Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 312
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34161273

RESUMO

Enzymes are molecules that catalyze reactions critical to life. These catalysts are often studied in bulk water, where the influence of water volume on reactivity is neglected. Here, we demonstrate rate enhancement of up to two orders of magnitude for enzymes trapped in submicrometer water nanodroplets suspended in 1,2-dichloroethane. When single nanodroplets irreversibly adsorb onto an ultramicroelectrode surface, enzymatic activity is apparent in the amperometric current-time trace if the ultramicroelectrode generates the enzyme cofactor. Nanodroplet volume is easily accessible by integrating the current-time response and using Faraday's Law. The single nanodroplet technique allows us to plot the enzyme's activity as a function of nanodroplet size, revealing a strong inverse relationship. Finite element simulations confirm our experimental results and offer insights into parameters influencing single nanodroplet enzymology. These results provide a framework to profoundly influence the understanding of chemical reactivity at the nanoscale.


Assuntos
Eletroquímica , Glucose Desidrogenase/metabolismo , Nanopartículas/química , Água/química , Eletrodos , Flavina-Adenina Dinucleotídeo
2.
Angew Chem Int Ed Engl ; 61(6): e202109005, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34633119

RESUMO

Protein biosensors play an increasingly important role as reporters for research and clinical applications. Here we present an approach for the construction of fully integrated but modular electrochemical biosensors based on the principal component of glucose monitors PQQ-glucose dehydrogenase (PQQ-GDH). We designed allosterically regulated circular permutated variants of PQQ-GDH that show large (>10-fold) changes in enzymatic activity following intramolecular scaffolding of the newly generated N- and C termini by ligand binding domain/ligand complexes. The developed biosensors demonstrated sub-nanomolar affinities for small molecules and proteins in colorimetric and electrochemical assays. For instance, the concentration of Cyclosporine A could be measured in 1 µL of undiluted blood with the same accuracy as the leading diagnostic technique that uses 50 times more sample. We further used this biosensor to construct highly porous gold bioelectrodes capable of robustly detecting concentrations of Cyclosporine A as low as 20 pM and retained functionality in samples containing at least 60 % human serum.


Assuntos
Técnicas Biossensoriais , Ciclosporina/sangue , Técnicas Eletroquímicas , Glucose Desidrogenase/química , Glucose Desidrogenase/metabolismo , Humanos
3.
Biotechnol Lett ; 43(5): 1037-1042, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33576902

RESUMO

Biodevices in which biomolecules such as enzymes and antibodies are immobilized on the surface of electrode materials are capable of converting chemical energy into electrical energy, and are expected to contribute to solving energy problems and developing medical measurements especially as biobatteries and biosensors. Device performance depends on the interface formed between the biomolecule layer and electrode material, and the interface is required to simultaneously achieve a highly efficient enzymatic reaction and electron transfer. However, when enzymes were immobilized on a material surface, the enzymes undergoes a structural change due to the interaction between the enzyme and the electrode surface, making it difficult to maximize the function of the enzyme molecule on the material surface. In this study, we postulate that the structural change of the enzyme would be reduced and the electrochemical performance improved by making the contact area between the enzyme and the electrode extremely small and adsorbing it as a point. Therefore, we aimed to develop a high-power biodevice that retains enzyme structure and activity by interposing gold nanoparticles (AuNPs) between the enzyme and the electrode. The enzymatic and electrochemical properties of pyrroloquinoline quinone-dependent glucose dehydrogenase adsorbed on AuNPs of 5-40 nm diameter were investigated. We found that the characteristics differed among the particles, and the enzyme adsorbed on 20 nm AuNPs showed the best electrochemical characteristics.


Assuntos
Eletrodos , Enzimas Imobilizadas/química , Ouro/química , Nanopartículas Metálicas/química , Adsorção , Técnicas Biossensoriais/instrumentação , Eletroquímica , Transporte de Elétrons , Enzimas Imobilizadas/metabolismo , Desenho de Equipamento , Glucose Desidrogenase/química , Glucose Desidrogenase/metabolismo
4.
BMC Microbiol ; 20(1): 39, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32093646

RESUMO

BACKGROUND: The polyketide antibiotic 2,4-diacetylphloroglucinol (2,4-DAPG), produced by Pseudomonas fluorescens 2P24, is positively regulated by the GacS-GacA two-component system. RESULTS: Here we reported on the characterization of DsbA1 (disulfide oxidoreductase) as novel regulator of biocontrol activity in P. fluorescens. Our data showed that mutation of dsbA1 caused the accumulation of 2,4-DAPG in a GacA-independent manner. Further analysis indicated that DsbA1 interacts with membrane-bound glucose dehydrogenase Gcd, which positively regulates the production of 2,4-DAPG. Mutation of cysteine (C)-235, C275, and C578 of Gcd, significantly reduced the interaction with DsbA1, enhanced the activity of Gcd and increased 2,4-DAPG production. CONCLUSIONS: Our results suggest that DsbA1 regulates the 2,4-DAPG concentration via fine-tuning the function of Gcd in P. fluorescens 2P24.


Assuntos
Glucose Desidrogenase/metabolismo , Oxirredutases/genética , Floroglucinol/análogos & derivados , Pseudomonas fluorescens/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cisteína , Regulação Bacteriana da Expressão Gênica , Glucose Desidrogenase/química , Glucose Desidrogenase/genética , Mutação , Oxirredutases/metabolismo , Floroglucinol/metabolismo , Ligação Proteica , Pseudomonas fluorescens/metabolismo
5.
Chemphyschem ; 21(7): 589-593, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-31755204

RESUMO

Reactions catalyzed by artificial allosteric enzymes, chimeric proteins with fused biorecognition and catalytic units, were used to mimic multi-input Boolean logic systems. The catalytic parts of the systems were represented by pyrroloquinoline quinone-dependent glucose dehydrogenase (PQQ-GDH). Two biorecognition units, calmodulin or artificial peptide-clamp, were integrated into PQQ-GDH and locked it in the OFF or ON state respectively. The ligand-peptide binding cooperatively with Ca2+ cations to a calmodulin bioreceptor resulted in the enzyme activation, while another ligand-peptide bound to a clamp-receptor inhibited the enzyme. The enzyme activation and inhibition originated from peptide-induced allosteric transitions in the receptor units that propagated to the catalytic domain. While most of enzymes used to mimic Boolean logic gates operate with two inputs (substrate and co-substrate), the used chimeric enzymes were controlled by four inputs (glucose - substrate, dichlorophenolindophenol - electron acceptor/co-substrate, Ca2+ cations and a peptide - activating/inhibiting signals). The biocatalytic reactions controlled by four input signals were considered as logic networks composed of several concatenated logic gates. The developed approach allows potentially programming complex logic networks operating with various biomolecular inputs representing potential utility for different biomedical applications.


Assuntos
Calmodulina/farmacologia , Biologia Computacional , Glucose Desidrogenase/antagonistas & inibidores , Peptídeos/farmacologia , Biocatálise , Calmodulina/química , Glucose Desidrogenase/química , Glucose Desidrogenase/metabolismo , Ligantes , Lógica , Modelos Moleculares , Estrutura Molecular , Peptídeos/química
6.
Lett Appl Microbiol ; 71(3): 242-250, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32394472

RESUMO

Pyrroloquinoline quinone (PQQ) is a cofactor of glucose dehydrogenase (GDH) and thus participates in glucose utilization. In Klebsiella pneumoniae, glucose utilization involves PQQ-dependent direct oxidation pathway (DOP) and phosphoenolpyruvate-dependent transport system (PTS). It is challenging to overproduce PQQ, as its biosynthesis remains unclear. Here, we report that PQQ production can be enhanced by stimulating the metabolic demand for it. First, we developed CRISPR interference (CRISPRi) system to block PTS and thereby intensify DOP. In shake-flask cultivation, the strain with CRISPRi system (simultaneously inhibiting four PTS-related genes) produced 225·65 nmol l-1 PQQ, which was 2·14 times that of wild type. In parallel, an exogenous soluble glucose dehydrogenase (sGDH) was overexpressed in K. pneumoniae. In the shake-flask cultivation, this sGDH-overexpressing strain accumulated 140·05 nmol l-1 PQQ, which was 1·33 times that of wild type. To combine the above two strategies, we engineered a strain harbouring both CRISPRi vector and sGDH-overexpressing vector. In the shake-flask cultivation, this two-plasmid strain generated 287·01 nmol l-1 PQQ, which was 2·72 times that of wild type. In bioreactor cultivation, this two-plasmid strain produced 2206·1 nmol l-1 PQQ in 57 h, which was 7·69 times that in shake-flask cultivation. These results indicate that PQQ production can be enhanced by intensifying DOP, as the apo-enzyme GDH is intrinsically coupled with cofactor PQQ. This study provides a strategy for the production of cofactors whose biosynthesis mechanisms remain ambiguous. SIGNIFICANCE AND IMPACT OF THE STUDY: Pyrroloquinoline quinone (PQQ) is an economically important chemical, which typically serves as a cofactor of glucose dehydrogenase (GDH) and thus participates in glucose metabolism. Klebsiella pneumoniae can naturally synthesize PQQ, but current yield constrains its commercialization. In this study, the PQQ level was improved by stimulating metabolic demand for PQQ, instead of overexpressing PQQ synthetic genes, as the synthetic mechanism remains ambiguous.


Assuntos
Reatores Biológicos/microbiologia , Glucose Desidrogenase/metabolismo , Klebsiella pneumoniae/metabolismo , Cofator PQQ/genética , Cofator PQQ/metabolismo , Transporte Biológico , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Glucose/metabolismo , Glucose Desidrogenase/genética , Klebsiella pneumoniae/genética , Oxirredução , Fosfoenolpiruvato/metabolismo
7.
Biochemistry ; 58(10): 1388-1399, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30742415

RESUMO

A combination of bioinformatics, steady-state kinetics, and NMR spectroscopy has revealed the catalytic functions of YcjQ, YcjS, and YcjR from the ycj gene cluster in Escherichia coli K-12. YcjS was determined to be a 3-keto-d-glucoside dehydrogenase with a kcat = 22 s-1 and kcat/ Km = 2.3 × 104 M-1 s-1 for the reduction of methyl α-3-keto-d-glucopyranoside at pH 7.0 with NADH. YcjS also exhibited catalytic activity for the NAD+-dependent oxidation of d-glucose, methyl ß-d-glucopyranoside, and 1,5-anhydro-d-glucitol. YcjQ was determined to be a 3-keto-d-guloside dehydrogenase with kcat = 18 s-1 and kcat/ Km = 2.0 × 103 M-1 s-1 for the reduction of methyl α-3-keto-gulopyranoside. This is the first reported dehydrogenase for the oxidation of d-gulose. YcjQ also exhibited catalytic activity with d-gulose and methyl ß-d-gulopyranoside. The 3-keto products from both dehydrogenases were found to be extremely labile under alkaline conditions. The function of YcjR was demonstrated to be a C4 epimerase that interconverts 3-keto-d-gulopyranosides to 3-keto-d-glucopyranosides. These three enzymes, YcjQ, YcjR, and YcjS, thus constitute a previously unrecognized metabolic pathway for the transformation of d-gulosides to d-glucosides via the intermediate formation of 3-keto-d-guloside and 3-keto-d-glucoside.


Assuntos
Proteínas de Escherichia coli/metabolismo , Glucose Desidrogenase/genética , Glucosídeos/metabolismo , Catálise , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Glucose/química , Glucose Desidrogenase/metabolismo , Glucosídeos/genética , Cinética , Família Multigênica , Oxirredução , Oxirredutases/metabolismo , Especificidade por Substrato
8.
Appl Environ Microbiol ; 85(24)2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31604773

RESUMO

Pyrroloquinoline quinone (PQQ) is an ortho-quinone cofactor of several prokaryotic oxidases. Widely available in the diet and necessary for the correct growth of mice, PQQ has been suspected to be a vitamin for eukaryotes. However, no PQQ-dependent eukaryotic enzyme had been identified to use the PQQ until 2014, when a basidiomycete enzyme catalyzing saccharide dehydrogenation using PQQ as a cofactor was characterized and served to define auxiliary activity family 12 (AA12). Here we report the biochemical characterization of the AA12 enzyme encoded by the genome of the ascomycete Trichoderma reesei (TrAA12). Surprisingly, only weak activity against uncommon carbohydrates like l-fucose or d-arabinose was measured. The three-dimensional structure of TrAA12 reveals important similarities with bacterial soluble glucose dehydrogenases (sGDH). The enzymatic characterization and the structure solved in the presence of calcium confirm the importance of this ion in catalysis, as observed for sGDH. The structural characterization of TrAA12 was completed by modeling PQQ and l-fucose in the enzyme active site. Based on these results, the AA12 family of enzymes is likely to have a catalytic mechanism close to that of bacterial sGDH.IMPORTANCE Pyrroloquinoline quinone (PQQ) is an important cofactor synthesized by prokaryotes and involved in enzymatic alcohol and sugar oxidation. In eukaryotes, the benefit of PQQ as a vitamin has been suggested but never proved. Recently, the first eukaryotic enzyme using PQQ was characterized in the basidiomycete Coprinopsis cinerea, demonstrating that fungi are able to use PQQ as an enzyme cofactor. This discovery led to the classification of the fungal PQQ-dependent enzymes in auxiliary activity family 12 (AA12) of the Carbohydrate-Active Enzymes (CAZy) database (www.cazy.org) classification. In the present paper, we report on the characterization of the ascomycete AA12 enzyme from Trichoderma reesei (TrAA12). Our enzymatic and phylogenetic results show divergence with the only other member of the family characterized, that from the basidiomycete Coprinopsis cinerea The crystallographic structure of TrAA12 shows similarities to the global active-site architecture of bacterial glucose dehydrogenases, suggesting a common evolution between the two families.


Assuntos
Glucose Desidrogenase/metabolismo , Oxirredutases/metabolismo , Cofator PQQ/metabolismo , Trichoderma/enzimologia , Trichoderma/metabolismo , Sequência de Aminoácidos , Arabinose/metabolismo , Basidiomycota/enzimologia , Carboidratos , Catálise , Fucose/metabolismo , Oxirredução , Filogenia , Conformação Proteica
9.
Appl Environ Microbiol ; 85(24)2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31604769

RESUMO

Pyrroloquinoline quinone (PQQ) was discovered as a redox cofactor of prokaryotic glucose dehydrogenases in the 1960s, and subsequent studies have demonstrated its importance not only in bacterial systems but also in higher organisms. We have previously reported a novel eukaryotic quinohemoprotein that exhibited PQQ-dependent catalytic activity in a eukaryote. The enzyme, pyranose dehydrogenase (PDH), from the filamentous fungus Coprinopsis cinerea (CcPDH) of the Basidiomycete division, is composed of a catalytic PQQ-dependent domain classified as a member of the novel auxiliary activity family 12 (AA12), an AA8 cytochrome b domain, and a family 1 carbohydrate-binding module (CBM1), as defined by the Carbohydrate-Active Enzymes (CAZy) database. Here, we present the crystal structures of the AA12 domain in its apo- and holo-forms and the AA8 domain of this enzyme. The crystal structures of the holo-AA12 domain bound to PQQ provide direct evidence that eukaryotes have PQQ-dependent enzymes. The AA12 domain exhibits a six-blade ß-propeller fold that is also present in other known PQQ-dependent glucose dehydrogenases in bacteria. A loop structure around the active site and a calcium ion binding site are unique among the known structures of bacterial quinoproteins. The AA8 cytochrome domain has a positively charged area on its molecular surface, which is partly due to the propionate group of the heme interacting with Arg181; this feature differs from the characteristics of cytochrome b in the AA8 domain of the fungal cellobiose dehydrogenase and suggests that this difference may affect the pH dependence of electron transfer.IMPORTANCE Pyrroloquinoline quinone (PQQ) is known as the "third coenzyme" following nicotinamide and flavin. PQQ-dependent enzymes have previously been found only in prokaryotes, and the existence of a eukaryotic PQQ-dependent enzyme was in doubt. In 2014, we found an enzyme in mushrooms that catalyzes the oxidation of various sugars in a PQQ-dependent manner and that was a PQQ-dependent enzyme found in eukaryotes. This paper presents the X-ray crystal structures of this eukaryotic PQQ-dependent quinohemoprotein, which show the active site, and identifies the amino acid residues involved in the binding of the cofactor PQQ. The presented X-ray structures reveal that the AA12 domain is in a binary complex with the coenzyme, clearly proving that PQQ-dependent enzymes exist in eukaryotes as well as prokaryotes. Because no biosynthetic system for PQQ has been reported in eukaryotes, future research on the symbiotic systems is expected.


Assuntos
Citocromos b/química , Eucariotos/enzimologia , Glucose Desidrogenase/metabolismo , Oxirredutases/química , Cofator PQQ/química , Agaricales/enzimologia , Agaricales/genética , Sequência de Aminoácidos , Bactérias/enzimologia , Sítios de Ligação , Desidrogenases de Carboidrato/metabolismo , Catálise , Citocromos b/metabolismo , Transporte de Elétrons , Eucariotos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungos/enzimologia , Modelos Moleculares , Oxirredução , Oxirredutases/metabolismo , Cofator PQQ/metabolismo , Conformação Proteica , Domínios Proteicos , Difração de Raios X
10.
J Chem Ecol ; 45(11-12): 972-981, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31713110

RESUMO

Microplitis croceipes is a solitary parasitoid that specializes on noctuid larvae of Helicoverpa zea and Heliothis virescens. Both the parasitoid and its hosts are naturally distributed across a large part of North America. When parasitoids deposit their eggs into hosts, venom and polydnaviruses (PDVs) are also injected into the caterpillars, which can suppress host immune responses, thus allowing parasitoid larvae to develop. In addition, PDVs can regulate host oral cues, such as glucose oxidase (GOX). The purpose of this study was to determine if parasitized caterpillars differentially induce plant defenses compared to non-parasitized caterpillars using two different caterpillar host/plant systems. Heliothis virescens caterpillars parasitized by M. croceipes had significantly lower salivary GOX activity than non-parasitized caterpillars, resulting in lower levels of tomato defense responses, which benefited parasitoid performance by increasing the growth rate of parasitized caterpillars. In tobacco plants, parasitized Helicoverpa zea caterpillars had lower GOX activity but induced higher plant defense responses. The higher tobacco defense responses negatively affected parasitoid performance by reducing the growth rate of parasitized caterpillars, causing longer developmental periods, and reduced cocoon mass and survival of parasitoids. These studies demonstrate a species-specific effect in different plant-insect systems. Based on these results, plant perception of insect herbivores can be affected by parasitoids and lead to positive or negative consequences to higher trophic levels depending upon the particular host-plant system.


Assuntos
Mariposas/fisiologia , Nicotiana/parasitologia , Solanum lycopersicum/parasitologia , Vespas/fisiologia , Animais , Feminino , Glucose Desidrogenase/metabolismo , Glucose Oxidase/metabolismo , Interações Hospedeiro-Parasita , Larva/metabolismo , Solanum lycopersicum/metabolismo , Oviposição/fisiologia , Parasitos , Doenças das Plantas/parasitologia , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Especificidade da Espécie , Nicotiana/metabolismo
11.
Biosci Biotechnol Biochem ; 83(6): 1171-1179, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30777491

RESUMO

Acetic acid bacteria are used in the commercial production of lactobionic acid (LacA). However, the lactose-oxidizing enzyme of these bacteria remains unidentified. Lactose-oxidizing activity has been detected in bacterial membrane fractions and is strongly inhibited by d-glucose, suggesting that the enzyme was a membrane-bound quinoprotein glucose dehydrogenase, but these dehydrogenases have been reported to be incapable of oxidizing lactose. Thus, we generated m-GDH-overexpressing and -deficient strains of Komagataeibacter medellinensis NBRC3288 and investigated their lactose-oxidizing activities. Whereas the overexpressing variants produced ~2-5-fold higher amounts of LacA than the wild-type strains, the deficient variant produced no LacA or d-gluconic acid. Our results indicate that the lactose-oxidizing enzyme from acetic acid bacteria is membrane-bound quinoprotein glucose dehydrogenase. Abbreviations: LacA: lactobionic acid; AAB: acetic acid bacterium; m-GDH: membrane-bound quinoprotein glucose dehydrogenase; DCIP: 2,6-dichlorophenolindophenol; HPAEC-PAD: high-performance anion-exchange chromatography with pulsed amperometric detection.


Assuntos
Acetobacteraceae/enzimologia , Dissacarídeos/metabolismo , Glucose Desidrogenase/metabolismo , Membrana Celular/enzimologia , Glucose/metabolismo , Lactose/metabolismo , Oxirredução , Especificidade por Substrato
12.
J Biol Chem ; 292(33): 13823-13832, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28667014

RESUMO

Glycolysis and the pentose phosphate pathway both play a central role in the degradation of glucose in all domains of life. Another metabolic route that can facilitate glucose breakdown is the gluconate shunt. In this shunt glucose dehydrogenase and gluconate kinase catalyze the two-step conversion of glucose into the pentose phosphate pathway intermediate 6-phosphogluconate. Despite the presence of these enzymes in many organisms, their only established role is in the production of 6-phosphogluconate for the Entner-Doudoroff pathway. In this report we performed metabolic profiling on a strain of Schizosaccharomyces pombe lacking the zinc-responsive transcriptional repressor Loz1 with the goal of identifying metabolic pathways that were altered by cellular zinc status. This profiling revealed that loz1Δ cells accumulate higher levels of gluconate. We show that the altered gluconate levels in loz1Δ cells result from increased expression of gcd1 By analyzing the activity of recombinant Gcd1 in vitro and by measuring gluconate levels in strains lacking enzymes of the gluconate shunt we demonstrate that Gcd1 encodes a novel NADP+-dependent glucose dehydrogenase that acts in a pathway with the Idn1 gluconate kinase. We also find that cells lacking gcd1 and zwf1, which encode the first enzyme in the pentose phosphate pathway, have a more severe growth phenotype than cells lacking zwf1 We propose that in S. pombe Gcd1 and Idn1 act together to shunt glucose into the pentose phosphate pathway, creating an alternative route for directing glucose into the pentose phosphate pathway that bypasses hexokinase and the rate-limiting enzyme glucose-6-phosphate dehydrogenase.


Assuntos
Glucose Desidrogenase/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Via de Pentose Fosfato , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimologia , Fatores de Transcrição/metabolismo , Metabolismo Energético , Deleção de Genes , Gluconatos/metabolismo , Glucose Desidrogenase/genética , Glucosefosfato Desidrogenase/genética , Metabolômica/métodos , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas Recombinantes/metabolismo , Schizosaccharomyces/crescimento & desenvolvimento , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Fatores de Transcrição/genética
13.
Anal Chem ; 90(24): 14500-14506, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30427170

RESUMO

Antibody-enzyme complexes (AECs) are ideal sensing elements, especially when oxidoreductases are used as the enzymes in the complex, with the potential to carry out rapid electrochemical measurements. However, conventional methods for the fabrication of AECs, including direct fusion and chemical conjugation, are associated with issues regarding the generation of insoluble aggregates and production of homogeneous AECs. Here, we developed a convenient and universal method for the fabrication of homogeneous AECs using the SpyCatcher/SpyTag system. We used an anti-epidermal growth factor receptor (EGFR) variable domain of a heavy chain antibody (VHH) and a glucose dehydrogenase (GDH) derived from Aspergillus flavus ( AfGDH) as the model antibody and enzyme, respectively. Both SpyTag-fused VHH and SpyCatcher-fused AfGDH were successfully prepared using an Escherichia coli expression system, whereas anti-EGFR AECs were produced by simply mixing the two fusion proteins. A bivalent AEC, AfGDH with two VHH at both terminals, was also prepared and exhibited an increased affinity. A soluble EGFR was successfully detected in a dose-dependent manner using immobilized anti-EGFR immunoglobulin G (IgG) and bivalent AEC. We also confirmed the universality of this AEC fabricating method by applying it to another VHH. This method results in the convenient and universal preparation of sensing elements with the potential for electrochemical measurement.


Assuntos
Complexo Antígeno-Anticorpo/metabolismo , Glucose Desidrogenase/metabolismo , Cadeias Pesadas de Imunoglobulinas/metabolismo , Complexo Antígeno-Anticorpo/genética , Aspergillus/enzimologia , Técnicas Biossensoriais , Receptores ErbB/análise , Receptores ErbB/imunologia , Escherichia coli/metabolismo , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Glucose Desidrogenase/genética , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Ressonância de Plasmônio de Superfície
14.
Appl Microbiol Biotechnol ; 102(22): 9531-9540, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30218379

RESUMO

Pyrroloquinoline quinone (PQQ)-dependent dehydrogenases (quinoproteins) of acetic acid bacteria (AAB), such as the membrane-bound alcohol dehydrogenase (ADH) and the membrane-bound glucose dehydrogenase, contain PQQ as the prosthetic group. Most of them are located on the periplasmic surface of the cytoplasmic membrane, and function as primary dehydrogenases in cognate substance-oxidizing respiratory chains. Here, we have provided an overview on the function and molecular architecture of AAB quinoproteins, which can be categorized into six groups according to the primary amino acid sequences. Based on the genomic data, we discuss the types of quinoproteins found in AAB genome and how they are distributed. Our analyses indicate that a significant number of uncharacterized orphan quinoproteins are present in AAB. By reviewing recent experimental developments, we discuss how to characterize the as-yet-unknown enzymes. Moreover, our bioinformatics studies also provide insights on how quinoproteins have developed into intricate enzymes. ADH comprises at least two subunits: the quinoprotein dehydrogenase subunit encoded by adhA and the cytochrome subunit encoded by adhB, and the genes are located in a polycistronic transcriptional unit. Findings on stand-alone derivatives of adhA encourage us to speculate on a possible route for ADH development in the evolutional history of AAB. A combination of bioinformatics studies on big genome sequencing data and wet studies assisted with genetic engineering would unravel biochemical functions and physiological role of uncharacterized quinoproteins in AAB, or even in unculturable metagenome.


Assuntos
Ácido Acético/metabolismo , Bactérias/enzimologia , Genoma Bacteriano , Oxirredutases/metabolismo , Cofator PQQ/metabolismo , Álcool Desidrogenase/metabolismo , Oxirredutases do Álcool/metabolismo , Bactérias/genética , Proteínas de Bactérias/metabolismo , Biologia Computacional , Transporte de Elétrons , Engenharia Genética , Glucose Desidrogenase/metabolismo
15.
Appl Microbiol Biotechnol ; 101(1): 173-183, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27510979

RESUMO

FAD-dependent glucose dehydrogenase (FAD-GDH), which contains FAD as a cofactor, catalyzes the oxidation of D-glucose to D-glucono-1,5-lactone, and plays an important role in biosensors measuring blood glucose levels. In order to obtain a novel FAD-GDH gene homolog, we performed degenerate PCR screening of genomic DNAs from 17 species of thermophilic filamentous fungi. Two FAD-GDH gene homologs were identified and cloned from Talaromyces emersonii NBRC 31232 and Thermoascus crustaceus NBRC 9129. We then prepared the recombinant enzymes produced by Escherichia coli and Pichia pastoris. Absorption spectra and enzymatic assays revealed that the resulting enzymes contained oxidized FAD as a cofactor and exhibited glucose dehydrogenase activity. The transition midpoint temperatures (T m) were 66.4 and 62.5 °C for glycosylated FAD-GDHs of T. emersonii and T. crustaceus prepared by using P. pastoris as a host, respectively. Therefore, both FAD-GDHs exhibited high thermostability. In conclusion, we propose that these thermostable FAD-GDHs could be ideal enzymes for use as thermotolerant glucose sensors with high accuracy.


Assuntos
Fungos/enzimologia , Glucose Desidrogenase/isolamento & purificação , Glucose Desidrogenase/metabolismo , Temperatura Alta , Talaromyces/enzimologia , Thermoascus/enzimologia , Clonagem Molecular , Coenzimas/análise , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Flavina-Adenina Dinucleotídeo/análise , Fungos/genética , Expressão Gênica , Glucose Desidrogenase/química , Glucose Desidrogenase/genética , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Análise Espectral , Talaromyces/genética , Thermoascus/genética
16.
Int J Mol Sci ; 18(3)2017 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-28287419

RESUMO

The flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH) from Aspergillus species require suitable redox mediators to transfer electrons from the enzyme to the electrode surface for the application of bioelectrical devices. Although several mediators for FAD-GDH are already in use, they are still far from optimum in view of potential, kinetics, sustainability, and cost-effectiveness. Herein, we investigated the efficiency of various phenothiazines and quinones in the electrochemical oxidation of FAD-GDH from Aspergillus terreus. At pH 7.0, the logarithm of the bimolecular oxidation rate constants appeared to depend on the redox potentials of all the mediators tested. Notably, the rate constant of each molecule for FAD-GDH was approximately 2.5 orders of magnitude higher than that for glucose oxidase from Aspergillus sp. The results suggest that the electron transfer kinetics is mainly determined by the formal potential of the mediator, the driving force of electron transfer, and the electron transfer distance between the redox active site of the mediator and the FAD, affected by the steric or chemical interactions. Higher k2 values were found for ortho-quinones than for para-quinones in the reactions with FAD-GDH and glucose oxidase, which was likely due to less steric hindrance in the active site in the case of the ortho-quinones.


Assuntos
Aspergillus/enzimologia , Flavina-Adenina Dinucleotídeo/metabolismo , Proteínas Fúngicas/metabolismo , Glucose Desidrogenase/metabolismo , Benzoquinonas/metabolismo , Cinética , Oxirredução , Fenotiazinas/metabolismo
17.
World J Microbiol Biotechnol ; 33(2): 21, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28044272

RESUMO

In this study, we report the cloning and expression of a functional glucoside 3-dehydrogenase (G3DH) gene from Sphingobacterium faecium ZJF-D6. This gene is 1686 bp in length and encodes a peptide of 562 amino acids. The G3DH gene was successfully expressed in E. coli, and the recombinant enzyme could oxidize glucosides, galactosides and analogues at C-3 position. The sequence and multiple alignment analysis showed that the enzyme has highest identity with G3DHs from Paraglaciecola polaris LMG 21857, Aliiglaciecola lipolytica E3 and Halomonas sp. alpha-15. The recombinant G3DH was purified on Ni-NTA column and exhibited the highest activity at pH 7.6 and 30 °C. It was sensitive to acid and alkali, and showed well thermostability. The SfG3DH could oxidize a wild range of sugars. When recombinant E. coli BL21 cells were used as catalyst, a high rate of conversion to N-p-nitrophenyl-3-ketovalidamine was achieved, and no p-nitroaniline was detected. This process offers a promising approach to fulfill substrate of 3-ketovalidoxylamine A C-N lyase production.


Assuntos
Clonagem Molecular/métodos , Glucose Desidrogenase/genética , Glucose Desidrogenase/metabolismo , Nitrofenóis/metabolismo , Sphingobacterium/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Galactosídeos/metabolismo , Glucosídeos/metabolismo , Concentração de Íons de Hidrogênio , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Sphingobacterium/genética , Especificidade por Substrato , Temperatura
18.
Appl Microbiol Biotechnol ; 100(24): 10321-10330, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27464830

RESUMO

A novel and efficient screening method for pyrroloquinoline quinone (PQQ) high-yielding methylotrophic strains was developed by using glucose dehydrogenase apoenzyme (GDHA) which depended on PQQ as the cofactor. Using this high-throughput method, PQQ high-yielding strains were rapidly screened out from thousands of methylotrophic colonies at a time. The comprehensive phylogenetic analysis revealed that the highest PQQ-producing strain zju323 (CCTCC M 2016079) could be assigned to a novel species in the genus Methylobacillus of the Betaproteobacteria. After systematic optimization of different medium components and cultivation conditions, about 33.4 mg/L of PQQ was obtained after 48 h of cultivation with Methylobacillus sp. zju323 at the shake flask scale. Further cultivations of Methylobacillus sp. zju323 were carried out to investigate the biosynthesis of PQQ in 10-L bench-top fermenters. In the batch operation, the PQQ accumulation reached 78 mg/L in the broth after 53 h of cultivation. By adopting methanol feeding strategy, the highest PQQ concentration was improved up to 162.2 mg/L after 75 h of cultivation. This work developed a high-throughput strategy of screening PQQ-producing strains from soil samples and also demonstrated one potential bioprocess for large-scale PQQ production with the isolated PQQ strain.


Assuntos
Programas de Rastreamento/métodos , Methylobacillus/crescimento & desenvolvimento , Methylobacillus/metabolismo , Cofator PQQ/metabolismo , Meios de Cultura/química , Fermentação , Glucose Desidrogenase/metabolismo , Methylobacillus/classificação , Methylobacillus/genética , Técnicas Microbiológicas/métodos , Filogenia
19.
J Clin Lab Anal ; 30(5): 506-9, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26511081

RESUMO

BACKGROUND: Peritoneal dialysis (PD) is used as an alternative to hemodialysis in end-stage renal disease (ESRD). Icodextrin has been used as a hyperosmotic agent in PD. The aim of the study was to assess two different point-of-care testing (POCT) glucose strips, affected and not affected by icodextrin, with serum glucose concentrations of the patients using and not using icodextrin. METHODS: Fifty-two chronic ambulatory peritoneal dialysis (CAPD) patients using icodextrin (Extraneal®) and 20 CAPD patients using another hyperosmotic fluid (Dianeal®) were included in the study. Duplicate capillary and serum glucose concentrations were measured with two different POCT glucose strips and central laboratory hexokinase method. Assay principles of glucose strips were based on glucose dehydrogenase-pyrroloquinoline quinone (GDH-PQQ) and a mutant variant of GDH (Mut Q-GDH). The results of both strips were compared with those of hexokinase method. RESULTS: Regression equations between POCT and hexokinase methods in icodextrin group were y = 2.55x + 1.12 mmol/l and y = 1.057x + 0.16 mmol/l for the GDH-PQQ and Mut Q-GDH methods, respectively. The mean difference between the results of hexokinase and those of GDH-PQQ and Mut Q-GDH in icodextrin group was 3.41 ± 1.56 and 0.72 ± 0.64 mmol/l, respectively. However, the mean differences were found much lower in the control group; 0.64 mmol/l for GDH-PQQ and 0.52 mmol/l for Mut Q-GDH. CONCLUSION: Compared to GDH-PQQ, glucose strips of Mut Q-GDH correlated better with hexokinase method in PD patients using icodextrin.


Assuntos
Glicemia/efeitos dos fármacos , Glucanos/farmacologia , Glucose/farmacologia , Soluções para Hemodiálise/farmacologia , Diálise Peritoneal/métodos , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/terapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Glicemia/análise , Feminino , Glucose Desidrogenase/metabolismo , Testes Hematológicos , Hexoquinase/farmacologia , Humanos , Icodextrina , Masculino , Pessoa de Meia-Idade
20.
J Bacteriol ; 197(8): 1322-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25645559

RESUMO

A gene encoding an enzyme similar to a pyrroloquinoline quinone (PQQ)-dependent sugar dehydrogenase from filamentous fungi, which belongs to new auxiliary activities (AA) family 12 in the CAZy database, was cloned from Pseudomonas aureofaciens. The deduced amino acid sequence of the cloned enzyme showed only low homology to previously characterized PQQ-dependent enzymes, and multiple-sequence alignment analysis showed that the enzyme lacks one of the three conserved arginine residues that function as PQQ-binding residues in known PQQ-dependent enzymes. The recombinant enzyme was heterologously expressed in an Escherichia coli expression system for further characterization. The UV-visible (UV-Vis) absorption spectrum of the oxidized form of the holoenzyme, prepared by incubating the apoenzyme with PQQ and CaCl2, revealed a broad peak at approximately 350 nm, indicating that the enzyme binds PQQ. With the addition of 2-keto-d-glucose (2KG) to the holoenzyme solution, a sharp peak appeared at 331 nm, attributed to the reduction of PQQ bound to the enzyme, whereas no effect was observed upon 2KG addition to authentic PQQ. Enzymatic assay showed that the recombinant enzyme specifically reacted with 2KG in the presence of an appropriate electron acceptor, such as 2,6-dichlorophenol indophenol, when PQQ and CaCl2 were added. (1)H nuclear magnetic resonance ((1)H-NMR) analysis of reaction products revealed 2-keto-d-gluconic acid (2KGA) as the main product, clearly indicating that the recombinant enzyme oxidizes the C-1 position of 2KG. Therefore, the enzyme was identified as a PQQ-dependent 2KG dehydrogenase (Pa2KGDH). Considering the high substrate specificity, the physiological function of Pa2KGDH may be for production of 2KGA.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Glucose Desidrogenase/metabolismo , Cofator PQQ/metabolismo , Pseudomonas/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sequência de Bases , Clonagem Molecular , Glucose Desidrogenase/genética , Dados de Sequência Molecular , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA