Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.122
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 41(7): 1553-1565, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33361463

RESUMO

Psychostimulant use disorder is a major public health issue, and despite the scope of the problem there are currently no Food and Drug Administration (FDA)-approved treatments. There would be tremendous utility in development of a treatment that could help patients both achieve and maintain abstinence. Previous work from our group has identified granulocyte-colony stimulating factor (G-CSF) as a neuroactive cytokine that alters behavioral response to cocaine, increases synaptic dopamine release, and enhances cognitive flexibility. Here, we investigate the role of G-CSF in affecting extinction and reinstatement of cocaine-seeking and perform detailed characterization of its proteomic effects in multiple limbic substructures. Male Sprague Dawley rats were injected with PBS or G-CSF during (1) extinction or (2) abstinence from cocaine self-administration, and drug seeking behavior was measured. Quantitative assessment of changes in the proteomic landscape in the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) were performed via data-independent acquisition (DIA) mass spectrometry analysis. Administration of G-CSF during extinction accelerated the rate of extinction, and administration during abstinence attenuated cue-induced cocaine-seeking. Analysis of global protein expression demonstrated that G-CSF regulated proteins primarily in mPFC that are critical to glutamate signaling and synapse maintenance. Taken together, these findings support G-CSF as a viable translational research target with the potential to reduce drug craving or seeking behaviors. Importantly, recombinant G-CSF exists as an FDA-approved medication which may facilitate rapid clinical translation. Additionally, using cutting-edge multiregion discovery proteomics analyses, these studies identify a novel mechanism underlying G-CSF effects on behavioral plasticity.SIGNIFICANCE STATEMENT Pharmacological treatments for psychostimulant use disorder are desperately needed, especially given the disease's chronic, relapsing nature. However, there are currently no Food and Drug Administration (FDA)-approved pharmacotherapies. Emerging evidence suggests that targeting the immune system may be a viable translational research strategy; preclinical studies have found that the neuroactive cytokine granulocyte-colony stimulating factor (G-CSF) alters cocaine reward and reinforcement and can enhance cognitive flexibility. Given this basis of evidence we studied the effects of G-CSF treatment on extinction and reinstatement of cocaine seeking. We find that administration of G-CSF accelerates extinction and reduces cue-induced drug seeking after cocaine self-administration. In addition, G-CSF leads to downregulation of synaptic glutamatergic proteins in medial prefrontal cortex (mPFC), suggesting that G-CSF influences drug seeking via glutamatergic mechanisms.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Comportamento de Procura de Droga/efeitos dos fármacos , Glutamatos/fisiologia , Fator Estimulador de Colônias de Granulócitos/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Animais , Transtornos Relacionados ao Uso de Cocaína/psicologia , Fissura/efeitos dos fármacos , Sinais (Psicologia) , Extinção Psicológica/efeitos dos fármacos , Sistema Límbico/efeitos dos fármacos , Masculino , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Proteômica , Ratos , Ratos Sprague-Dawley , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Síndrome de Abstinência a Substâncias/psicologia
2.
Cereb Cortex ; 31(10): 4554-4575, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34013343

RESUMO

Temporal specification of the neural progenitors (NPs) producing excitatory glutamatergic neurons is essential for histogenesis of the cerebral cortex. Neuroepithelial cells, the primary NPs, transit to radial glia (RG). To coincide with the transition, NPs start to differentiate into neurons, undergoing a switch from symmetric to asymmetric cell division. After the onset of neurogenesis, NPs produce layer-specific neurons in a defined order with precise timing. Here, we show that GABAA receptors (GABAARs) and taurine are involved in this regulatory mechanism. Foetal exposure to GABAAR-antagonists suppressed the transition to RG, switch to asymmetric division, and differentiation into upper-layer neurons. Foetal exposure to GABAAR-agonists caused the opposite effects. Mammalian foetuses are dependent on taurine derived from the mothers. GABA and taurine function as endogenous ligands for GABAARs. Ca2+ imaging showed that NPs principally responded to taurine but not GABA before E13. The histological phenotypes of the taurine transporter knockout mice resembled those of the mice foetally exposed to GABAAR-antagonists. Foetal exposure to GABAAR-modulators resulted in considerable alterations in offspring behavior like core symptoms of autism. These results show that taurine regulates the temporal specification of NPs and that disrupting the taurine-receptor interaction possibly leads to neurodevelopmental disorders.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Glutamatos/fisiologia , Células-Tronco Neurais/fisiologia , Receptores de GABA-A/fisiologia , Taurina/fisiologia , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/fisiopatologia , Córtex Cerebral/citologia , Feminino , Feto , Antagonistas GABAérgicos/farmacologia , Moduladores GABAérgicos/farmacologia , Glicoproteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Técnicas de Patch-Clamp , Placenta/metabolismo , Gravidez
3.
J Neurosci ; 40(20): 3882-3895, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32291327

RESUMO

Neonatal tissue damage induces long-term deficits in inhibitory synaptic transmission within the spinal superficial dorsal horn (SDH) that include a reduction in primary afferent-evoked, feedforward inhibition onto adult projection neurons. However, the subpopulations of mature GABAergic interneurons which are compromised by early-life injury have yet to be identified. The present research illuminates the persistent effects of neonatal surgical injury on the function of inhibitory SDH interneurons derived from the prodynorphin (DYN) lineage, a population that synapses directly onto lamina I spinoparabrachial neurons and is known to suppress mechanical pain and itch in adults. The results demonstrate that hindpaw incision at postnatal day 3 (P3) significantly decreased the strength of primary afferent-evoked glutamatergic drive onto DYN neurons within the adult mouse SDH while increasing the appearance of afferent-evoked inhibition onto the same population. Neonatal injury also dampened the intrinsic membrane excitability of mature DYN neurons, and reduced their action potential discharge in response to sensory input, compared with naive littermate controls. Furthermore, P3 incision decreased the efficacy of inhibitory DYN synapses onto adult spinoparabrachial neurons, which reflected a prolonged reduction in the probability of GABA release. Collectively, the data suggest that early-life tissue damage may persistently constrain the ability of spinal DYN interneurons to limit ascending nociceptive transmission to the adult brain. This is predicted to contribute to the loss of feedforward inhibition onto mature projection neurons, and the "priming" of nociceptive circuits in the developing spinal cord, following injuries during the neonatal period.SIGNIFICANCE STATEMENT Neonatal injury has lasting effects on pain processing in the adult CNS, including a reduction in feedforward inhibition onto ascending projection neurons in the spinal dorsal horn. While it is clear that spinal GABAergic interneurons are comprised of multiple subpopulations that play distinct roles in somatosensation, the identity of those interneurons which are compromised by tissue damage during early life remains unknown. Here we document persistent deficits in spinal inhibitory circuits involving dynorphin-lineage interneurons previously implicated in gating mechanical pain and itch. Notably, neonatal injury reduced the strength of dynorphin-lineage inhibitory synapses onto mature lamina I spinoparabrachial neurons, a major output of the spinal nociceptive network, which could contribute to the priming of pain pathways by early tissue damage.


Assuntos
Dinorfinas , Membro Posterior/lesões , Inibição Neural , Vias Neurais/fisiopatologia , Corno Dorsal da Medula Espinal/lesões , Potenciais de Ação , Animais , Animais Recém-Nascidos , Análise por Conglomerados , Feminino , Glutamatos/fisiologia , Membro Posterior/inervação , Membro Posterior/fisiopatologia , Interneurônios , Camundongos , Neurônios Aferentes , Nociceptividade , Técnicas de Patch-Clamp , Medula Espinal/fisiopatologia , Corno Dorsal da Medula Espinal/fisiopatologia
4.
J Neurosci ; 40(3): 509-525, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31719165

RESUMO

Medial olivocochlear (MOC) efferent neurons in the brainstem comprise the final stage of descending control of the mammalian peripheral auditory system through axon projections to the cochlea. MOC activity adjusts cochlear gain and frequency tuning, and protects the ear from acoustic trauma. The neuronal pathways that activate and modulate the MOC somata in the brainstem to drive these cochlear effects are poorly understood. Evidence suggests that MOC neurons are primarily excited by sound stimuli in a three-neuron activation loop from the auditory nerve via an intermediate neuron in the cochlear nucleus. Anatomical studies suggest that MOC neurons receive diverse synaptic inputs, but the functional effect of additional synaptic influences on MOC neuron responses is unknown. Here we use patch-clamp electrophysiological recordings from identified MOC neurons in brainstem slices from mice of either sex to demonstrate that in addition to excitatory glutamatergic synapses, MOC neurons receive inhibitory GABAergic and glycinergic synaptic inputs. These synapses are activated by electrical stimulation of axons near the medial nucleus of the trapezoid body (MNTB). Focal glutamate uncaging confirms MNTB neurons as a source of inhibitory synapses onto MOC neurons. MNTB neurons inhibit MOC action potentials, but this effect depresses with repeat activation. This work identifies a new pathway of connectivity between brainstem auditory neurons and indicates that MOC neurons are both excited and inhibited by sound stimuli received at the same ear. The pathway depression suggests that the effect of MNTB inhibition of MOC neurons diminishes over the course of a sustained sound.SIGNIFICANCE STATEMENT Medial olivocochlear (MOC) neurons are the final stage of descending control of the mammalian auditory system and exert influence on cochlear mechanics to modulate perception of acoustic stimuli. The brainstem pathways that drive MOC function are poorly understood. Here we show for the first time that MOC neurons are inhibited by neurons of the MNTB, which may suppress the effects of MOC activity on the cochlea.


Assuntos
Núcleo Coclear/fisiologia , Neurônios Eferentes/fisiologia , Núcleo Olivar/fisiologia , Corpo Trapezoide/fisiologia , Estimulação Acústica , Animais , Axônios/fisiologia , Tronco Encefálico/citologia , Tronco Encefálico/fisiologia , Nervo Coclear/fisiologia , Núcleo Coclear/citologia , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/genética , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Glutamatos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Olivar/citologia , Técnicas de Patch-Clamp , Sinapses/fisiologia , Corpo Trapezoide/citologia
5.
J Neurosci Res ; 99(6): 1689-1703, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33713502

RESUMO

The lateral hypothalamus (LH) plays a key role in the maintenance of cortical activation and wakefulness. In the LH, the two main neuronal cell populations consist of excitatory glutamatergic neurons and inhibitory GABAergic neurons. Recent studies have shown that inhibitory LH GABAergic neurons are wake-promoting. However, the mechanism by which excitatory LH glutamatergic neurons contribute to sleep-wake regulation remains unclear. Using fiber photometry in male mice, we demonstrated that LH glutamatergic neurons exhibited high activities during both wakefulness and rapid eye movement sleep. Chemogenetic activation of LH glutamatergic neurons induced an increase in wakefulness that lasted for 6 hr, whereas suppression of LH glutamatergic neuronal activity caused a reduction in wakefulness. Brief optogenetic activation of LH glutamatergic neurons induced an immediate transition from slow-wave sleep to wakefulness, and long-lasting optogenetic stimulation of these neurons maintained wakefulness. Moreover, we found that LH-locus coeruleus/parabrachial nucleus and LH-basal forebrain projections mediated the wake-promoting effects of LH glutamatergic neurons. Taken together, our data indicate that LH glutamatergic neurons are essential for the induction and maintenance of wakefulness. The results presented here may advance our understanding of the role of LH in the control of wakefulness.


Assuntos
Glutamatos/fisiologia , Região Hipotalâmica Lateral/fisiologia , Neurônios/fisiologia , Vigília/fisiologia , Animais , Agonistas de Aminoácidos Excitatórios/farmacologia , Neurônios GABAérgicos , Masculino , Camundongos , Optogenética , Polissonografia , Fases do Sono , Sono REM/fisiologia
6.
J Neurosci ; 39(4): 651-662, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30504272

RESUMO

Lateral inhibition in the vertebrate retina depends on a negative feedback synapse between horizontal cells (HCs) and rod and cone photoreceptors. A change in pH is thought to be the signal for negative feedback, but its spatial profile in the synaptic cleft is unknown. Here we use three different membrane proteins, each fused to the same genetically-encoded pH-sensitive Green Fluorescent Protein (GFP) (pHluorin), to probe synaptic pH in retina from transgenic zebrafish (Danio rerio) of either sex. We used the cone transducin promoter to express SynaptopHluorin (pHluorin on vesicle-associated membrane protein (VAMP2)) or CalipHluorin (pHluorin on an L-type Ca2+ channel) and the HC-specific connexin-55.5 promoter to express AMPApHluorin (pHluorin on an AMPA receptor). Stimulus light led to increased fluorescence of all three probes, consistent with alkalinization of the synaptic cleft. The receptive field size, sensitivity to surround illumination, and response to activation of an alien receptor expressed exclusively in HCs, are consistent with lateral inhibition as the trigger for alkalinization. However, SynaptopHluorin and AMPApHluorin, which are displaced farther from cone synaptic ribbons than CalipHluorin, reported a smaller pH change. Hence, unlike feedforward glutamatergic transmission, which spills over to allow cross talk between terminals in the cone network, the pH change underlying HC feedback is compartmentalized to individual synaptic invaginations within a cone terminal, consistent with private line communication.SIGNIFICANCE STATEMENT Lateral inhibition (LI) is a fundamental feature of information processing in sensory systems, enhancing contrast sensitivity and enabling edge discrimination. Horizontal cells (HCs) are the first cellular substrate of LI in the vertebrate retina, but the synaptic mechanisms underlying LI are not completely understood, despite decades of study. This paper makes a significant contribution to our understanding of LI, by showing that each HC-cone synapse is a "private-line" that operates independently from other HC-cone connections. Using transgenic zebrafish expressing pHluorin, a pH-sensitive GFP variant spliced onto three different protein platforms expressed either in cones or HCs we show that the feedback pH signal is constrained to individual cone terminals, and more stringently, to individual synaptic contact sites within each terminal.


Assuntos
Retroalimentação Fisiológica/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Horizontais da Retina/fisiologia , Sinapses/fisiologia , Animais , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/fisiologia , Conexinas/metabolismo , Feminino , Glutamatos/fisiologia , Concentração de Íons de Hidrogênio , Masculino , Prótons , Receptores de AMPA/metabolismo , Células Fotorreceptoras Retinianas Cones/ultraestrutura , Células Horizontais da Retina/ultraestrutura , Sinapses/ultraestrutura , Transmissão Sináptica/fisiologia , Proteína 2 Associada à Membrana da Vesícula/genética , Proteína 2 Associada à Membrana da Vesícula/fisiologia , Peixe-Zebra
7.
J Neurosci ; 39(40): 7910-7919, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31420456

RESUMO

Proper function of pharyngeal dilator muscles, including the genioglossus muscle of the tongue, is required to maintain upper airway patency. During sleep, the activity of these muscles is suppressed, and as a result individuals with obstructive sleep apnea experience repeated episodes of upper airway closure when they are asleep, in particular during rapid-eye-movement (REM) sleep. Blocking cholinergic transmission in the hypoglossal motor nucleus (MoXII) restores REM sleep genioglossus activity, highlighting the importance of cholinergic transmission in the inhibition of hypoglossal motor neurons (HMNs) during REM sleep. Glutamatergic afferent input from neurons in the parahypoglossal (PH) region to the HMNs is critical for MoXII respiratory motor output. We hypothesized that state-dependent cholinergic regulation may be mediated by this pathway. Here we studied the effects of cholinergic transmission in HMNs in adult male and female mice using patch-clamp recordings in brain slices. Using channelrhodopsin-2-assisted circuit mapping, we first demonstrated that PH glutamatergic neurons directly and robustly activate HMNs (PHGlut → HMNs). We then show that carbachol consistently depresses this input and that this effect is presynaptic. Additionally, carbachol directly affects HMNs by a variable combination of muscarinic-mediated excitatory and inhibitory responses. Altogether, our results suggest that cholinergic signaling impairs upper airway dilator muscle activity by suppressing glutamatergic input from PH premotoneurons to HMNs and by directly inhibiting HMNs. Our findings highlight the complexity of cholinergic control of HMNs at both the presynaptic and postsynaptic levels and provide a possible mechanism for REM sleep suppression of upper airway muscle activity.SIGNIFICANCE STATEMENT Individuals with obstructive sleep apnea can breathe adequately when awake but experience repeated episodes of upper airway closure when asleep, in particular during REM sleep. Similar to skeletal postural muscles, pharyngeal dilator muscles responsible for maintaining an open upper airway become hypotonic during REM sleep. Unlike spinal motoneurons controlling postural muscles that are inhibited by glycinergic transmission during REM sleep, hypoglossal motoneurons that control the upper airway muscles are inhibited in REM sleep by the combination of monoaminergic disfacilitation and cholinergic inhibition. In this study, we demonstrated how cholinergic signaling inhibits hypoglossal motoneurons through presynaptic and postsynaptic muscarinic receptors. Our results provide a potential mechanism for upper airway hypotonia during REM sleep.


Assuntos
Nervo Hipoglosso/fisiopatologia , Neurônios Motores , Hipotonia Muscular/fisiopatologia , Sistema Nervoso Parassimpático/fisiopatologia , Músculos Respiratórios/fisiopatologia , Sono REM , Animais , Carbacol/farmacologia , Channelrhodopsins , Feminino , Glutamatos/fisiologia , Nervo Hipoglosso/efeitos dos fármacos , Masculino , Camundongos , Agonistas Muscarínicos/farmacologia , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/fisiologia , Optogenética , Sistema Nervoso Parassimpático/efeitos dos fármacos , Técnicas de Patch-Clamp , Sinapses/efeitos dos fármacos
8.
J Neurochem ; 155(1): 7-9, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32681746

RESUMO

Hippocampal excitatory glutamatergic transmission is critically involved in cognitive functions such as learning and memory. A severe impairment of spatial memory is associated with the Alzheimer's disease characteristic augmentation of soluble Amyloid-beta1-42 which in turn leads to glutamatergic neurotransmission dysfunction. As the molecular basis of such correlations has not been completely understood, this Editorial highlights a study in the current issue of the Journal of Neurochemistry in which Yeung and coworkers provide an elegant anatomical study that sheds light into this problematic. Through a rigorous immunohistochemical approach, a sub-regional expression pattern of ionotropic glutamate receptors and vesicular transporters was determined in control and beta amyloid-injected mouse hippocampus. The selected areas participate in information processing and thus, in memory formation. Furthermore, the authors discuss their findings in the context of cognitive deficits present in Alzheimer's disease patients delivering an intuitive analysis of plausible molecular events that disturb proper glutamate signaling. This study takes an important step toward a better understanding of the complexity of Amyloid-beta1-42 and glutamatergic neurotransmission interactions.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Glutamatos/fisiologia , Hipocampo/efeitos dos fármacos , Animais , Humanos , Camundongos , Fragmentos de Peptídeos/farmacologia , Receptores de Glutamato/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
9.
J Comput Neurosci ; 48(1): 65-84, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31980990

RESUMO

Hebbian plasticity means that if the firing of two neurons is correlated, then their connection is strengthened. Conversely, uncorrelated firing causes a decrease in synaptic strength. Spike-timing-dependent plasticity (STDP) represents one instantiation of Hebbian plasticity. Under STDP, synaptic changes depend on the relative timing of the pre- and post-synaptic firing. By inducing pre- and post-synaptic firing at different relative times the STDP curves of many neurons have been determined, and it has been found that there are different curves for different neuron types or synaptic sites. Biophysically, strengthening (long-term potentiation, LTP) or weakening (long-term depression, LTD) of glutamatergic synapses depends on the post-synaptic influx of calcium (Ca2+): weak influx leads to LTD, while strong, transient influx causes LTP. The voltage-dependent NMDA receptors are the main source of Ca2+ influx, but they will only open if a post-synaptic depolarisation coincides with pre-synaptic neurotransmitter release. Here we present a computational mechanism for Ca2+-dependent plasticity in which the interplay between the pre-synaptic neurotransmitter release and the post-synaptic membrane potential leads to distinct Ca2+ time-courses, which in turn lead to the change in synaptic strength. It is shown that the model complies with classic STDP results, as well as with results obtained with triplets of spikes. Furthermore, the model is capable of displaying different shapes of STDP curves, as observed in different experimental studies.


Assuntos
Sinalização do Cálcio/fisiologia , Modelos Neurológicos , Plasticidade Neuronal/fisiologia , Algoritmos , Simulação por Computador , Fenômenos Eletrofisiológicos/fisiologia , Glutamatos/fisiologia , Humanos , Potenciação de Longa Duração/fisiologia , Potenciais da Membrana/fisiologia , Neurônios/fisiologia , Neurotransmissores/metabolismo , Receptores de AMPA/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia
10.
J Neurosci ; 38(5): 1061-1072, 2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29114074

RESUMO

Estradiol feedback regulates gonadotropin-releasing hormone (GnRH) neurons and subsequent luteinizing hormone (LH) release. Estradiol acts via estrogen receptor α (ERα)-expressing afferents of GnRH neurons, including kisspeptin neurons in the anteroventral periventricular (AVPV) and arcuate nuclei, providing homeostatic feedback on episodic GnRH/LH release as well as positive feedback to control ovulation. Ionotropic glutamate receptors are important for estradiol feedback, but it is not known where they fit in the circuitry. Estradiol-negative feedback decreased glutamatergic transmission to AVPV and increased it to arcuate kisspeptin neurons; positive feedback had the opposite effect. Deletion of ERα in kisspeptin cells decreased glutamate transmission to AVPV neurons and markedly increased it to arcuate kisspeptin neurons, which also exhibited increased spontaneous firing rate. KERKO mice had increased LH pulse frequency, indicating loss of negative feedback. These observations indicate that ERα in kisspeptin cells is required for appropriate differential regulation of these neurons and neuroendocrine output by estradiol.SIGNIFICANCE STATEMENT The brain regulates fertility through gonadotropin-releasing hormone (GnRH) neurons. Ovarian estradiol regulates the pattern of GnRH (negative feedback) and initiates a surge of release that triggers ovulation (positive feedback). GnRH neurons do not express the estrogen receptor needed for feedback (estrogen receptor α [ERα]); kisspeptin neurons in the arcuate and anteroventral periventricular nuclei are postulated to mediate negative and positive feedback, respectively. Here we extend the network through which feedback is mediated by demonstrating that glutamatergic transmission to these kisspeptin populations is differentially regulated during the reproductive cycle and by estradiol. Electrophysiological and in vivo hormone profile experiments on kisspeptin-specific ERα knock-out mice demonstrate that ERα in kisspeptin cells is required for appropriate differential regulation of these neurons and for neuroendocrine output.


Assuntos
Estradiol/farmacologia , Glutamatos/fisiologia , Hipotálamo/citologia , Hipotálamo/fisiologia , Kisspeptinas/fisiologia , Neurônios/fisiologia , Receptores de Estrogênio/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Animais , Núcleo Arqueado do Hipotálamo/fisiologia , Dinorfinas/farmacologia , Feminino , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Hipotálamo/efeitos dos fármacos , Hormônio Luteinizante/fisiologia , Camundongos , Núcleos da Linha Média do Tálamo/fisiologia , Neurônios/efeitos dos fármacos , Hipófise/efeitos dos fármacos , Hipófise/fisiologia , Proestro/fisiologia , Receptores Ionotrópicos de Glutamato/efeitos dos fármacos , Receptores Ionotrópicos de Glutamato/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Receptor ERRalfa Relacionado ao Estrogênio
11.
J Neurosci ; 38(20): 4762-4773, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29712790

RESUMO

Failure of neural tube closure leads to neural tube defects (NTDs), which can have serious neurological consequences or be lethal. Use of antiepileptic drugs (AEDs) during pregnancy increases the incidence of NTDs in offspring by unknown mechanisms. Here we show that during Xenopus laevis neural tube formation, neural plate cells exhibit spontaneous calcium dynamics that are partially mediated by glutamate signaling. We demonstrate that NMDA receptors are important for the formation of the neural tube and that the loss of their function induces an increase in neural plate cell proliferation and impairs neural cell migration, which result in NTDs. We present evidence that the AED valproic acid perturbs glutamate signaling, leading to NTDs that are rescued with varied efficacy by preventing DNA synthesis, activating NMDA receptors, or recruiting the NMDA receptor target ERK1/2. These findings may prompt mechanistic identification of AEDs that do not interfere with neural tube formation.SIGNIFICANCE STATEMENT Neural tube defects are one of the most common birth defects. Clinical investigations have determined that the use of antiepileptic drugs during pregnancy increases the incidence of these defects in the offspring by unknown mechanisms. This study discovers that glutamate signaling regulates neural plate cell proliferation and oriented migration and is necessary for neural tube formation. We demonstrate that the widely used antiepileptic drug valproic acid interferes with glutamate signaling and consequently induces neural tube defects, challenging the current hypotheses arguing that they are side effects of this antiepileptic drug that cause the increased incidence of these defects. Understanding the mechanisms of neurotransmitter signaling during neural tube formation may contribute to the identification and development of antiepileptic drugs that are safer during pregnancy.


Assuntos
Anticonvulsivantes/toxicidade , Defeitos do Tubo Neural/fisiopatologia , Tubo Neural/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Transdução de Sinais/fisiologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Movimento Celular , Proliferação de Células , Feminino , Glutamatos/fisiologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Placa Neural/citologia , Placa Neural/crescimento & desenvolvimento , Tubo Neural/crescimento & desenvolvimento , Defeitos do Tubo Neural/induzido quimicamente , Transdução de Sinais/efeitos dos fármacos , Ácido Valproico/toxicidade , Xenopus laevis
12.
BMC Biol ; 16(1): 100, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30200940

RESUMO

BACKGROUND: Parkinson's disease (PD)-associated E3 ubiquitin ligase Parkin is enriched at glutamatergic synapses, where it ubiquitinates multiple substrates, suggesting that its mutation/loss-of-function could contribute to the etiology of PD by disrupting excitatory neurotransmission. Here, we evaluate the impact of four common PD-associated Parkin point mutations (T240M, R275W, R334C, G430D) on glutamatergic synaptic function in hippocampal neurons. RESULTS: We find that expression of these point mutants in cultured hippocampal neurons from Parkin-deficient and Parkin-null backgrounds alters NMDA and AMPA receptor-mediated currents and cell-surface levels and prevents the induction of long-term depression. Mechanistically, we demonstrate that Parkin regulates NMDA receptor trafficking through its ubiquitination of GluN1, and that all four mutants are impaired in this ubiquitinating activity. Furthermore, Parkin regulates synaptic AMPA receptor trafficking via its binding and retention of the postsynaptic scaffold Homer1, and all mutants are similarly impaired in this capacity. CONCLUSION: Our findings demonstrate that pathogenic Parkin mutations disrupt glutamatergic synaptic transmission in hippocampal neurons by impeding NMDA and AMPA receptor trafficking. Such effects may contribute to the pathophysiology of PD in PARK2 patients.


Assuntos
Glutamatos/fisiologia , Mutação , Neurônios/fisiologia , Doença de Parkinson/metabolismo , Transmissão Sináptica , Ubiquitina-Proteína Ligases/genética , Animais , Hipocampo/fisiologia , Ratos , Ratos Sprague-Dawley , Ubiquitina-Proteína Ligases/metabolismo
13.
J Neurosci ; 37(5): 1352-1366, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28039375

RESUMO

The pedunculopontine tegmental (PPT) nucleus has long been implicated in the regulation of cortical activity and behavioral states, including rapid eye-movement (REM) sleep. For example, electrical stimulation of the PPT region during sleep leads to rapid awakening, whereas lesions of the PPT in cats reduce REM sleep. Though these effects have been linked with the activity of cholinergic PPT neurons, the PPT also includes intermingled glutamatergic and GABAergic cell populations, and the precise roles of cholinergic, glutamatergic, and GABAergic PPT cell groups in regulating cortical activity and behavioral state remain unknown. Using a chemogenetic approach in three Cre-driver mouse lines, we found that selective activation of glutamatergic PPT neurons induced prolonged cortical activation and behavioral wakefulness, whereas inhibition reduced wakefulness and increased non-REM (NREM) sleep. Activation of cholinergic PPT neurons suppressed lower-frequency electroencephalogram rhythms during NREM sleep. Last, activation of GABAergic PPT neurons slightly reduced REM sleep. These findings reveal that glutamatergic, cholinergic, and GABAergic PPT neurons differentially influence cortical activity and sleep/wake states. SIGNIFICANCE STATEMENT: More than 40 million Americans suffer from chronic sleep disruption, and the development of effective treatments requires a more detailed understanding of the neuronal mechanisms controlling sleep and arousal. The pedunculopontine tegmental (PPT) nucleus has long been considered a key site for regulating wakefulness and REM sleep. This is mainly because of the cholinergic neurons contained in the PPT nucleus. However, the PPT nucleus also contains glutamatergic and GABAergic neurons that likely contribute to the regulation of cortical activity and sleep-wake states. The chemogenetic experiments in the present study reveal that cholinergic, glutamatergic, and GABAergic PPT neurons each have distinct effects on sleep/wake behavior, improving our understanding of how the PPT nucleus regulates cortical activity and behavioral states.


Assuntos
Neurônios Colinérgicos/fisiologia , Neurônios GABAérgicos/fisiologia , Glutamatos/fisiologia , Neurônios/fisiologia , Núcleo Tegmental Pedunculopontino/fisiologia , Sono/fisiologia , Vigília/fisiologia , Animais , Comportamento Animal/fisiologia , Eletroencefalografia , Eletromiografia , Camundongos , Núcleo Tegmental Pedunculopontino/citologia , Sono REM/fisiologia , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
14.
Alcohol Clin Exp Res ; 42(11): 2186-2195, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30204234

RESUMO

BACKGROUND: Ventral tegmental area (VTA) GABA neurons have been heavily implicated in alcohol reinforcement and reward. In animals that self-administer alcohol, VTA GABA neurons exhibit increased excitability that may contribute to alcohol's rewarding effects. The present study investigated the effects of acute and chronic ethanol exposure on glutamate (GLU) synaptic transmission to VTA GABA neurons. METHODS: Whole-cell recordings of evoked, spontaneous, and miniature excitatory postsynaptic currents (eEPSCs, sEPSCs, and mEPSCs, respectively) were performed on identified GABA neurons in the VTA of GAD67-GFP+ transgenic mice. Three ethanol exposure paradigms were used: acute ethanol superfusion; a single ethanol injection; and chronic vapor exposure. RESULTS: Acute ethanol superfusion increased the frequency of EPSCs but inhibited mEPSC frequency and amplitude. During withdrawal from a single injection of ethanol, the frequency of sEPSCs was lower than saline controls. There was no difference in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/N-methyl-d-aspartate (NMDA) ratio between neurons following withdrawal from a single exposure to ethanol. However, following withdrawal from chronic ethanol, sEPSCs and mEPSCs had a greater frequency than air controls. There was no difference in AMPA/NMDA ratio following chronic ethanol. CONCLUSIONS: These results suggest that presynaptic mechanisms involving local circuit GLU neurons, and not GLU receptors, contribute to adaptations in VTA GABA neuron excitability that accrue to ethanol exposure, which may contribute to the rewarding properties of alcohol via their regulation of mesolimbic dopamine transmission.


Assuntos
Depressores do Sistema Nervoso Central/toxicidade , Etanol/toxicidade , Glutamatos/fisiologia , Neurônios/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Área Tegmentar Ventral/efeitos dos fármacos , Ácido gama-Aminobutírico/fisiologia , Animais , Dopamina/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Glutamato Descarboxilase/genética , Masculino , Camundongos , Técnicas de Patch-Clamp , Síndrome de Abstinência a Substâncias/fisiopatologia , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
15.
J Neurosci ; 36(50): 12511-12529, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27974611

RESUMO

Although the release of mesoaccumbal dopamine is certainly involved in rewarding responses, recent studies point to the importance of the interaction between it and glutamate. One important component of this network is the anterior nucleus accumbens shell (aNAcSh), which sends GABAergic projections into the lateral hypothalamus (LH) and receives extensive glutamatergic inputs from, among others, the medial prefrontal cortex (mPFC). The effects of glutamatergic activation of aNAcSh on the ingestion of rewarding stimuli as well as its effect in the LH and mPFC are not well understood. Therefore, we studied behaving mice that express a light-gated channel (ChR2) in glutamatergic fibers in their aNAcSh while recording from neurons in the aNAcSh, or mPFC or LH. In Thy1-ChR2, but not wild-type, mice activation of aNAcSh fibers transiently stopped the mice licking for sucrose or an empty sipper. Stimulation of aNAcSh fibers both activated and inhibited single-unit responses aNAcSh, mPFC, and LH, in a manner that maintains firing rate homeostasis. One population of licking-inhibited pMSNs in the aNAcSh was also activated by optical stimulation, suggesting their relevance in the cessation of feeding. A rewarding aspect of stimulation of glutamatergic inputs was found when the Thy1-ChR2 mice learned to nose-poke to self-stimulate these inputs, indicating that bulky stimulation of these fibers are rewarding in the sense of wanting. Stimulation of excitatory afferents evoked both monosynaptic and polysynaptic responses distributed in the three recorded areas. In summary, we found that activation of glutamatergic aNAcSh fibers is both rewarding and transiently inhibits feeding. SIGNIFICANCE STATEMENT: We have established that the activation of glutamatergic fibers in the anterior nucleus accumbens shell (aNAcSh) transiently stops feeding and yet, because mice self-stimulate, is rewarding in the sense of wanting. Moreover, we have characterized single-unit responses of distributed components of a hedonic network (comprising the aNAcSh, medial prefrontal cortex, and lateral hypothalamus) recruited by activation of glutamatergic aNAcSh afferents that are involved in encoding a positive valence signal important for the wanting of a reward and that transiently stops ongoing consummatory actions, such as licking.


Assuntos
Comportamento Alimentar/fisiologia , Glutamatos/fisiologia , Região Hipotalâmica Lateral/fisiologia , Fibras Nervosas/fisiologia , Núcleo Accumbens/citologia , Núcleo Accumbens/fisiologia , Córtex Pré-Frontal/fisiologia , Recompensa , Animais , Channelrhodopsins , Feminino , Masculino , Camundongos , Neurônios Aferentes/fisiologia , Optogenética , Técnicas de Patch-Clamp , Autoestimulação , Sinapses/fisiologia
16.
J Neurosci ; 36(18): 4930-9, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27147648

RESUMO

UNLABELLED: Finding effective cognitive enhancers is a major health challenge; however, modulating glutamatergic neurotransmission has the potential to enhance performance in recognition memory tasks. Previous studies using glutamate receptor antagonists have revealed that the medial prefrontal cortex (mPFC) plays a central role in associative recognition memory. The present study investigates short-term recognition memory using optogenetics to target glutamatergic neurons within the rodent mPFC specifically. Selective stimulation of glutamatergic neurons during the online maintenance of information enhanced associative recognition memory in normal animals. This cognitive enhancing effect was replicated by local infusions of the AMPAkine CX516, but not CX546, which differ in their effects on EPSPs. This suggests that enhancing the amplitude, but not the duration, of excitatory synaptic currents improves memory performance. Increasing glutamate release through infusions of the mGluR7 presynaptic receptor antagonist MMPIP had no effect on performance. SIGNIFICANCE STATEMENT: These results provide new mechanistic information that could guide the targeting of future cognitive enhancers. Our work suggests that improved associative-recognition memory can be achieved by enhancing endogenous glutamatergic neuronal activity selectively using an optogenetic approach. We build on these observations to recapitulate this effect using drug treatments that enhance the amplitude of EPSPs; however, drugs that alter the duration of the EPSP or increase glutamate release lack efficacy. This suggests that both neural and temporal specificity are needed to achieve cognitive enhancement.


Assuntos
Glutamatos/fisiologia , Memória/fisiologia , Neurônios/fisiologia , Optogenética , Córtex Pré-Frontal/fisiologia , Reconhecimento Psicológico/fisiologia , Animais , Dioxóis/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Masculino , Memória de Curto Prazo/fisiologia , Piperidinas/farmacologia , Proteínas Proto-Oncogênicas c-fos/fisiologia , Desempenho Psicomotor/fisiologia , Piridonas/farmacologia , Ratos , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Receptores de Glutamato Metabotrópico/fisiologia
17.
J Neurosci ; 36(18): 5034-46, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27147656

RESUMO

UNLABELLED: The preoptic area (POA) regulates body temperature, but is not considered a site for body weight control. A subpopulation of POA neurons express leptin receptors (LepRb(POA) neurons) and modulate reproductive function. However, LepRb(POA) neurons project to sympathetic premotor neurons that control brown adipose tissue (BAT) thermogenesis, suggesting an additional role in energy homeostasis and body weight regulation. We determined the role of LepRb(POA) neurons in energy homeostasis using cre-dependent viral vectors to selectively activate these neurons and analyzed functional outcomes in mice. We show that LepRb(POA) neurons mediate homeostatic adaptations to ambient temperature changes, and their pharmacogenetic activation drives robust suppression of energy expenditure and food intake, which lowers body temperature and body weight. Surprisingly, our data show that hypothermia-inducing LepRb(POA) neurons are glutamatergic, while GABAergic POA neurons, originally thought to mediate warm-induced inhibition of sympathetic premotor neurons, have no effect on energy expenditure. Our data suggest a new view into the neurochemical and functional properties of BAT-related POA circuits and highlight their additional role in modulating food intake and body weight. SIGNIFICANCE STATEMENT: Brown adipose tissue (BAT)-induced thermogenesis is a promising therapeutic target to treat obesity and metabolic diseases. The preoptic area (POA) controls body temperature by modulating BAT activity, but its role in body weight homeostasis has not been addressed. LepRb(POA) neurons are BAT-related neurons and we show that they are sufficient to inhibit energy expenditure. We further show that LepRb(POA) neurons modulate food intake and body weight, which is mediated by temperature-dependent homeostatic responses. We further found that LepRb(POA) neurons are stimulatory glutamatergic neurons, contrary to prevalent models, providing a new view on thermoregulatory neural circuits. In summary, our study significantly expands our current understanding of central circuits and mechanisms that modulate energy homeostasis.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Temperatura Corporal/fisiologia , Peso Corporal/fisiologia , Glutamatos/fisiologia , Homeostase/fisiologia , Neurônios/fisiologia , Área Pré-Óptica/citologia , Área Pré-Óptica/fisiologia , Receptores para Leptina/biossíntese , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/fisiologia , Animais , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/fisiologia , Camundongos , Receptores Adrenérgicos beta 3/efeitos dos fármacos , Receptores Adrenérgicos beta 3/fisiologia , Receptores para Leptina/genética , Temperatura
18.
Dev Biol ; 415(1): 87-97, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27131625

RESUMO

Cell death can have both cell autonomous and non-autonomous roles in normal development. Previous studies have shown that the central cell death regulators grim and reaper are required for the developmentally important elimination of stem cells and neurons in the developing central nervous system (CNS). Here we show that cell death in the nervous system is also required for normal muscle development. In the absence of grim and reaper, there is an increase in the number of fibers in the ventral abdominal muscles in the Drosophila adult. This phenotype can be partially recapitulated by inhibition of cell death specifically in the CNS, indicating a non-autonomous role for neuronal death in limiting muscle fiber number. We also show that FGFs produced in the cell death defective nervous system are required for the increase in muscle fiber number. Cell death in the muscle lineage during pupal stages also plays a role in specifying fiber number. Our work suggests that FGFs from the CNS act as a survival signal for muscle founder cells. Thus, proper muscle fiber specification requires cell death in both the nervous system and in the developing muscle itself.


Assuntos
Apoptose/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/crescimento & desenvolvimento , Células Musculares/ultraestrutura , Desenvolvimento Muscular , Neuropeptídeos/fisiologia , Animais , Contagem de Células , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Fatores de Crescimento de Fibroblastos/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Glutamatos/fisiologia , Larva , Proteínas Luminescentes/análise , Neurônios Motores/citologia , Músculos/inervação , Mioblastos/citologia , Neuropeptídeos/deficiência , Neuropeptídeos/genética , Proteínas Tirosina Quinases/deficiência , Proteínas Tirosina Quinases/fisiologia , Pupa , Receptores de Fatores de Crescimento de Fibroblastos/deficiência , Receptores de Fatores de Crescimento de Fibroblastos/fisiologia , Deleção de Sequência
19.
J Neurochem ; 141(4): 507-519, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27363363

RESUMO

The modulatory actions of glutamate, the main excitatory neurotransmitter in the central nervous system (CNS), are exerted through the activation of metabotropic glutamate receptors (mGluRs). Of the eight known mGluRs (mGluR1-8), group III mGluRs (mGluR4, mGluR6, mGluR7, and mGluR8) are less understood because of the lack of selective ligands. Except for mGluR6, group III mGluRs are widely distributed throughout the CNS. They are mainly located on presynaptic terminals where they inhibit neurotransmitter release at glutamatergic and γ-aminobutyric acid (GABA)ergic synapses. Their location at certain synapses is considered critical for normal CNS function, which makes them potential targets in neurological and psychiatric treatments. Novel ligands that are selective for group III mGluR subtypes have recently been developed. These compounds, which mainly target allosteric sites and act as positive or negative allosteric modulators (PAMs or NAMs) of glutamate transmission, are contributing to the understanding of the functional roles of group III mGluRs in a number of pathological conditions, such as epilepsy, anxiety, neurodegenerative diseases, and chronic pain. Moreover, the presence of group III mGluRs throughout the entire pain neuraxis and particularly in the descending system suggests that these endogenous substrates that extend from the cortex to the first spinal synapse are candidates for pain control. Recent data on chronic pain alleviation by group III mGluR ligands encourage further studies as pathological pain is one of the most troublesome diseases because of the current lack of satisfactory therapy. This review summarizes recent studies on group III mGluRs in animal models of chronic pain, which evidence an opposite modulation of mGluR7 and mGluR8 on pain responses and their capability to affect pain responses only in pathological states. This article is part of the special article series "Pain".


Assuntos
Nociceptividade/fisiologia , Dor/fisiopatologia , Receptores de Glutamato Metabotrópico/fisiologia , Medula Espinal/fisiopatologia , Animais , Glutamatos/metabolismo , Glutamatos/fisiologia , Humanos
20.
J Neurosci ; 35(50): 16479-93, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26674872

RESUMO

Expression of neuregulin-2 (NRG2) is intense in a few regions of the adult brain where neurogenesis persists; however, little is understood about its role in developments of newborn neurons. To study the role of NRG2 in synaptogenesis at different developmental stages, newborn granule cells in rat hippocampal slice cultures were labeled with retrovirus encoding tetracycline-inducible microRNA targeting NRG2 and treated with doxycycline (Dox) at the fourth or seventh postinfection day (dpi). The developmental increase of GABAergic postsynaptic currents (GPSCs) was suppressed by the early Dox treatment (4 dpi), but not by late treatment (7 dpi). The late Dox treatment was used to study the effect of NRG2 depletion specific to excitatory synaptogenesis. The Dox effect on EPSCs emerged 4 d after the impairment in dendritic outgrowth became evident (10 dpi). Notably, Dox treatment abolished the developmental increases of AMPA-receptor mediated EPSCs and the AMPA/NMDA ratio, indicating impaired maturation of glutamatergic synapses. In contrast to GPSCs, Dox effects on EPSCs and dendritic growth were independent of ErbB4 and rescued by concurrent overexpression of NRG2 intracellular domain. These results suggest that forward signaling of NRG2 mediates GABAergic synaptogenesis and its reverse signaling contributes to dendritic outgrowth and maturation of glutamatergic synapses. SIGNIFICANCE STATEMENT: The hippocampal dentate gyrus is one of special brain regions where neurogenesis persists throughout adulthood. Synaptogenesis is a critical step for newborn neurons to be integrated into preexisting neural network. Because neuregulin-2 (NRG2), a growth factor, is intensely expressed in these regions, we investigated whether it plays a role in synaptogenesis and dendritic growth. We found that NRG2 has dual roles in the development of newborn neurons. For GABAergic synaptogenesis, the extracellular domain of NRG2 acts as a ligand for a receptor on GABAergic neurons. In contrast, its intracellular domain was essential for dendritic outgrowth and glutamatergic synapse maturation. These results imply that NRG2 may play a critical role in network integration of newborn neurons.


Assuntos
Glutamatos/fisiologia , Hipocampo/citologia , Hipocampo/fisiologia , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/fisiologia , Sinapses/fisiologia , Ácido gama-Aminobutírico/fisiologia , Animais , Animais Recém-Nascidos , Dendritos/efeitos dos fármacos , Doxiciclina/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Técnicas de Silenciamento de Genes , Hipocampo/crescimento & desenvolvimento , Masculino , Ratos , Ratos Sprague-Dawley , Receptor ErbB-4/genética , Receptor ErbB-4/metabolismo , Receptores de AMPA/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA