpressing ABCI4 present an increased replication in mouse peritoneal macrophages. We have determined that porphyrins are substrates for ABCI4. Consequently, the overexpression of ABCI4 confers resistance to some toxic porphyrins, such as zinc-protoporphyrin, due to the lower accumulation resulting from a significant efflux, as determined using the fluorescent zinc-mesoporphyrin, a validated heme analog. In addition, ABCI4 has a significant ability to efflux thiol after Sb(III) incubation, thus meaning that ABCI4 could be considered to be a potential thiol-X-pump that is able to recognize metal-conjugated thiols. In summary, we have shown that this new ABC transporter is involved in drug sensitivity to antimony and other compounds by efflux as conjugated thiol complexes.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Antimônio/farmacologia , Resistência a Medicamentos , Leishmania major/efeitos dos fármacos , Proteínas de Protozoários/metabolismo , Animais , Antimônio/metabolismo , Gluconato de Antimônio e Sódio/farmacologia , Antiprotozoários/farmacologia , Transporte Biológico , Cádmio/metabolismo , Cádmio/farmacologia , Clorofila/análogos & derivados , Clorofila/metabolismo , Clorofila/farmacologia , Proteínas de Fluorescência Verde/metabolismo , Leishmania major/metabolismo , Macrófagos/efeitos dos fármacos , Masculino , Potencial da Membrana Mitocondrial , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Multimerização Proteica , Protoporfirinas/metabolismo , Protoporfirinas/farmacologia , Compostos de Sulfidrila/metabolismo
19.
Biochem Biophys Res Commun ; 440(4): 646-51, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24103752

RESUMO

Resistance to sodium antimony gluconate (SAG) is a major cause of therapeutic failure in a large proportion of visceral leishmaniasis (VL) cases. Determinants of SAG resistance have been widely studied; however, the mechanism operating in clinical isolates is poorly understood. In the present study, expression of parasite surface antigen-2 (PSA-2) gene was studied in clinical isolates of Leishmania donovani comprising of antimony resistant (n=10) and sensitive (n=4) parasites. The expression of PSA-2 gene was found to be consistently high in SAG resistant clinical isolates (≥1.5-fold) at both transcript and protein level. Further, over-expression of PSA-2 in L. donovani isolates (LdPSA-2(++)) resulted in conversion of SAG sensitive phenotype to resistant. The LdPSA-2(++) parasites showed significantly decreased susceptibility towards SAG (>12-fold), amphotericin B (>4-fold) and miltefosine (>2.5-fold). Marked decrease in antimony accumulation and enhanced tolerance towards complement mediated lysis was evident in LdPSA-2(++) parasites. The study established the role of PSA-2 gene in SAG resistance and its potential as a biomarker to distinguish resistant and sensitive clinical isolates of L. donovani.


Assuntos
Antígenos de Protozoários/genética , Antígenos de Superfície/genética , Gluconato de Antimônio e Sódio/farmacologia , Resistência a Medicamentos/genética , Leishmania donovani/efeitos dos fármacos , Leishmaniose Visceral/parasitologia , Proteínas de Protozoários/genética , Tripanossomicidas/farmacologia , Anfotericina B/farmacologia , Gluconato de Antimônio e Sódio/uso terapêutico , Humanos , Leishmania donovani/genética , Leishmania donovani/isolamento & purificação , Leishmaniose Visceral/tratamento farmacológico
20.
Exp Parasitol ; 134(1): 68-75, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23434530

RESUMO

Cutaneous Leishmaniasis (CL) caused by Leishmania aethiopica is a public health and social problem with a sequel of severe and mutilating skin lesions. It is manifested in three forms: localized CL (LCL), mucosal CL (MCL) and diffuse CL (DCL). Unresponsiveness to sodium stibogluconate (Sb(V)) is common in Ethiopian CL patients. Using the amastigote-macrophage in vitro model the susceptibility of 24 clinical isolates of L. aethiopica derived from untreated patients was investigated. Eight strains of LCL, 9 of MCL, and 7 of DCL patients together with a reference strain (MHOM/ET/82/117/82) were tested against four antileishmanial drugs: amphotericin B, miltefosine, Sb(V) and paromomycin. In the same order of drugs, IC(50) (µg/ml±SD) values for the 24 strains tested were 0.16±0.18, 5.88±4.79, 10.23±8.12, and 13.63±18.74. The susceptibility threshold of isolates originating from the 3 categories of patients to all 4 drugs was not different (p>0.05). Maximal efficacy was superior for miltefosine across all the strains. Further susceptibility test could validate miltefosine as a potential alternative drug in cases of sodium stibogluconate treatment failure in CL patients.


Assuntos
Antiprotozoários/farmacologia , Leishmania/efeitos dos fármacos , Leishmaniose Cutânea/parasitologia , Macrófagos Peritoneais/parasitologia , Anfotericina B/farmacologia , Animais , Gluconato de Antimônio e Sódio/farmacologia , Células Cultivadas , Etiópia , Humanos , Concentração Inibidora 50 , Leishmania/classificação , Leishmaniose Cutânea/tratamento farmacológico , Camundongos , Testes de Sensibilidade Parasitária/métodos , Paromomicina/farmacologia , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA