Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37685964

RESUMO

Glutaric acidemia type 1 (GA1) is a neurotoxic metabolic disorder due to glutaryl-CoA dehydrogenase (GCDH) deficiency. The high number of missense variants associated with the disease and their impact on GCDH activity suggest that disturbed protein conformation can affect the biochemical phenotype. We aimed to elucidate the molecular basis of protein loss of function in GA1 by performing a parallel analysis in a large panel of GCDH missense variants using different biochemical and biophysical methodologies. Thirteen GCDH variants were investigated in regard to protein stability, hydrophobicity, oligomerization, aggregation, and activity. An altered oligomerization, loss of protein stability and solubility, as well as an augmented susceptibility to aggregation were observed. GA1 variants led to a loss of enzymatic activity, particularly when present at the N-terminal domain. The reduced cellular activity was associated with loss of tetramerization. Our results also suggest a correlation between variant sequence location and cellular protein stability (p < 0.05), with a more pronounced loss of protein observed with variant proximity to the N-terminus. The broad panel of variant-mediated conformational changes of the GCDH protein supports the classification of GA1 as a protein-misfolding disorder. This work supports research toward new therapeutic strategies that target this molecular disease phenotype.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Encefalopatias Metabólicas , Glutaril-CoA Desidrogenase , Glutaril-CoA Desidrogenase/química , Glutaril-CoA Desidrogenase/genética , Erros Inatos do Metabolismo dos Aminoácidos/enzimologia , Erros Inatos do Metabolismo dos Aminoácidos/genética , Encefalopatias Metabólicas/enzimologia , Encefalopatias Metabólicas/genética , Dobramento de Proteína , Mutação de Sentido Incorreto , Domínios Proteicos , Humanos , Estabilidade Enzimática , Solubilidade
2.
Metab Brain Dis ; 35(6): 1009-1016, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32240488

RESUMO

Glutaric aciduria type 1 (GA1, deficiency of glutaryl CoA dehydrogenase, glutaric acidemia type 1) (ICD-10 code: E72.3; MIM 231670) is an autosomal recessive disease caused by mutations in the gene encoding the enzyme glutaryl CoA dehydrogenase (GCDH). Herein, we present the biochemical and molecular genetic characteristics of 51 patients diagnosed with GA1 from 49 unrelated families in Russia. We identified a total of 21 variants, 9 of which were novel: c.127 + 1G > T, с.471_473delCGA, c.161 T > C (p.Leu54Pro), c.531C > A (р.Phe177Leu), c.647C > T (p.Ser216Leu), c.705G > A (р.Gly235Asp), c.898 G > A (р.Gly300Ser), c.1205G > C (р.Arg402Pro), c.1178G > A (р.Gly393Glu). The most commonly detected missense variants were c.1204C > T (p.Arg402Trp) and с.1262C > T (р.Ala421Val), which were identified in 56.38% and 11.7% of mutated alleles. A heterozygous microdeletion of the short arm (p) of chromosome 19 from position 12,994,984-13,003,217 (8233 b.p.) and from position 12,991,506-13,003,217 (11,711 b.p.) were detected in two patients. Genes located in the area of imbalance were KLF1, DNASE2, and GCDH. Patients presented typical GA1 biochemical changes in the biological fluids, except one patient with the homozygous mutation p.Val400Met. No correlation was found between the GCDH genotype and glutaric acid (GA) concentration in the cohort of our patients.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/epidemiologia , Erros Inatos do Metabolismo dos Aminoácidos/genética , Encefalopatias Metabólicas/epidemiologia , Encefalopatias Metabólicas/genética , Glutaril-CoA Desidrogenase/química , Glutaril-CoA Desidrogenase/deficiência , Glutaril-CoA Desidrogenase/genética , Mutação de Sentido Incorreto/genética , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Encefalopatias Metabólicas/diagnóstico , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Estrutura Secundária de Proteína , Federação Russa/epidemiologia
3.
Int J Mol Sci ; 21(19)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992790

RESUMO

Riboflavin is the biological precursor of two important flavin cofactors-flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN)-that are critical prosthetic groups in several redox enzymes. While dietary supplementation with riboflavin is a recognized support therapy in several inborn errors of metabolism, it has yet unproven benefits in several other pathologies affecting flavoproteins. This is the case for glutaric aciduria type I (GA-I), a rare neurometabolic disorder associated with mutations in the GCDH gene, which encodes for glutaryl-coenzyme A (CoA) dehydrogenase (GCDH). Although there are a few reported clinical cases that have responded to riboflavin intake, there is still not enough molecular evidence supporting therapeutic recommendation. Hence, it is necessary to elucidate the molecular basis in favor of riboflavin supplementation in GA-I patients. Here, using a combination of biochemical and biophysical methodologies, we investigate the clinical variant GCDH-p.Val400Met as a model for a phenotype associated with severe deflavinylation. Through a systematic analysis, we establish that recombinant human GCDH-p.Val400Met is expressed in a nonfunctional apo form, which is mainly monomeric rather than tetrameric. However, we show that exogenous FAD is a driver for structural reorganization of the mutant enzyme with concomitant functional recovery, improved thermolability, and resistance to trypsin digestion. Overall, these results establish proof of principle for the beneficial effects of riboflavin supplementation in GA-I patients.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Encefalopatias Metabólicas , Glutaril-CoA Desidrogenase/deficiência , Glutaril-CoA Desidrogenase/genética , Riboflavina , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Encefalopatias Metabólicas/metabolismo , Glutaril-CoA Desidrogenase/química , Glutaril-CoA Desidrogenase/efeitos dos fármacos , Glutaril-CoA Desidrogenase/metabolismo , Humanos , Mutação , Dobramento de Proteína/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Proteínas Recombinantes , Riboflavina/farmacologia
4.
Hum Mol Genet ; 26(3): 538-551, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28062662

RESUMO

The neurometabolic disorder glutaric aciduria type 1 (GA1) is caused by mutations in the GCDH gene encoding the mitochondrial matrix protein glutaryl-CoA dehydrogenase (GCDH), which forms homo- and heteromeric complexes. Twenty percent of all pathogenic mutations affect single amino acid residues on the surface of GCDH resulting in a severe clinical phenotype. We report here on heterologous expression studies of 18 missense mutations identified in GA1 patients affecting surface amino acids. Western blot and pulse chase experiments revealed that the stability of half of the GCDH mutants was significantly reduced. In silico analyses showed that none of the mutations impaired the 3D structure of GCDH. Immunofluorescence co-localisation studies in HeLa cells demonstrated that all GCDH mutants were correctly translocated into mitochondria. Surprisingly, the expression of p.Arg88Cys GCDH as well as further substitutions by alanine, lysine, or methionine but not histidine or leucine resulted in the disruption of mitochondrial architecture forming longitudinal structures composed of stacks of cristae and partial loss of the outer mitochondrial membrane. The expression of mitochondrial fusion or fission proteins was not affected in these cells. Bioluminescence resonance energy transfer analyses revealed that all GCDH mutants exhibit an increased binding affinity to electron transfer flavoprotein beta, whereas only p.Tyr155His GCDH showed a reduced interaction with dihydrolipoamide succinyl transferase. Our data underscore the impact of GCDH protein interactions mediated by amino acid residues on the surface of GCDH required for proper enzymatic activity.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Encefalopatias Metabólicas/genética , Estabilidade Enzimática/genética , Glutaril-CoA Desidrogenase/deficiência , Glutaril-CoA Desidrogenase/genética , Mitocôndrias/genética , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Substituição de Aminoácidos/genética , Encefalopatias Metabólicas/patologia , Regulação Enzimológica da Expressão Gênica/genética , Glutaril-CoA Desidrogenase/química , Células HeLa , Humanos , Mitocôndrias/patologia , Dinâmica Mitocondrial/genética , Mutação de Sentido Incorreto/genética , Conformação Proteica , Multimerização Proteica/genética
5.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 32(2): 187-91, 2015 Apr.
Artigo em Zh | MEDLINE | ID: mdl-25863083

RESUMO

OBJECTIVE: To report on clinical features of four patients with glutaric academia type Ⅰ (GA-1) and mutations identified in the glutaryl-CoA dehydrogenase (GCDH) gene. METHODS: All of the patients underwent magnetic resonance imaging (MRI) analysis. Blood acylcarnitine and urine organic acid were analyzed with tandem mass spectrometry and gas chromatographic mass spectrometry. Genomic DNA was extracted from peripheral blood samples. The 11 exons and flanking sequences of the GCDH gene were amplified with PCR and subjected to direct DNA sequencing. RESULTS: Mutations of the GCDH gene were identified in all of the patients. Three had homozygous mutations. A recurrent mutation, IVS10-2A>C, was found in the four unrelated families, while the mutation of c.245G>C (p.Arg82Pro) was novel. CONCLUSION: IVS10-2A>C is likely a founder mutation for Chinese population in Wenzhou.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/enzimologia , Povo Asiático/genética , Encefalopatias Metabólicas/enzimologia , Glutaril-CoA Desidrogenase/deficiência , Glutaril-CoA Desidrogenase/genética , Mutação Puntual , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico por imagem , Erros Inatos do Metabolismo dos Aminoácidos/genética , Sequência de Aminoácidos , Sequência de Bases , Encefalopatias Metabólicas/diagnóstico por imagem , Encefalopatias Metabólicas/genética , Análise Mutacional de DNA , Éxons , Feminino , Glutaril-CoA Desidrogenase/química , Glutaril-CoA Desidrogenase/metabolismo , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Dados de Sequência Molecular , Radiografia , Alinhamento de Sequência
6.
J Med Chem ; 67(19): 17087-17100, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39312412

RESUMO

Allosteric regulators acting as pharmacological chaperones hold promise for innovative therapeutics since they target noncatalytic sites and stabilize the folded protein without competing with the natural substrate, resulting in a net gain of function. Exogenous allosteric regulators are typically more selective than active site inhibitors and can be more potent than competitive inhibitors when the natural substrate levels are high. To identify novel structure-targeted allosteric regulators (STARs) that bind to and stabilize the mitochondrial enzyme glutaryl-CoA dehydrogenase (GCDH), the computational site-directed enzyme enhancement therapy (SEE-Tx) technology was applied. SEE-Tx is an innovative drug discovery platform with the potential to identify drugs for treating protein misfolding disorders, such as glutaric acidemia type 1 (GA1) disease. Putative allosteric regulators were discovered using structure- and ligand-based virtual screening methods and validated using orthogonal biophysical and biochemical assays. The computational approach presented here could be used to discover allosteric regulators of other protein misfolding disorders.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Encefalopatias Metabólicas , Descoberta de Drogas , Glutaril-CoA Desidrogenase , Glutaril-CoA Desidrogenase/deficiência , Glutaril-CoA Desidrogenase/química , Glutaril-CoA Desidrogenase/metabolismo , Humanos , Encefalopatias Metabólicas/tratamento farmacológico , Encefalopatias Metabólicas/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/tratamento farmacológico , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Regulação Alostérica/efeitos dos fármacos
7.
Biochim Biophys Acta ; 1812(12): 1658-63, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21968293

RESUMO

Protein misfolding is a hallmark of a number of metabolic diseases, in which fatty acid oxidation defects are included. The latter result from genetic deficiencies in transport proteins and enzymes of the mitochondrial ß-oxidation, and milder disease conditions frequently result from conformational destabilization and decreased enzymatic function of the affected proteins. Small molecules which have the ability to raise the functional levels of the affected protein above a certain disease threshold are thus valuable tools for effective drug design. In this work we have investigated the effect of mitochondrial cofactors and metabolites as potential stabilizers in two ß-oxidation acyl-CoA dehydrogenases: short chain acyl-CoA dehydrogenase and the medium chain acyl-CoA dehydrogenase as well as glutaryl-CoA dehydrogenase, which is involved in lysine and tryptophan metabolism. We found that near physiological concentrations (low micromolar) of FAD resulted in a spectacular enhancement of the thermal stabilities of these enzymes and prevented enzymatic activity loss during a 1h incubation at 40°C. A clear effect of the respective substrate, which was additive to that of the FAD effect, was also observed for short- and medium-chain acyl-CoA dehydrogenase but not for glutaryl-CoA dehydrogenase. In conclusion, riboflavin may be beneficial during feverish crises in patients with short- and medium-chain acyl-CoA dehydrogenase as well as in glutaryl-CoA dehydrogenase deficiencies, and treatment with substrate analogs to butyryl- and octanoyl-CoAs could theoretically enhance enzyme activity for some enzyme proteins with inherited folding difficulties.


Assuntos
Acil-CoA Desidrogenase/química , Butiril-CoA Desidrogenase/química , Coenzimas/química , Glutaril-CoA Desidrogenase/química , Proteínas Mitocondriais/química , Acil Coenzima A/química , Varredura Diferencial de Calorimetria , Domínio Catalítico , Ensaios Enzimáticos , Estabilidade Enzimática , Flavina-Adenina Dinucleotídeo/química , Humanos , Ligação Proteica , Desdobramento de Proteína , Riboflavina/química , Temperatura de Transição
8.
Eur J Paediatr Neurol ; 39: 49-58, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35662016

RESUMO

AIM: To evaluate the pathogenic variants in GCDH gene and to assess the neurodevelopmental outcomes in children with Glutaric aciduria type 1 (GA-1). METHOD: Cross-sectional observational study between January 2019 and June 2020 in consecutive North Indian children with a clinical and biochemical suspicion of GA-1. Variants in the coding regions of GCDH gene were identified through Sanger sequencing. Neurodevelopmental and quality of life assessment was done using standardized scales. RESULTS: 24 children with GA-1 were identified. The median age at diagnosis was 12 months and the median delay in diagnosis was 3 months. Genetic analysis was done in 14 cases. It revealed 12 variants (11 missense and one nonsense) from 13 patients. Most of the pathogenic variants were in exon 9 and exon 5. Three novel variants were identified in three patients: two missense variants c.169G > A (p.Glu57Lys), c.1048T > C (p.Cys350Arg) and one nonsense variant c.331C > T (p.Lys111Ter). On neurodevelopmental assessment, majority of children with GA-1 were non ambulatory (62.5%), had limited hand skills (58.3%) and impaired communication (58.3%). Overall, poor global development was noted in 43.7%. A pre-existing developmental delay was significantly associated with impaired communication skills (p = 0.03), and the number of episodes of encephalopathy were significantly associated with impaired gross motor skill (p = 0.02). Presence of encephalopathy was significantly associated with poor performance in social emotional (p = 0.01) and cognitive (p = 0.03) domains of Developmental Profile-III scale and development of severe dystonia (p = 0.01). CONCLUSION: Our findings highlight the clinical, biochemical, radiological and genetic spectrum of GA-1 in children in North India and report the presence of novel pathogenic variations.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Encefalopatias Metabólicas , Glutaril-CoA Desidrogenase , Erros Inatos do Metabolismo dos Aminoácidos/enzimologia , Erros Inatos do Metabolismo dos Aminoácidos/genética , Encefalopatias Metabólicas/enzimologia , Encefalopatias Metabólicas/genética , Criança , Estudos Transversais , Glutaril-CoA Desidrogenase/química , Glutaril-CoA Desidrogenase/deficiência , Glutaril-CoA Desidrogenase/genética , Humanos , Qualidade de Vida
9.
Bioorg Med Chem Lett ; 21(22): 6667-73, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21974953

RESUMO

Glutaryl-CoA dehydrogenase catalyzes the oxidative decarboxylation of the γ-carboxylate of the substrate, glutaryl-CoA, to yield crotonyl-CoA and CO(2). The enzyme is a member of the acyl-CoA dehydrogenase (ACD) family of flavoproteins. In the present study, the catalytic properties of this enzyme, including its substrate specificity, isomerase activity, and interactions with inhibitors, were systematically studied. Our results indicated that the enzyme has its catalytic properties very similar to those of short-chain and medium-chain acyl-CoA dehydrogenase except its additional decarboxylation reaction. Therefore, the inhibitors of fatty acid oxidation targeting straight chain acyl-CoA dehydrogenase could also function as inhibitors for amino acid metabolism of lysine, hydroxylysine, and tryptophan.


Assuntos
Acil Coenzima A/metabolismo , Glutaril-CoA Desidrogenase/metabolismo , Acil Coenzima A/antagonistas & inibidores , Acil Coenzima A/química , Sequência de Aminoácidos , Animais , Inibidores Enzimáticos/farmacologia , Glutaril-CoA Desidrogenase/antagonistas & inibidores , Glutaril-CoA Desidrogenase/química , Dados de Sequência Molecular , Ratos , Especificidade por Substrato
10.
Artigo em Inglês | MEDLINE | ID: mdl-21904051

RESUMO

Glutaric acidemia type 1 is an inherited metabolic disorder which can cause macrocephaly, muscular rigidity, spastic paralysis and other progressive movement disorders in humans. The defects in glutaryl-CoA dehydrogenase (GCDH) associated with this disease are thought to increase holoenzyme instability and reduce cofactor binding. Here, the first structural analysis of a GCDH enzyme in the absence of the cofactor flavin adenine dinucleotide (FAD) is reported. The apo structure of GCDH from Burkholderia pseudomallei reveals a loss of secondary structure and increased disorder in the FAD-binding pocket relative to the ternary complex of the highly homologous human GCDH. After conducting a fragment-based screen, four small molecules were identified which bind to GCDH from B. pseudomallei. Complex structures were determined for these fragments, which cause backbone and side-chain perturbations to key active-site residues. Structural insights from this investigation highlight differences from apo GCDH and the utility of small-molecular fragments as chemical probes for capturing alternative conformational states of preformed protein crystals.


Assuntos
Burkholderia pseudomallei/enzimologia , Glutaril-CoA Desidrogenase/química , Apoenzimas/química , Domínio Catalítico , Cristalografia por Raios X , Humanos , Modelos Moleculares , Filogenia , Estrutura Quaternária de Proteína , Homologia Estrutural de Proteína
11.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 28(4): 374-8, 2011 Aug.
Artigo em Zh | MEDLINE | ID: mdl-21811973

RESUMO

OBJECTIVE: To investigate the mutations of glutaryl-CoA dehydrogenase (GCDH) gene in patients with glutaric aciduria type I(GA-1). METHODS: Genomic DNA was extracted from peripheral blood cells of the eight probands with GA-1 who were diagnosed by urine and blood analyses. By PCR and direct sequencing, all 11 exons and their flanking sequences of the GCDH gene were examined. Mutation search was also performed in some of their family members. RESULTS: Among the eight patients diagnosed by metabolic screening, seven patients belonged to classical infantile-onset. One patient, however, was adult-onset, who was admitted to the hospital because of suffering from ischemic cerebral stroke. The GCDH gene mutations were identified in all the eight probands with GA-1: five of them had compound heterozygous mutations, while the other three harbored only one heterozygous mutation. Totally, nine different mutations of the GCDH gene were identified in the eight probands, four of them were novel, i.e., c.148T>C, c.371G>A, 909delC and c.263G>A. CONCLUSION: GCDH gene mutations are identified in 8 patients with GA-1 in mainland China, including one adult patient with late onset. Four novel mutations of GCDH gene are found which expanded the mutational spectrum of the GCDH gene.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/enzimologia , Erros Inatos do Metabolismo dos Aminoácidos/genética , Encefalopatias Metabólicas/enzimologia , Encefalopatias Metabólicas/genética , Análise Mutacional de DNA , Glutaril-CoA Desidrogenase/genética , Adulto , Sequência de Aminoácidos , Animais , Sequência de Bases , Éxons/genética , Feminino , Glutaril-CoA Desidrogenase/química , Glutaril-CoA Desidrogenase/deficiência , Humanos , Lactente , Masculino , Dados de Sequência Molecular
12.
Biochemistry ; 49(25): 5350-7, 2010 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-20486657

RESUMO

Glutaryl-coenzyme A dehydrogenases (GDHs) involved in amino acid degradation were thought to catalyze both the dehydrogenation and decarboxylation of glutaryl-coenzyme A to crotonyl-coenzyme A and CO(2). Recently, a structurally related but nondecarboxylating, glutaconyl-coenzyme A-forming GDH was characterized in the obligately anaerobic bacteria Desulfococcus multivorans (GDH(Des)) which conserves the free energy of decarboxylation by a Na(+)-pumping glutaconyl-coenzyme A decarboxylase. To understand the distinct catalytic behavior of the two GDH types on an atomic basis, we determined the crystal structure of GDH(Des) with and without glutaconyl-coenzyme A bound at 2.05 and 2.1 A resolution, respectively. The decarboxylating and nondecarboxylating capabilities are provided by complex structural changes around the glutaconyl carboxylate group, the key factor being a Tyr --> Val exchange strictly conserved between the two GDH types. As a result, the interaction between the glutaconyl carboxylate and the guanidinium group of a conserved arginine is stronger in GDH(Des) (short and planar bidentate hydrogen bond) than in the decarboxylating human GDH (longer and monodentate hydrogen bond), which is corroborated by molecular dynamics studies. The identified structural changes prevent decarboxylation (i) by strengthening the C4-C5 bond of glutaconyl-coenzyme A, (ii) by reducing the leaving group potential of CO(2), and (iii) by increasing the distance between the C4 atom (negatively charged in the dienolate transition state) and the adjacent glutamic acid.


Assuntos
Ácidos Carboxílicos/metabolismo , Glutaril-CoA Desidrogenase/metabolismo , Bactérias Anaeróbias/enzimologia , Cristalografia por Raios X , Flavina-Adenina Dinucleotídeo/metabolismo , Glutaril-CoA Desidrogenase/química , Glutaril-CoA Desidrogenase/genética , Glutaril-CoA Desidrogenase/isolamento & purificação , Ligação de Hidrogênio , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Especificidade por Substrato
13.
J Am Chem Soc ; 132(1): 106-11, 2010 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-20000708

RESUMO

This paper describes a microfluidic approach to perform multiplexed nanoliter-scale experiments by combining a sample with multiple different reagents, each at multiple mixing ratios. This approach employs a user-loaded, equipment-free SlipChip. The mixing ratios, characterized by diluting a fluorescent dye, could be controlled by the volume of each of the combined wells. The SlipChip design was validated on an approximately 12 nL scale by screening the conditions for crystallization of glutaryl-CoA dehydrogenase from Burkholderia pseudomallei against 48 different reagents; each reagent was tested at 11 different mixing ratios, for a total of 528 crystallization trials. The total consumption of the protein sample was approximately 10 microL. Conditions for crystallization were successfully identified. The crystallization experiments were successfully scaled up in well plates using the conditions identified in the SlipChip. Crystals were characterized by X-ray diffraction and provided a protein structure in a different space group and at a higher resolution than the structure obtained by conventional methods. In this work, this user-loaded SlipChip has been shown to reliably handle fluids of diverse physicochemical properties, such as viscosities and surface tensions. Quantitative measurements of fluorescent intensities and high-resolution imaging were straighforward to perform in these glass SlipChips. Surface chemistry was controlled using fluorinated lubricating fluid, analogous to the fluorinated carrier fluid used in plug-based crystallization. Thus, we expect this approach to be valuable in a number of areas beyond protein crystallization, especially those areas where droplet-based microfluidic systems have demonstrated successes, including measurements of enzyme kinetics and blood coagulation, cell-based assays, and chemical reactions.


Assuntos
Técnicas Analíticas Microfluídicas/métodos , Nanotecnologia/métodos , Burkholderia pseudomallei/enzimologia , Cristalização , Glutaril-CoA Desidrogenase/análise , Glutaril-CoA Desidrogenase/química , Hyphomicrobiaceae/enzimologia , Técnicas Analíticas Microfluídicas/instrumentação , Complexo de Proteínas do Centro de Reação Fotossintética/química , Reprodutibilidade dos Testes
14.
Hum Mol Genet ; 17(24): 3854-63, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18775954

RESUMO

Glutaric aciduria type 1 (GA1) is an autosomal recessive neurometabolic disorder caused by mutations in the glutaryl-CoA dehydrogenase gene (GCDH), leading to an accumulation and high excretion of glutaric acid and 3-hydroxyglutaric acid. Considerable variation in severity of the clinical phenotype is observed with no correlation to the genotype. We report here for the first time on expression studies of four missense mutations c.412A > G (p.Arg138Gly), c.787A > G (p.Met263Val), c.1204C > T (p.Arg402Trp) and c.1240G > A (p.Glu414Lys) identified in GA1 patients in mammalian cells. Biochemical analyses revealed that all mutants were enzymatically inactive with the exception of p.Met263Val which showed 10% activity of the expressed wild-type enzyme. Western blot and pulse-chase analyses demonstrated that the amount of expressed p.Arg402Trp protein was significantly reduced compared with cells expressing wild-type protein which was due to rapid intramitochondrial degradation. Upon cross-linkage the formation of homotetrameric GCDH was strongly impaired in p.Met263Val and p.Arg402Trp mutants. In addition, GCDH appears to interact with distinct heterologous polypeptides to form novel 97, 130 and 200 kDa GCDH complexes. Molecular modeling of mutant GCDH suggests that Met263 at the surface of the GCDH protein might be part of the contact interface to interacting proteins. These results indicate that reduced intramitochondrial stability as well as the impaired formation of homo- and heteromeric GCDH complexes can underlie GA1.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Glutaratos/metabolismo , Glutaril-CoA Desidrogenase/química , Glutaril-CoA Desidrogenase/genética , Mutação de Sentido Incorreto/genética , Estrutura Quaternária de Proteína/genética , Erros Inatos do Metabolismo dos Aminoácidos/enzimologia , Substituição de Aminoácidos/genética , Animais , Catálise , Linhagem Celular , Cricetinae , Ativação Enzimática/genética , Estabilidade Enzimática/genética , Regulação da Expressão Gênica/genética , Genes Recessivos , Glutaril-CoA Desidrogenase/metabolismo , Humanos , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
15.
Biochim Biophys Acta Proteins Proteom ; 1868(1): 140269, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31491587

RESUMO

Glutaric Aciduria Type I (GA-I), is an autosomal recessive neurometabolic disease caused by mutations in the GCDH gene that encodes for glutaryl-CoA dehydrogenase (GCDH), a flavoprotein involved in the metabolism of tryptophan, lysine and hydroxylysine. Although over 200 disease mutations have been reported a clear correlation between genotype and phenotype has been difficult to establish. To contribute to a better molecular understanding of GA-I we undertook a detailed molecular study on two GCDH disease-related variants, GCDH-p.Arg227Pro and GCDH-p.Val400Met. Heterozygous patients harbouring these two mutations have increased residual enzymatic activity in relation to homozygous patients with only one of the mutations, suggesting a complementation effect between the two. Combining biochemical, biophysical and structural methods we here establish the effects of these mutations on protein folding, stability and catalytic activity. We show that both variants retain the overall protein fold, but with compromised enzymatic activities. Detailed enzyme kinetic studies reveal that GCDH-p.Arg227Pro has impaired function due to deficient substrate affinity as evidenced by its higher Km, and that the lower activity in GCDH-p.Val400Met results from weaker interactions with its physiological redox partner (electron transfer flavoprotein). Moreover, the GCDH-p.Val400Met variant has a significantly lower thermal stability (ΔTm ≈ 9 °C), and impaired binding of the FAD cofactor in relation to wild-type protein. On these grounds, we provide a rational for the possible interallelic complementation observed in heterozygous patients based on the fact that in GCDH, the low active p.Arg227Pro variant contributes to stabilize the tetramer while the structurally unstable p.Val400Met variant compensates for enzyme activity.


Assuntos
Glutaril-CoA Desidrogenase/genética , 2,6-Dicloroindofenol/química , Erros Inatos do Metabolismo dos Aminoácidos/genética , Encefalopatias Metabólicas/genética , Glutaril-CoA Desidrogenase/química , Glutaril-CoA Desidrogenase/deficiência , Heterozigoto , Humanos , Modelos Moleculares , Mutação , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética
16.
Environ Microbiol ; 10(2): 474-82, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18177371

RESUMO

In this work, the gcdH gene from the denitrifying beta-proteobacterium Azoarcus sp. CIB was shown to encode a glutaryl-CoA dehydrogenase, which is essential for the anaerobic catabolism of many aromatic compounds and some alicyclic and dicarboxylic acids. The primary structure of the GcdH protein is highly conserved in many organisms. The divergently transcribed gcdR gene, encoding a LysR-type transcriptional regulator, accounts for the glutaconate/glutarate-specific activation of the Pg promoter driving expression of gcdH. The Azoarcus sp. CIBdgcdH mutant strain harbouring a disrupted gcdH gene was used as host to identify heterologous gcdH genes, such as that from Pseudomonas putida KT2440. Moreover, the expression of gcdH from P. putida can be efficiently controlled by the GcdR activator in Azoarcus sp. CIB, demonstrating the existence of cross-talk between GcdR regulators and gcdH promoters from members of different phylogenetic subgroups of proteobacteria.


Assuntos
Azoarcus/enzimologia , Regulação Bacteriana da Expressão Gênica , Genes Reguladores , Glutaril-CoA Desidrogenase/genética , Transcrição Gênica , Anaerobiose , Azoarcus/classificação , Azoarcus/genética , Azoarcus/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Clonagem Molecular , Evolução Molecular , Glutaril-CoA Desidrogenase/química , Glutaril-CoA Desidrogenase/metabolismo , Hidrocarbonetos Aromáticos/metabolismo , Dados de Sequência Molecular , Filogenia , Regiões Promotoras Genéticas , Análise de Sequência de DNA
17.
J Med Genet ; 44(5): 334-40, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17475916

RESUMO

l-2-hydroxyglutaric aciduria (l-2-HGA) is a neurometabolic disorder that produces a variety of clinical neurological deficits, including psychomotor retardation, seizures and ataxia. The biochemical hallmark of l-2-HGA is the accumulation of l-2-hydroxyglutaric acid (l-2-HG) in cerebrospinal fluid, plasma and urine. Mutations within the gene L2HGDH (Entrez Gene ID 79944) on chromosome 14q22 encoding L-2-hydroxyglutaric acid dehydrogenase have recently been shown to cause l-2-HGA in humans. Using a candidate gene approach in an outbred pet dog population segregating l-2-HGA, the causal molecular defect was identified in the canine homologue of L2HGDH and characterised. DNA sequencing and pedigree analysis indicate a common founder effect in the canine model. The canine model shares many of the clinical and MRI features of the disease in humans and represents a valuable resource as a spontaneous model of l-2-HGA.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/veterinária , Doenças do Cão/genética , Glutaratos/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/enzimologia , Sequência de Aminoácidos , Animais , Pareamento de Bases/genética , Sequência de Bases , Encéfalo/diagnóstico por imagem , Análise Mutacional de DNA , Modelos Animais de Doenças , Doenças do Cão/enzimologia , Cães , Éxons/genética , Glutaratos/urina , Glutaril-CoA Desidrogenase/química , Glutaril-CoA Desidrogenase/genética , Heterozigoto , Homozigoto , Imageamento por Ressonância Magnética , Repetições de Microssatélites/genética , Dados de Sequência Molecular , Mutação/genética , Linhagem , Radiografia
18.
Biochemistry ; 45(51): 15853-61, 2006 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-17176108

RESUMO

Glutaryl-CoA dehydrogenase (GCD) is a homotetrameric enzyme containing one noncovalently bound FAD per monomer that oxidatively decarboxylates glutaryl-CoA to crotonyl-CoA and CO2. GCD belongs to the family of acyl-CoA dehydrogenases that are evolutionarily conserved in their sequence, structure, and function. However, there are differences in the kinetic mechanisms among the different acyl-CoA dehydrogenases. One of the unanswered aspects is that of the rate-determining step in the steady-state turnover of GCD. In the present investigation, the major rate-determining step is identified to be the release of crotonyl-CoA product because the chemical steps and reoxidation of reduced FAD are much faster than the turnover of the wild-type GCD. Other steps are only partially rate-determining. This conclusion is based on the transit times of the individual reactions occurring in the active site of GCD.


Assuntos
Glutaril-CoA Desidrogenase/química , Glutaril-CoA Desidrogenase/metabolismo , Acil Coenzima A/metabolismo , Sítios de Ligação , Catálise , Descarboxilação , Medição da Troca de Deutério , Transporte de Elétrons , Transferência de Energia , Flavina-Adenina Dinucleotídeo/metabolismo , Humanos , Cinética , Oxirredução , Prótons , Especificidade por Substrato
19.
Brain Dev ; 38(1): 54-60, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26071121

RESUMO

BACKGROUND: Glutaric aciduria type I is an autosomal recessive organic acid disorder. The primary defect is the deficiency of Glutaryl-CoA dehydrogenase (EC number 1.3.99.7) enzyme that is involved in the catabolic pathways of the amino acids l-lysine, l-hydroxylysine, and l-tryptophan. It is a treatable neuro-metabolic disorder. Early diagnosis and treatment helps in preventing brain damage. METHODS: The Glutaryl-CoA dehydrogenase gene (GCDH) gene was sequenced to identify disease causing mutations by direct sequencing of all the exons in twelve patients who were biochemically confirmed with GA I. RESULTS: We identified eleven mutations of which nine are homozygous mutations, one heterozygous and two synonymous mutations. Among the eleven mutations, four mutations p.Q162R, p.P286S, p.W225X in two families and p.V410M are novel. A milder clinical presentation is observed in those families who are either heterozygous or with a benign synonymous SNP. Multiple sequence alignment (MSA) of GCDH with its homologues revealed that the observed novel mutations are not tolerated by protein structure and function. CONCLUSIONS: The present study indicates genetic heterogeneity in GCDH gene mutations among South Indian population. Genetic analysis is useful in prenatal diagnosis and prevention. Mutation analysis is a useful tool in the absence of non-availability of enzyme assay in GA I.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Encefalopatias Metabólicas/genética , Glutaril-CoA Desidrogenase/deficiência , Glutaril-CoA Desidrogenase/genética , Mutação , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Povo Asiático/genética , Encefalopatias Metabólicas/diagnóstico , Análise Mutacional de DNA , Éxons , Glutaril-CoA Desidrogenase/química , Humanos , Índia , Modelos Moleculares , Fenótipo , Conformação Proteica
20.
Clin Chim Acta ; 453: 75-9, 2016 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-26656312

RESUMO

Glutaric aciduria type I (GA-I) is a rare autosomal recessive metabolic disorder caused by deficiency of glutaryl-CoA dehydrogenase (GCDH), leading to an abnormal metabolism of lysine, hydroxylysine and tryptophan. It results in accumulations of glutaric acid, 3-hydroxyglutaric acid and glutaconic acid. Clinical features include the sudden onset of encephalopathy, hypotonia and macrocephaly usually before age 18months. Here we report five cases of GA-I confirmed with mutation analysis. GCDH gene mutations were identified in all five probands with GA-I. Three of them had compound heterozygous mutations and two had homozygous mutations. Mutations of two alleles (c.334G>T and IVS11-11A>G) were novel and both of them were confirmed to be splice site mutations by reverse transcription PCR.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/genética , Encefalopatias Metabólicas/diagnóstico , Encefalopatias Metabólicas/genética , Glutaril-CoA Desidrogenase/deficiência , Erros Inatos do Metabolismo dos Aminoácidos/enzimologia , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Sequência de Bases , Encefalopatias Metabólicas/enzimologia , Encefalopatias Metabólicas/metabolismo , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Glutaratos/metabolismo , Glutaril-CoA Desidrogenase/química , Glutaril-CoA Desidrogenase/genética , Glutaril-CoA Desidrogenase/metabolismo , Heterozigoto , Humanos , Masculino , Modelos Moleculares , Mutação , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA