Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Sci Food Agric ; 102(7): 2704-2709, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34708420

RESUMO

BACKGROUND: The increase in patients suffering from type I hypersensitivity, including hay fever and food allergy, is a serious public health issue around the world. Recent studies have focused on allergy prevention by food factors with fewer side effects. The purpose of this study was to evaluate the effect of dietary glucosylceramide from pineapples (P-GlcCer) on type I hypersensitivity and elucidate mechanisms. RESULTS: Oral administration of P-GlcCer inhibited ear edema in passive cutaneous anaphylaxis reaction. In a Caco-2/RBL-2H3 co-culture system, P-GlcCer inhibited ß-hexosaminidase release from RBL-2H3 cells. The direct treatment of P-GlcCer on RBL-2H3 did not affect ß-hexosaminidase release, but sphingoid base moiety of P-GlcCer did. These results predicted that sphingoid base, a metabolite of P-GlcCer, through the intestine inhibited type I hypersensitivity by inhibiting mast cell degranulation. In addition, the inhibitory effects of P-GlcCer on ear edema and degranulation of RBL-2H3 cells were canceled by pretreatment of leukocyte mono-immunoglobulin-like receptor 3 (LMIR3)-Fc, which can block LMIR3-mediated inhibitory signals. CONCLUSION: It was demonstrated that a sphingoid base, one of the metabolites of P-GlcCer, may inhibit mast cell degranulation by binding to LMIR3. The oral administration of P-GlcCer is a novel and attractive food factor that acts directly on mast cells to suppress allergy. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Ananas , Hipersensibilidade Alimentar , Alérgenos/metabolismo , Ananas/metabolismo , Células CACO-2 , Degranulação Celular , Edema/induzido quimicamente , Edema/tratamento farmacológico , Hipersensibilidade Alimentar/metabolismo , Hipersensibilidade Alimentar/prevenção & controle , Glucosilceramidas/metabolismo , Glucosilceramidas/farmacologia , Humanos , Leucócitos/metabolismo , Mastócitos , beta-N-Acetil-Hexosaminidases/metabolismo , beta-N-Acetil-Hexosaminidases/farmacologia
2.
Biochem Biophys Res Commun ; 577: 32-37, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34500233

RESUMO

4,8-Sphingadienines (SD), metabolites of glucosylceramides (GlcCer), are sometimes determined as key mediators of the biological activity of dietary GlcCer, and cis/trans geometries of 4,8-SD have been reported to affect its activity. Since regulating excessive activation of mast cells seems an important way to ameliorate allergic diseases, this study was focused on cis/trans stereoisomeric-dependent inhibitory effects of 4,8-SD on mast cell activation. Degranulation of RBL-2H3 was inhibited by treatment of 4-cis-8-trans- and 4-cis-8-cis-SD, and their intradermal administrations ameliorated ear edema in passive cutaneous anaphylaxis reaction, but 4-trans-8-trans- and 4-trans-8-cis-SD did not. Although the activation of mast cells depends on the bound IgE contents, those stereoisomers did not affect IgE contents on RBL-2H3 cells after the sensitization of anti-TNP IgE. These results indicated that 4-cis-8-trans- and 4-cis-8-cis-SD directly inhibit the activation of mast cells. In conclusion, it was assumed that 4,8-SD stereoisomers with cis double bond at C4-position shows anti-allergic activity by inhibiting downstream pathway after activation by the binding of IgE to mast cells.


Assuntos
Antialérgicos/farmacologia , Degranulação Celular/efeitos dos fármacos , Etanolaminas/farmacologia , Mastócitos/efeitos dos fármacos , Anafilaxia Cutânea Passiva/efeitos dos fármacos , Animais , Antialérgicos/química , Células CACO-2 , Linhagem Celular Tumoral , Orelha/patologia , Edema/prevenção & controle , Etanolaminas/química , Etanolaminas/metabolismo , Feminino , Glucosilceramidas/química , Glucosilceramidas/metabolismo , Glucosilceramidas/farmacologia , Humanos , Mastócitos/fisiologia , Camundongos Endogâmicos BALB C , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ratos , Estereoisomerismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-29050963

RESUMO

Endometriosis is a disease characterized by regurgitated lesions which are invasive and migratory, embedding at ectopic, extra-uterine locations. Extracellular glucosylceramides (GlcCers), bioactive sphingolipids potentiating signals for cell migration, are found in elevated levels in endometriosis; however underlying mechanisms that result in cellular migration are poorly defined. Here, we demonstrated that internalized GlcCer induced migratory activity in immortalized human endometrial stromal cells (HESCs), with highest potency observed in long-chain GlcCer. Long-chain ceramide (Cer) similarly induced cellular migration and mass spectrometry results revealed that the migratory behavior was contributed through glycosylation of ceramides. Cells treated with GlcCer synthase inhibitor, or RNAi-mediated knockdown of glucosylceramide synthase (GCS), the enzyme catalyzing GlcCer production attenuated cell motility. Mechanistic studies showed that GlcCer acts through stromal cell-derived factor-1 alpha and its receptor, CXC chemokine receptor 4 (SDF-1α-CXCR4) signaling axis and is dependent on phosphorylation of LYN kinase at Tyr396, and dephosphorylation of Tyr507. Migration was prominently attenuated in cells exposed to CXCR4 antagonist, AMD3100, yet can be rescued with diprotin A, which prevents the degradation of SDF-1α. Furthermore, blocking of LYN kinase activity in the presence of SDF-1α and GlcCer reduced HESC migration, suggesting that LYN acts downstream of GlcCer-SDF-1α-CXCR4 axis as part of its intracellular signal transduction. Our results reveal a novel role of long-chain GlcCer and the dialog between GlcCer, LYNpTyr396 and SDF-1α-CXCR4 in inducing HESC migration. This finding may improve our understanding how endometriotic lesions invade to their ectopic sites, and the possibility of using GlcCer to modulate the SDF-1α-CXCR4-LYNpTyr396 axis in endometriosis.


Assuntos
Movimento Celular/efeitos dos fármacos , Endométrio/efeitos dos fármacos , Endométrio/fisiologia , Glucosilceramidas/farmacologia , Quinases da Família src/fisiologia , Movimento Celular/genética , Células Cultivadas , Endométrio/citologia , Feminino , Glucosilceramidas/química , Glucosilceramidas/metabolismo , Humanos , Receptor Cross-Talk/efeitos dos fármacos , Receptor Cross-Talk/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
4.
Cell Physiol Biochem ; 41(3): 1208-1218, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28427052

RESUMO

BACKGROUND: Cystic fibrosis (CF) is the most common autosomal-recessive disorder in western countries. Previous studies have demonstrated an important role of sphingolipids in the pathophysiology of cystic fibrosis. It has been shown that ceramide has a central role in various pulmonary infections, including those with Pseudomonas aeruginosa (P. aeruginosa). Ceramide is accumulated in the airways of CF mice and patients. However, little is known about a potential role of glucosylceramide in cystic fibrosis. METHODS: We investigated the expression of glucosylceramide and lactosylceramide in the respiratory tract of murine and human CF samples by immunohistochemistry and analyzed effects of glucosylceramide on P. aeruginosa in vitro. We performed pulmonary infections with P. aeruginosa and tested inhalation with glucosylceramide. RESULTS: We demonstrate that glucosylceramide is down-regulated on the apical surface of bronchial and tracheal epithelial cells in cystic fibrosis mice. Although glucosylceramide did not have a direct bactericidal effect on Pseudomonas aeruginosa in vitro, inhalation of CF mice with glucosylceramide protected these mice from infection with P. aeruginosa, while non-inhaled CF mice developed severe pneumonia. CONCLUSION: Our data suggest that glucosylceramide acts in vivo in concert with ceramide and sphingosine to determine the pulmonary defense against P. aeruginosa.


Assuntos
Antibacterianos/farmacologia , Antígenos CD/farmacologia , Fibrose Cística/imunologia , Glucosilceramidas/farmacologia , Lactosilceramidas/farmacologia , Infecções por Pseudomonas/prevenção & controle , Administração por Inalação , Animais , Antibacterianos/biossíntese , Antígenos CD/biossíntese , Fibrose Cística/microbiologia , Fibrose Cística/patologia , Glucosilceramidas/biossíntese , Humanos , Lactosilceramidas/biossíntese , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Camundongos Transgênicos , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento
5.
Proc Natl Acad Sci U S A ; 111(37): 13433-8, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25197085

RESUMO

Invariant natural killer T (iNKT) cells are a specialized T-cell subset that recognizes lipids as antigens, contributing to immune responses in diverse disease processes. Experimental data suggests that iNKT cells can recognize both microbial and endogenous lipid antigens. Several candidate endogenous lipid antigens have been proposed, although the contextual role of specific antigens during immune responses remains largely unknown. We have previously reported that mammalian glucosylceramides (GlcCers) activate iNKT cells. GlcCers are found in most mammalian tissues, and exist in variable molecular forms that differ mainly in N-acyl fatty acid chain use. In this report, we purified, characterized, and tested the GlcCer fractions from multiple animal species. Although activity was broadly identified in these GlcCer fractions from mammalian sources, we also found activity properties that could not be reconciled by differences in fatty acid chain use. Enzymatic digestion of ß-GlcCer and a chromatographic separation method demonstrated that the activity in the GlcCer fraction was limited to a rare component of this fraction, and was not contained within the bulk of ß-GlcCer molecular species. Our data suggest that a minor lipid species that copurifies with ß-GlcCer in mammals functions as a lipid self antigen for iNKT cells.


Assuntos
Glucosilceramidas/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Células T Matadoras Naturais/imunologia , Animais , Bovinos , Cromatografia em Camada Fina , Glucosilceramidase/metabolismo , Glucosilceramidas/química , Humanos , Ativação Linfocitária/imunologia , Espectrometria de Massas , Camundongos , Leite/química , Células T Matadoras Naturais/efeitos dos fármacos
6.
J Lipid Res ; 55(3): 493-503, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24293640

RESUMO

ABCA12 mutations disrupt the skin barrier and cause harlequin ichthyosis. We previously showed Abca12(-/-) skin has increased glucosylceramide (GlcCer) and correspondingly lower amounts of ceramide (Cer). To examine why loss of ABCA12 leads to accumulation of GlcCer, de novo sphingolipid synthesis was assayed using [(14)C]serine labeling in ex vivo skin cultures. A defect was found in ß-glucocerebrosidase (GCase) processing of newly synthesized GlcCer species. This was not due to a decline in GCase function. Abca12(-/-) epidermis had 5-fold more GCase protein (n = 4, P < 0.01), and a 5-fold increase in GCase activity (n = 3, P < 0.05). As with Abca12(+/+) epidermis, immunostaining in null skin showed a typical interstitial distribution of the GCase protein in the Abca12(-/-) stratum corneum. Hence, we tested whether the block in GlcCer conversion could be circumvented by topically providing GlcCer. This approach restored up to 15% of the lost Cer products of GCase activity in the Abca12(-/-) epidermis. However, this level of barrier ceramide replacement did not significantly reduce trans-epidermal water loss function. Our results indicate loss of ABCA12 function results in a failure of precursor GlcCer substrate to productively interact with an intact GCase enzyme, and they support a model of ABCA12 function that is critical for transporting GlcCer into lamellar bodies.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Epiderme/metabolismo , Glucosilceramidase/metabolismo , Glucosilceramidas/metabolismo , Transportadores de Cassetes de Ligação de ATP/deficiência , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Ceramidas/análise , Ceramidas/metabolismo , Cromatografia em Camada Fina , Epiderme/efeitos dos fármacos , Epiderme/embriologia , Glucosilceramidas/administração & dosagem , Glucosilceramidas/farmacologia , Células HEK293 , Humanos , Immunoblotting , Imuno-Histoquímica , Lipídeos/análise , Lipídeos/química , Camundongos , Camundongos Knockout , Técnicas de Cultura de Órgãos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Pele/efeitos dos fármacos , Pele/embriologia , Pele/metabolismo
7.
Planta Med ; 80(4): 283-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24549928

RESUMO

Juzen-taiho-to is an immunostimulatory herbal formulation that is clinically used in East Asia for cancer patients undergoing chemotherapy and radiation. The formulation stimulates various leukocytes, including T, B, and NK cells and macrophages. Although Juzen-taiho-to is known to contain numerous compounds with various pharmacological activities, it is not clear which compounds are responsible for the stimulation of individual cell types. Here, we conducted what we call "biomarker-guided screening" to purify compounds responsible for the macrophages stimulatory activity. To this end, gene expression was analyzed by a DNA array for macrophages treated with Juzen-taiho-to and DMSO (vehicle control), which identified intercellular adhesion molecule 1 as a biomarker of macrophage stimulation by Juzen-taiho-to. A quantitative reverse transcription polymerase chain reaction assay of intercellular adhesion molecule 1 was then used to guide the purification of active compounds. The screening resulted in the purification of a glycolipid mixture, containing ß-glucosylceramides. The glycolipid mixture potently stimulated intercellular adhesion molecule 1 expression in primary dendritic cells as well as in primary CD14+ (macrophages) cells. The identification of this glycolipid mixture opens up an opportunity for further studies to understand how plant-derived glycolipids stimulate macrophages and dendritic cells in a safe and effective manner as demonstrated by Juzen-taiho-to.


Assuntos
Adjuvantes Imunológicos/farmacologia , Células Dendríticas/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Glucosilceramidas/farmacologia , Molécula 1 de Adesão Intercelular/metabolismo , Macrófagos/efeitos dos fármacos , Magnoliopsida/química , Adjuvantes Imunológicos/análise , Antineoplásicos Fitogênicos/análise , Antineoplásicos Fitogênicos/farmacologia , Células Dendríticas/metabolismo , Medicamentos de Ervas Chinesas/química , Glucosilceramidas/isolamento & purificação , Humanos , Macrófagos/metabolismo
8.
Biosci Biotechnol Biochem ; 77(9): 1882-7, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24018683

RESUMO

The beneficial effects of dietary glucosylceramide on the barrier function of the skin have been increasingly reported, but the entire mechanism has not been clarified. By DNA microarray, we investigated changes in gene expression in hairless mouse skin when a damage-inducing AD diet and a glucosylceramide diet (GluCer) were imposed. GluCer administration potentially suppressed the upregulation of six genes and the downregulation of four genes in the AD group. Examination of the epidermal and/or dermal expression of Npr3, Cyp17a1, Col1a1, S100a9, Sprr2f, Apol7a, Tppp, and Scd3 revealed responses of various parts of the skin to the diets. In normal hairless mice, GluCer administration induced an increase in the dermal expression of Cyp17a1 and the epidermal expression of Tppp, and a decrease in the epidermal expression of S100a9. Our results provide information on gene expression not only in whole skin but also in the epidermis and dermis that should prove useful in the search for the mechanisms underlying the effects of GluCer on damaged and normal skin.


Assuntos
Derme/efeitos dos fármacos , Derme/metabolismo , Epiderme/efeitos dos fármacos , Epiderme/metabolismo , Glucosilceramidas/administração & dosagem , Glucosilceramidas/farmacologia , Transcriptoma/efeitos dos fármacos , Administração Oral , Ração Animal/efeitos adversos , Ração Animal/análise , Animais , Suplementos Nutricionais , Feminino , Magnésio/análise , Camundongos , Camundongos Pelados , Especificidade de Órgãos
9.
Biosci Biotechnol Biochem ; 77(4): 867-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23563543

RESUMO

Dietary glucosylceramide increased the expression of claudin-1 in UVB-irradiated mouse epidermis. Sphingosine and phytosphingosine, metabolites of glucosylceramide, increased trans-epithelial electrical resistance, and phytosphingosine increased claudin-1 mRNA expression in cultured keratinocytes. Our results indicate that the skin barrier improvement induced by dietary glucosylceramide might be due to enhancement of tight junction function, mediated by increased expression of claudin-1 induced by sphingoid metabolites.


Assuntos
Claudina-1/genética , Epiderme/efeitos dos fármacos , Glucosilceramidas/farmacologia , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Ativação Transcricional/efeitos dos fármacos , Animais , Linhagem Celular , Carboidratos da Dieta/farmacologia , Células Epidérmicas , Epiderme/metabolismo , Epiderme/efeitos da radiação , Humanos , Masculino , Camundongos , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/efeitos da radiação , Junções Íntimas/efeitos da radiação , Ativação Transcricional/efeitos da radiação , Raios Ultravioleta/efeitos adversos
10.
Phytother Res ; 27(5): 775-83, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22949397

RESUMO

The epidermis acts as a functional barrier against the external environment. Disturbances in the function of this barrier cause water loss and increase the chances of penetration by various irritable stimuli, leading to skin diseases such as dry skin, atopic dermatitis, and psoriasis. Ceramides are a critical natural element of the protective epidermal barrier. The aim of this study was to evaluate whether the oral intake of beet (Beta vulgaris) extract, a natural product rich in glucosylceramide (GlcCer), may prevent disturbance in skin barrier function. When HR-1 hairless mice were fed a special diet (HR-AD), transepidermal water loss (TEWL) from the dorsal skin increased, with a compensatory increase in water intake after 5 weeks. Mice fed with HR-AD had dry skin with erythema and showed increased scratching behaviour. Histological examinations revealed a remarkable increase in the thickness of the skin at 8 weeks. Supplemental addition of beet extract, which contained GlcCer at a final concentration of 0.1%, significantly prevented an increase TEWL, water intake, cumulative scratching time, and epidermal thickness at 8 weeks. These results indicate that oral intake of beet extract shows potential for preventing skin diseases associated with impaired skin barrier function.


Assuntos
Beta vulgaris/química , Glucosilceramidas/farmacologia , Extratos Vegetais/farmacologia , Dermatopatias/prevenção & controle , Pele/fisiopatologia , Perda Insensível de Água/efeitos dos fármacos , Administração Oral , Animais , Dieta , Ingestão de Líquidos , Masculino , Camundongos , Camundongos Pelados
11.
Biosci Biotechnol Biochem ; 76(4): 791-3, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22484955

RESUMO

Two new cerebrosides, termitomycesphins G and H, were isolated from the edible Chinese mushroom, Termitomyces albuminosus (Berk.) Herm., and exhibited neuritogenic activity against PC12 cells. Their structures and absolute stereochemistry were elucidated by spectroscopic methods and by a comparison of the specific rotation of the hydrogenated products from termitomycesphins H and C. These cerebrosides possessed a unique modification by a hydroxyl group at the middle of the long-chain base, like earlier congeners termitomycesphins A-F. Termitomycesphin G with a 16-carbon-chain fatty acid showed higher neuritogenic activity than that of termitomycesphin H with an 18-carbon-chain fatty acid. This effect was observed within the termitomycesphins, suggesting that the chain length of the fatty acyl moiety played a key role in the neuritogenic activity.


Assuntos
Processos de Crescimento Celular/efeitos dos fármacos , Cerebrosídeos/isolamento & purificação , Glucosilceramidas/isolamento & purificação , Neuritos/efeitos dos fármacos , Termitomyces/química , Animais , Processos de Crescimento Celular/fisiologia , Cerebrosídeos/química , Cerebrosídeos/farmacologia , China , Ácidos Graxos/farmacologia , Glucosilceramidas/química , Glucosilceramidas/farmacologia , Espectroscopia de Ressonância Magnética , Microscopia de Contraste de Fase , Neuritos/fisiologia , Neuritos/ultraestrutura , Células PC12 , Ratos
12.
Mol Membr Biol ; 28(2): 145-54, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21190430

RESUMO

We have previously shown that a mixture of cerebrosides obtained from dried tubers of herb Typhonium giganteum Engl. plays a neuroprotective role in the ischemic brain through its effect on activation of BK(Ca) channels. It is very curious to know whether a single pure cerebroside compound could activate the BK(Ca) channel as well. This study explored the possible effects of pure cerebroside compounds, termitomycesphins A and B, on the BK(Ca) channel activation. Both termitomycesphins A and B activated the BK(Ca) channels at micromole concentration without significant difference. Termitomycesphin A increased the single channel open probability of the BK(Ca) channels in a dose-dependent manner without modifying the single channel conductance. Termitomycesphin A activated BK(Ca) channel more efficiently when it was applied to the cytoplasmic face of the membrane, suggesting that binding site for termitomycesphin A is located at the cytoplasmic side. Termitomycesphin A shifted the voltage-dependent activation curve to less positive membrane potentials and the Ca(2+)-dependent activation curve of the channel upwards, suggesting that termitomycesphin A could activate the channels even without intracellular free Ca(2+). Furthermore, STREX-deleted BK(Ca) channels were completely insensitive to termitomycesphin A, indicating that STREX domain is required for the activation of the BK(Ca) channel. These data provide evidence that termitomycesphins are potent in stimulating the activity of the BK(Ca) channels. As BK(Ca) channels are associated with pathology of many diseases, termitomycesphins might be used as therapeutic agents for treating these diseases through its regulatory effect on the BK(Ca) channels.


Assuntos
Cerebrosídeos , Glucosilceramidas/farmacologia , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Animais , Araceae/química , Isquemia Encefálica/tratamento farmacológico , Células CHO , Cerebrosídeos/química , Cerebrosídeos/farmacologia , Cerebrosídeos/uso terapêutico , Cricetinae , Cricetulus , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Técnicas de Patch-Clamp
13.
J Mol Neurosci ; 72(11): 2313-2325, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36152140

RESUMO

Parkinson's disease (PD) is the second most common progressive neurodegenerative disorder affecting over 1% of the 65 + age population. Saposin C, a lysosomal protein required for the normal activity of glucocerebrosidase (GCase), may serve as a disease modifier in PD. Saposin C is cleaved from its precursor, Prosaposin (PSAP), which is secreted as an uncleaved protein and exerts neuroprotective effects. In this study, we aim to elucidate the neuroprotective roles of PSAP and saposin C in PD by evaluating their effects on α-synuclein accumulation in human neuroblastoma cells. Stable overexpression of PSAP reduced monomeric α-synuclein levels in SH-SY5Y cells, while PSAP knockdown by small interfering RNA led to the opposite effect, and those effects were independent of GCase activity. Autophagy flux was decreased by stable PSAP overexpression. Furthermore, a flow-through assay revealed that recombinant saposin C was able to detach α-synuclein from artificial glucosylceramide-enriched lipid membranes at the lysosomal pH. Taken together, our findings provide further evidence that PSAP and saposin C as key proteins involved in α-synuclein clearance by dislodging it from lipid membranes.


Assuntos
Neuroblastoma , alfa-Sinucleína , Humanos , alfa-Sinucleína/genética , Saposinas/genética , Glucosilceramidas/farmacologia
14.
Cell Death Dis ; 13(5): 508, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35637196

RESUMO

The effect of glucosylceramide (GlcCer) reprogramming on liver cancer metastasis remains poorly understood. In this study, we demonstrated that the protein expression of GBA1, which catalyses the conversion of GlcCer to ceramide, was downregulated in liver cancer tissue. A clinical relevance analysis revealed that low expression of GBA1 was associated with the metastatic potential of liver cancer cells. Furthermore, loss- and gain-of-function studies confirmed that low expression of GBA1 promoted metastasis of liver cancer both in vitro and in vivo. Mechanistic studies indicated that low expression of GBA1 enhanced the metastatic ability of liver cancer by promoting the epithelial-mesenchymal transition (EMT), in which Wnt signalling pathway is involved. In the plasma membrane (PM), GBA1-dependent GlcCer reprogramming increased LRP6 location in the PM leading to an interaction between GlcCer and LRP6, subsequently promoting LRP6 phosphorylation at Ser1490, and finally activating the Wnt/ß-catenin signalling pathway. To our knowledge, this is the first time to be found that GlcCer interacted with a protein. In addition, the results of mass spectrometry indicated that GlcCer d18:1/18:0 was the most notably increased studied species in the PM when GBA1 was downregulated, suggesting that GlcCer d18:1/18:0 may be the major functional lipid that promotes GBA1-dependent liver cancer metastasis. Thus, GBA1-mediated GlcCer reprogramming in the PM promotes metastasis of liver cancer via activation of the Wnt/ß-catenin signalling pathway, upregulation of GBA1 may be a potential therapeutic strategy to combat liver cancer metastasis.


Assuntos
Neoplasias Hepáticas , beta Catenina , Transição Epitelial-Mesenquimal/genética , Glucosilceramidase , Glucosilceramidas/farmacologia , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Via de Sinalização Wnt , beta Catenina/metabolismo
15.
J Food Biochem ; 46(10): e14353, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35986572

RESUMO

Glucosylceramides (GlcCer), which are present in many edible plants, suppress melanin production in mouse melanocytes. Rice GlcCer consist of multiple molecules that comprise different types of sphingoid bases as well as diverse lengths and stereotypes of free fatty acids. Adjacent to the GlcCer fraction, there are free ceramides (Cer) as minor constituents. However, the anti-melanogenic activities of individual GlcCer and Cer remain unknown. Therefore, we herein isolated 13 GlcCer and elasticamide, a Cer [AP] from the gummy by-products of rice bran oil, and examined their anti-melanogenic activities. In theophylline-induced melanogenesis in B16 melanoma cells, GlcCer [d18:2(4E,8Z)/18:0], GlcCer [d18:2(4E,8Z)/20:0], and elasticamide significantly suppressed melanin production with IC50 values of 6.6, 5.2, and 3.9 µM, respectively. Elasticamide, but not GlcCer [d18:2 (4E,8Z)/20:0], suppressed melanogenesis in human 3D-cultured melanocytes and the expression of tyrosinase-related protein 1 in normal human melanocytes. Based on these results, we conducted a clinical trial on the effects of rice ceramide extract (Oryza ceramide®), containing 1.2 mg/day of GlcCer and 56 µg/day of elasticamide, on UV-B-induced skin pigmentation. The ingestion of Oryza ceramide® for 8 weeks significantly suppressed the accumulation of melanin 7 days after UV irradiation (1288 and 1546 mJ/cm2 ·S). Rice-derived GlcCer and elasticamide, which exhibited anti-melanogenic activities, were suggested to contribute to the suppressive effects of Oryza ceramide® on UV-induced skin pigmentation. Although the mechanisms underlying the anti-melanogenic activities of GlcCer remain unclear, elasticamide was identified as a promising Cer that exhibits anti-melanogenic activity. PRACTICAL APPLICATIONS: The anti-melanogenic activities of rice-derived GlcCer and elasticamide currently remain unclear. We herein demonstrated the inhibitory effects of individual GlcCer and elasticamide on melanogenesis in melanoma cells, melanocytes, and human skin.


Assuntos
Melanoma , Oryza , Alcanos , Amidas , Animais , Ceramidas/metabolismo , Ceramidas/farmacologia , Ácidos Graxos não Esterificados/metabolismo , Ácidos Graxos não Esterificados/farmacologia , Glucosilceramidas/farmacologia , Humanos , Melaninas , Melanócitos/metabolismo , Melanócitos/efeitos da radiação , Melanoma/tratamento farmacológico , Camundongos , Monofenol Mono-Oxigenase/metabolismo , Extratos Vegetais/farmacologia , Óleo de Farelo de Arroz/metabolismo , Óleo de Farelo de Arroz/farmacologia , Teofilina/metabolismo , Teofilina/farmacologia
16.
Org Biomol Chem ; 9(22): 7659-62, 2011 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-21927724

RESUMO

Natural killer T (NKT) cells recognize glycolipids produced by Sphingomonas bacteria, and these glycolipids contain C6-oxidized sugars, either glucuronic acid or galacturonic acid, linked to ceramides. Glycolipids with gluco stereochemistry are the most prevalent. Multiple studies have demonstrated that galactosylceramides are more potent stimulators of NKT cells than their glucose isomers. To determine if this stereoselectivity is retained in the context of the C6-oxidized sugars found in bacterial glycolipids, we prepared two sets of gluco and galacto-glycolipids oxidized at their C6 positions and compared their NKT stimulatory properties. In the context of carboxylic acid groups at C6, gluco stereochemistry gave the more potent responses. We also prepared bacterial glycolipids containing more complex ceramide groups to determine if these chains impact NKT cell responses.


Assuntos
Células Dendríticas/efeitos dos fármacos , Galactosilceramidas/imunologia , Glucosilceramidas/imunologia , Imunidade Inata , Ativação Linfocitária/efeitos dos fármacos , Células T Matadoras Naturais/efeitos dos fármacos , Baço/efeitos dos fármacos , Animais , Antígenos de Bactérias/química , Antígenos de Bactérias/imunologia , Células Dendríticas/imunologia , Ensaio de Imunoadsorção Enzimática , Galactosilceramidas/síntese química , Galactosilceramidas/farmacologia , Glucosilceramidas/síntese química , Glucosilceramidas/farmacologia , Ácido Glucurônico/química , Ácido Glucurônico/imunologia , Ácidos Hexurônicos/química , Ácidos Hexurônicos/imunologia , Imunidade Inata/efeitos dos fármacos , Interferon gama/análise , Interferon gama/biossíntese , Interleucina-4/análise , Interleucina-4/biossíntese , Isomerismo , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos , Células T Matadoras Naturais/imunologia , Sphingomonas/química , Sphingomonas/imunologia , Baço/citologia , Baço/imunologia
17.
Int J Clin Oncol ; 16(2): 133-40, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21057846

RESUMO

BACKGROUND: Sphingolipids, components of cellular membranes in eukaryotic cells, have roles in the regulation of tumor growth, inflammation, angiogenesis, and immunity. We investigated the effects of dietary glucosylceramides, sphingolipids isolated from rice bran, on tumor growth of human head and neck squamous cell carcinoma. METHODS: The tumor cell line SCCKN cells isolated from well-differentiated human head and neck cancer were subcutaneously inoculated into the right flank of NOD/SCID mice, to establish an SCCKN xenograft model. Rice bran glucosylceramides (300 mg/kg/day) were administered orally to the mice for 14 consecutive days. RESULTS: Dietary glucosylceramides significantly inhibited the growth of the xenograft tumor in comparison with the control group. The TUNEL stain revealed that treatment of mice with glucosylceramides increased the number of apoptotic cells in the implanted tumor tissues and that apoptosis induction was accompanied by the formation of active/cleaved caspase-3. CONCLUSION: These results suggest that dietary glucosylceramides possibly exert anti-tumor activity by inducing apoptosis of head and neck squamous cell carcinoma. Therefore, their potential usefulness in treatment and prevention of human head and neck squamous cell carcinoma warrants further investigation.


Assuntos
Glucosilceramidas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Carcinoma/tratamento farmacológico , Carcinoma/metabolismo , Carcinoma de Células Escamosas , Caspase 3/metabolismo , Linhagem Celular Tumoral , Feminino , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias de Células Escamosas/tratamento farmacológico , Neoplasias de Células Escamosas/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
18.
Artigo em Inglês | MEDLINE | ID: mdl-32980536

RESUMO

Sphingolipids represent a family of cellular lipid-molecules that regulate physiological and pathophysiological processes. Glucosylceramide (GlcCer), the simplest glycosphingolipid (GSL), is synthesized from ceramide and UDP-glucose by GlcCer synthase (GCS). Both GlcCer (and resulting GSLs) and ceramide regulate various cellular functions including cell death and multiple drug resistance. Src family tyrosine kinases are up-regulated in various human cancer cells. We examined the effect of v-Src expression on GCS activity, the formation of 4-nitrobenzo-2-oxa-1,3-diazole (NBD)-labeled GlcCer from NBD-ceramide, and the effect of tyrosine132 mutation in GCS on ceramide-induced cytotoxicity in HeLa cells. Expression of v-Src increased the formation of NBD-GlcCer in both intact cells without marked changes in other sphingolipid metabolites and cell homogenates without changing affinities of NBD-ceramide and UDP-glucose. Expression of v-Src also increased tyrosine-phosphorylated levels in GCS proteins in HeLa and HEK293T cells. In HEK293T cells transiently expressing the GCS mutant, GCS-Y132F-HA, showing replacement of the tyrosine132 residue with phenylalanine, tyrosine-phosphorylated levels in GCS proteins were significantly lower than those in control cells expressing the GCS-wild-type-HA. The formation of NBD-GlcCer in HeLa cells stably expressing GCS-Y132F-HA was significantly lower than that in the control. Ceramide-induced cytotoxicity in HeLa-GCS-Y132F-HA cells was significantly greater than in the control. In this study, we showed for the first time that expression of v-Src up-regulated GCS activity via tyrosine phosphorylation of the enzyme in a post-translational manner. Mechanisms of Src-induced resistance to ceramide-induced cytotoxicity are discussed in relation to the Src-induced up-regulation of GCS activity.


Assuntos
Glucosilceramidas/farmacologia , Glucosiltransferases/genética , Proteína Oncogênica pp60(v-src)/genética , Fenilalanina/metabolismo , Tirosina/metabolismo , 4-Cloro-7-nitrobenzofurazano/análogos & derivados , 4-Cloro-7-nitrobenzofurazano/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Ceramidas/metabolismo , Ativação Enzimática/efeitos dos fármacos , Glucosiltransferases/metabolismo , Células HEK293 , Células HeLa , Humanos , Mutação , Proteína Oncogênica pp60(v-src)/metabolismo , Fenilalanina/genética , Fosforilação/efeitos dos fármacos , Tirosina/genética , Uridina Difosfato Glucose/metabolismo
19.
J Oleo Sci ; 70(9): 1325-1334, 2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34373410

RESUMO

Dietary sphingolipids such as glucosylceramide and sphingomyelin are known to improve the skin barrier function of damaged skin. In this study, we focused on free-ceramide prepared from soy sauce lees, which is a byproduct of soy sauce production. The effects of dietary soy sauce lees ceramide on the skin of normal mice were evaluated and compared with those of dietary maize glucosylceramide. We found that transepidermal water loss value was significantly suppressed by dietary supplementation with soy sauce lees ceramide as effectively as or more effectively than maize glucosylceramide. Although the content of total and each subclass of ceramide in the epidermis was not significantly altered by dietary sphingolipids, that of 12 types of ceramide molecules, which were not present in dietary sources, was significantly increased upon ingestion of maize glucosylceramide and showed a tendency to increase with soy sauce lees ceramide intake. In addition, the mRNA expression of ceramide synthase 4 and involucrin in the skin was downregulated by sphingolipids. This study, for the first time, demonstrated that dietary soy sauce lees ceramide enhances skin barrier function in normal hairless mice, although further studies are needed to clarify the molecular mechanism.


Assuntos
Ceramidas/isolamento & purificação , Ceramidas/farmacologia , Suplementos Nutricionais , Epiderme/metabolismo , Fenômenos Fisiológicos da Pele/efeitos dos fármacos , Pele/metabolismo , Alimentos de Soja/análise , Animais , Regulação para Baixo/efeitos dos fármacos , Feminino , Expressão Gênica/efeitos dos fármacos , Glucosilceramidas/farmacologia , Camundongos Pelados , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Esfingolipídeos/farmacologia , Esfingosina N-Aciltransferase/genética , Esfingosina N-Aciltransferase/metabolismo , Perda Insensível de Água/efeitos dos fármacos
20.
Bioorg Med Chem Lett ; 20(12): 3475-8, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20529677

RESUMO

Alpha-glucosyl ceramides 4 and 5 have been synthesised and evaluated for their ability to stimulate the activation and expansion of human iNKT cells. The key challenge in the synthesis of both target molecules was the stereoselective synthesis of the alpha-glycosidic linkage. Of the methods examined, glycosylation using per-TMS-protected glucosyl iodide 16 was completely alpha-selective and provided gram quantities of amine 11, from which alpha-glucosyl ceramides 4 and 5 were obtained by N-acylation. alpha-GlcCer 4, containing a C24 saturated acyl chain, stimulated a marked proliferation and expansion of human circulating iNKT cells in short-term cultures. alpha-GlcCer 5, which contains a C20 11,14-cis-diene acyl chain (C20:2), induced extremely similar levels of iNKT cell activation and expansion.


Assuntos
Glucosilceramidas/síntese química , Glucosilceramidas/farmacologia , Células T Matadoras Naturais/efeitos dos fármacos , Acilação , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Glicosilação , Humanos , Ativação Linfocitária/efeitos dos fármacos , Células T Matadoras Naturais/citologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA