Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 249
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 792, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39169292

RESUMO

BACKGROUND: With the progress of industrialization and urbanization, cadmium (Cd) pollution in farmland is increasingly severe, greatly affecting human health. Sunflowers possess high resistance to Cd stress and great potential for phytoremediation of Cd-contaminated soil. Previous studies have shown that humic acid (HA) effectively mitigates plant damage induced by Cd; however, its alleviating effects on sunflower plants under Cd stress remain largely unknown. RESULTS: We employed four different concentrations of HA (50, 100, 200, and 300 mg L-1) via foliar application to examine their ability to alleviate Cd stress on sunflower plants' growth, chlorophyll synthesis, and biochemical defense system. The results revealed that Cd stress not only reduced plant height, stem diameter, fresh and dry weight, and chlorophyll content in sunflower plants but also altered their chlorophyll fluorescence characteristics compared to the control group. After Cd stress, the photosynthetic structure was damaged and the number of PSII reactive centers per unit changed. Application of 200 mg L-1 HA promotes sunflower growth and increases chlorophyll content. HA significantly enhances antioxidant enzyme activities (SOD, POD, CAT, and APX) and reduces ROS content (O2 -, H2O2 and -OH). Totally, Application of 200 mg L-1 HA had the best effect than other concentrations to alleviate the Cd-induced stress in sunflower plants. CONCLUSIONS: The foliar application of certain HA concentration exhibited the most effective alleviation of Cd-induced stress on sunflower plants. It can enhance the light energy utilization and antioxidant enzyme activities, while reduce ROS contents in sunflower plants. These findings provide a theoretical basis for using HA to mitigate Cd stress in sunflowers.


Assuntos
Cádmio , Clorofila , Helianthus , Substâncias Húmicas , Clorofila/metabolismo , Helianthus/efeitos dos fármacos , Helianthus/metabolismo , Helianthus/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Estresse Fisiológico , Biodegradação Ambiental , Poluentes do Solo , Fotossíntese/efeitos dos fármacos , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
BMC Plant Biol ; 24(1): 592, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38907232

RESUMO

Drought stress poses a significant threat to agricultural productivity, especially in areas susceptible to water scarcity. Sunflower (Helianthus annuus L.) is a widely cultivated oilseed crop with considerable potential globally. Jasmonic acid, a plant growth regulator, plays a crucial role in alleviating the adverse impacts of drought stress on the morphological, biochemical, and physiological characteristics of crops. Experimental detail includes sunflower varieties (Armani Gold, KQS-HSF-1, Parsun, and ESFH-3391), four drought stress levels (0, 25%, 50%, and 75% drought stress), and three levels (0, 40ppm, 80ppm) of jasmonic acid. The 0% drought stress and 0ppm jasmonic acid were considered as control treatments. The experimental design was a completely randomized design with three replicates. Drought stress significantly reduced the growth in all varieties. However, the exogenous application of jasmonic acid at concentrations of 40ppm and 80ppm enhanced growth parameters, shoot and root length (1.93%, 19%), shoot and root fresh weight (18.5%, 25%), chlorophyll content (36%), photosynthetic rate (22%), transpiration rate (40%), WUE (20%), MDA (6.5%), Phenolics (19%), hydrogen peroxide (7%) proline (28%) and glycine betaine (15-30%) under water-stressed conditions, which was closely linked to the increase in stomatal activity stimulated by jasmonic acid. Furthermore, JA 80 ppm was found to be the most appropriate dose to reduce the effect of water stress in all sunflower varieties. It was concluded that the foliar application of JA has the potential to enhance drought tolerance by improving the morphological, biochemical, and physiological of sunflower.


Assuntos
Ciclopentanos , Secas , Helianthus , Oxilipinas , Oxilipinas/farmacologia , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Helianthus/fisiologia , Helianthus/efeitos dos fármacos , Helianthus/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/farmacologia , Estresse Fisiológico , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Fotossíntese/efeitos dos fármacos , Clorofila/metabolismo
3.
BMC Plant Biol ; 24(1): 422, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38760671

RESUMO

BACKGROUND: Salinity is one major abiotic stress affecting photosynthesis, plant growth, and development, resulting in low-input crops. Although photosynthesis underlies the substantial productivity and biomass storage of crop yield, the response of the sunflower photosynthetic machinery to salinity imposition and how H2S mitigates the salinity-induced photosynthetic injury remains largely unclear. Seed priming with 0.5 mM NaHS, as a donor of H2S, was adopted to analyze this issue under NaCl stress. Primed and nonprime seeds were established in nonsaline soil irrigated with tape water for 14 d, and then the seedlings were exposed to 150 mM NaCl for 7 d under controlled growth conditions. RESULTS: Salinity stress significantly harmed plant growth, photosynthetic parameters, the structural integrity of chloroplasts, and mesophyll cells. H2S priming improved the growth parameters, relative water content, stomatal density and aperture, photosynthetic pigments, photochemical efficiency of PSII, photosynthetic performance, soluble sugar as well as soluble protein contents while reducing proline and ABA under salinity. H2S also boosted the transcriptional level of ribulose 1,5-bisphosphate carboxylase small subunit gene (HaRBCS). Further, the transmission electron microscope showed that under H2S priming and salinity stress, mesophyll cells maintained their cell membrane integrity and integrated chloroplasts with well-developed thylakoid membranes. CONCLUSION: The results underscore the importance of H2S priming in maintaining photochemical efficiency, Rubisco activity, and preserving the chloroplast structure which participates in salinity stress adaptation, and possibly sunflower productivity under salinity imposition. This underpins retaining and minimizing the injury to the photosynthetic machinery to be a crucial trait in response of sunflower to salinity stress.


Assuntos
Helianthus , Sulfeto de Hidrogênio , Osmorregulação , Fotossíntese , Estresse Salino , Plântula , Helianthus/fisiologia , Helianthus/efeitos dos fármacos , Helianthus/crescimento & desenvolvimento , Helianthus/metabolismo , Fotossíntese/efeitos dos fármacos , Plântula/fisiologia , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Sulfeto de Hidrogênio/metabolismo , Cloroplastos/metabolismo , Salinidade
4.
BMC Plant Biol ; 24(1): 815, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39210254

RESUMO

Enhanced phytoremediation offers a rapid and eco-friendly approach for cleaning agricultural soil contaminated with copper and cadmium which pose a direct threat to food scarcity and security. The current study aimed to compare the effectiveness of the two commonly used additives, IAA and EDTA, for the remediation of copper (Cu) and cadmium (Cd) contaminated soils using sunflower and maize. The plants were cultivated in pots under controlled conditions with four sets of treatments: control (0), Cu50/Cd50, Cu50/Cd50 + EDTA, and Cu50/Cd50 + IAA. The results showed that Cu50/Cd50 mg/kg drastically compromised the phytoremediation potential of both plants, as evident by reduced shoot and root length, and lower biomass. However, the augmentation of Cu50/Cd50 with EDTA or IAA improved the tested parameters. In sunflower, EDTA enhanced the accumulation of Cu and Cd by 58% and 21%, respectively, and improved plant biomass by 41%, compared to control treatment. However, IAA exhibited higher accumulation of Cu and Cd by 64% and 25%, respectively, and enhanced plant biomass by 43%. In case of maize, IAA was superior to EDTA which enhanced the accumulation of Cu and Cd by 87% and 32% respectively, and increased the plant biomass by 57%, compared to control treatment. Our findings demonstrate that foliar IAA is more effective than EDTA in enhancing the phytoremediation potential of sunflower and maize for Cu and Cd.


Assuntos
Biodegradação Ambiental , Cádmio , Cobre , Ácido Edético , Helianthus , Ácidos Indolacéticos , Poluentes do Solo , Zea mays , Cádmio/metabolismo , Ácido Edético/farmacologia , Cobre/metabolismo , Poluentes do Solo/metabolismo , Helianthus/metabolismo , Helianthus/efeitos dos fármacos , Zea mays/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/efeitos dos fármacos , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Biomassa , Solo/química
5.
Physiol Plant ; 176(3): e14324, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38705866

RESUMO

Broomrape (Orobanche cumana) negatively affects sunflower, causing severe yield losses, and thus, there is a need to control O. cumana infestation. Brassinosteroids (BRs) play key roles in plant growth and provide resilience to weed infection. This study aims to evaluate the mechanisms by which BRs ameliorate O. cumana infection in sunflower (Helianthus annuus). Seeds were pretreated with BRs (1, 10, and 100 nM) and O. cumana inoculation for 4 weeks under soil conditions. O. cumana infection significantly reduced plant growth traits, photosynthesis, endogenous BRs and regulated the plant defence (POX, GST), BRs signalling (BAK1, BSK1 to BSK4) and synthesis (BRI1, BR6OX2) genes. O. cumana also elevated the levels of malondialdehyde (MDA), hydroxyl radical (OH-), hydrogen peroxide (H2O2) and superoxide (O2 •-) in leaves/roots by 77/112, 63/103, 56/97 and 54/89%, as well as caused ultrastructural cellular damages in both leaves and roots. In response, plants activated a few enzymes, superoxide dismutase (SOD), peroxidase (POD) and reduced glutathione but were unable to stimulate the activity of ascorbate peroxidase (APX) and catalase (CAT) enzymes. The addition of BRs (especially at 10 nM) notably recovered the ultrastructural cellular damages, lowered the production of oxidative stress, activated the key enzymatic antioxidants and induced the phenolic and lignin contents. The downregulation in the particular genes by BRs is attributed to the increased resilience of sunflower via a susceptible reaction. In a nutshell, BRs notably enhanced the sunflower resistance to O. cumana infection by escalating the plant immunity responses, inducing systemic acquired resistance, reducing oxidative or cellular damages, and modulating the expression of BR synthesis or signalling genes.


Assuntos
Brassinosteroides , Helianthus , Orobanche , Sementes , Helianthus/efeitos dos fármacos , Helianthus/imunologia , Helianthus/fisiologia , Brassinosteroides/farmacologia , Brassinosteroides/metabolismo , Orobanche/fisiologia , Orobanche/efeitos dos fármacos , Sementes/efeitos dos fármacos , Sementes/imunologia , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/fisiologia , Doenças das Plantas/parasitologia , Doenças das Plantas/imunologia , Imunidade Vegetal/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Raízes de Plantas/imunologia , Raízes de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/imunologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Malondialdeído/metabolismo
6.
Ecotoxicol Environ Saf ; 283: 116805, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39096689

RESUMO

The accumulation of polyethylene microplastics (PE-MPs) in soil has raised considerable concerns; however, the effects of their persistence and mitigation on agroecosystems have not been explored. This study aimed to assess the detrimental effects of PE-MPs on a soil-plant system and evaluate their mitigation using a novel microbial consortium (MC). We incorporated low-density polyethylene (LDPE) and high-density polyethylene (HDPE) at two different concentrations, along with a control (0 %, 1 %, and 2 % w/w) into the sandy loam soil for a duration of 135 days. The samples were also treated with a novel MC and incubated for 135 days. The MC comprised three bacterial strains (Ralstonia pickettii (MW290933) strain SHAn2, Pseudomonas putida strain ShA, and Lysinibacillus xylanilyticus XDB9 (T) strain S7-10F), and a fungal strain (Aspergillus niger strain F1-16S). Sunflowers were subsequently cultivated, and physiological growth parameters were measured. The results showed that adding 2 % LDPE significantly decreased soil pH by 1.06 units compared to the control. Moreover, adding 2 % HDPE resulted in a more significant decrease in soil electrical conductivity (EC) relative to LDPE and the control. A dose-dependent increase in dissolved organic carbon (DOC) was observed, with the highest DOC found in 2 % LDPE. The addition of higher dosages of LDPE reduced soil bulk density (BD) more than HDPE. The addition of 2 % HDPE increased the water drop penetration time (WDPT) but decreased the mean weight diameter of soil aggregates (MWD) and water-stable aggregates (WSA) compared to LDPE. The results also revealed that higher levels of LDPE enhanced soil basal respiration (BR) and microbial carbon biomass (MBC). The interaction of MC and higher MP percentages considerably reduced soil pH, EC, BD, and WDPT but significantly increased soil DOC, MWD, WSA, BR, and MBC. Regarding plant growth, incorporating 2 % PE-MPs significantly reduced physiological responses of sunflower: chlorophyll content (Chl; -15.2 %), Fv/Fm ratio (-25.3 %), shoot dry weight (ShD; -31.3 %), root dry weight (RD; -40 %), leaf area (LA; -38.4 %), and stem diameter (StemD; -25 %) compared to the control; however, the addition of novel MC considerably reduced and ameliorated the harmful effects of 2 % PE-MPs on the investigated plant growth responses.


Assuntos
Consórcios Microbianos , Microplásticos , Polietileno , Microbiologia do Solo , Poluentes do Solo , Solo , Microplásticos/toxicidade , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Solo/química , Consórcios Microbianos/efeitos dos fármacos , Helianthus/efeitos dos fármacos , Concentração de Íons de Hidrogênio
7.
Ecotoxicol Environ Saf ; 280: 116555, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38870735

RESUMO

In the center of the Nile Delta in Egypt, the Kitchener drain as the primary drainage discharges about 1.9 billion m3 per year of water, which comprises agricultural drainage (75 %), domestic water (23 %), and industrial water (2 %), to the Mediterranean Sea. Cadmium (Cd) stands out as a significant contaminant in this drain; therefore, this study aimed to assess the integration of biochar (0, 5, and 10 ton ha-1) and three PGPRs (PGPR-1, PGPR-2, and PGPR-3) to alleviate the negative impacts of Cd on sunflowers (Helianthus annuus L.) in saline-alkali soil. The treatment of biochar (10 ton ha-1) and PGPR-3 enhanced the soil respiration, dehydrogenase, nitrogenase, and phosphatase activities by 137 %, 129 %, 326 %, and 127 %, while it declined soil electrical conductivity and available Cd content by 31.7 % and 61.3 %. Also, it decreased Cd content in root, shoot, and seed by 55.3 %, 50.7 %, and 92.5 %, and biological concentration and translocation factors by 55 % and 5 %. It also declined the proline, lipid peroxidation, H2O2, and electrolyte leakage contents by 48 %, 94 %, 80 %, and 76 %, whereas increased the catalase, peroxidase, superoxide dismutase, and polyphenol oxidase activities by 80 %, 79 %, 61 %, and 116 %. Same treatment increased seed and oil yields increased by 76.1 % and 76.2 %. The unique aspect of this research is its investigation into the utilization of biochar in saline-alkali soil conditions, coupled with the combined application of biochar and PGPR to mitigate the adverse effects of Cd contamination on sunflower cultivation in saline-alkali soil.


Assuntos
Cádmio , Carvão Vegetal , Helianthus , Poluentes do Solo , Solo , Carvão Vegetal/química , Cádmio/análise , Cádmio/toxicidade , Helianthus/efeitos dos fármacos , Poluentes do Solo/análise , Solo/química , Egito , Álcalis/química , Biodegradação Ambiental , Raízes de Plantas , Microbiologia do Solo
8.
Plant Dis ; 108(7): 2017-2026, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38301222

RESUMO

Phoma black stem (PBS), caused by Phoma macdonaldii Boerema (teleomorph Leptosphaeria lindquistii Frezzi), is the most common stem disease of sunflower (Helianthus annuus L.) in the northern Great Plains region of the United States. However, the impact of PBS on sunflower yield in the United States is unclear, and a near complete absence of information on the impact of fungicides on disease management exists. The objectives of this study were to determine the impact of PBS on sunflower yield, the efficacy of available fungicides, the optimal fungicide application timing, and the economic viability of fungicides as a management tool. Fungicide timing efficacy was evaluated by applying single and/or sequential applications of pyraclostrobin fungicide at three sunflower growth stages in 10 field trials between 2017 and 2019. Efficacy of 10 fungicides from the Fungicide Resistance Action Committee (FRAC) groups 3, 7, and 11 were evaluated in four field trials between 2018 and 2019. The impact of treatments on PBS were evaluated by determination of incidence, severity, maximum lesion height, disease severity index (DSI), and harvested yield. Nine of the 10 fungicides evaluated and all fungicide timings that included an early bud application resulted in disease reductions when compared with the nontreated controls. The DSI was negatively correlated to sunflower yield in high-yield environments (P = 0.0004; R2 = 0.3425) but not in low- or moderate-yield environments. Although FRAC 7 fungicides were generally most efficacious, the sufficient efficacy and lower cost of FRAC 11 fungicides make them more economically viable in high-yielding environments at current market conditions.


Assuntos
Ascomicetos , Fungicidas Industriais , Helianthus , Doenças das Plantas , Fungicidas Industriais/farmacologia , Helianthus/efeitos dos fármacos , Helianthus/microbiologia , Ascomicetos/efeitos dos fármacos , Ascomicetos/fisiologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Estados Unidos , Caules de Planta/microbiologia , Estrobilurinas/farmacologia , Fatores de Tempo
9.
Ecotoxicol Environ Saf ; 210: 111906, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33429318

RESUMO

In the present work, the effect of seed pre-soaking with gallic acid (GA; 3,4,5-triphydroxyl-benzoic acid) in conferring subsequent tolerance to Cd stress in sunflower (Helianthus annuus) seedlings was investigated. Exposing sunflower seedlings to increasing Cd concentrations (5, 10 and 20 µM) caused a gradual decrease in root and shoot biomass and increased the metal accumulation in both organs. Seed pretreatment with 75 µM GA significantly restricted Cd uptake, markedly alleviated Cd-induced plant growth inhibition, and mitigated the oxidative damages caused by this metal, as compared to plants directly exposed to Cd. GA pre-soaking prior to Cd stress also enhanced catalase, ascorbate peroxidase and glutathione reductase activities, while inhibiting that of superoxide dismutase. This was associated with increased levels of total thiols and glutathione along with a decreased level of oxidized glutathione in leaves. Moreover, GA pre-soaking led to changes in leaf fatty acid composition of seedlings challenged with Cd, as evidenced by the higher total lipid content and lipid unsaturation degree. As a whole, this study provides strong arguments highlighting the potential role of GA as a growth promoter for sunflower seedlings submitted to Cd stress, notably by boosting the antioxidant defense system and improving leaf membrane stability.


Assuntos
Antioxidantes/farmacologia , Cádmio/toxicidade , Ácido Gálico/farmacologia , Helianthus/efeitos dos fármacos , Ascorbato Peroxidases/metabolismo , Catalase/metabolismo , Tolerância a Medicamentos , Glutationa/metabolismo , Helianthus/crescimento & desenvolvimento , Helianthus/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Superóxido Dismutase/metabolismo
10.
J Environ Sci Health B ; 56(2): 132-141, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33296229

RESUMO

Large volumes of produced water are generated as a byproduct in activities of oil and gas exploitation, which can be reused in agriculture after a treatment process. Activated sludge treatment has been successfully used to remove oil from wastewater, but systematic studies on the toxicity of this effluent using this treatment are scarce in the literature. In this study, it was investigated the performance of an activated sludge system in the treatment of a synthetic produced water under different initial conditions in terms of salinity and oil and grease concentration. Furthermore, it was evaluated this effluent phytotoxicity in the germination, and seedling and plant growths of sunflower and corn seeds using untreated and treated synthetic produced water. Results revealed the activated sludge effectiveness in oil and grease and salinity removal from produced water, viz. high removal efficiency of 99.01 ± 0.28 and 91.07 ± 0.39%., respectively. Untreated produced water showed considerable toxic effects on the germination (74.67 ± 2.31% and 82.67 ± 2.31 for sunflower and corn seeds, respectively) and growth stages of sunflower and corn seed plants. The germination percentage was approximately 100% for both types of seed. The seedling and plant growth of the two seeds irrigated with treated produced water had similar performance when used tap water. These results highlighted the potential reuse as an unconventional water resource for plant irrigation of the synthetic produced water treated by an activated sludge process, which technology has showed high removal performance of salinity and oil.


Assuntos
Irrigação Agrícola , Germinação , Helianthus/crescimento & desenvolvimento , Reciclagem , Esgotos/química , Eliminação de Resíduos Líquidos/instrumentação , Zea mays/crescimento & desenvolvimento , Germinação/efeitos dos fármacos , Helianthus/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Águas Residuárias/análise , Zea mays/efeitos dos fármacos
11.
Ecotoxicol Environ Saf ; 190: 110017, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31846862

RESUMO

The seed yield and healthy oil in sunflower (Helianthus annuus L.), as an important industrial crop, decrease under stress. There is not much investigation, to our knowledge, on the use of potassium fertilization, a regulator of plant water potential, affecting the biochemical properties and seed components of sunflower under drought stress. Accordingly, such parameters were investigated in a split-split plot field experiment, conducted in two different field sites (Natanz (Nt) and Eghlid (Eg), Iran), using potassium fertilization (subplots, 0, 150 and 300 kg/ha) and six drought levels (main plots) in four replicates. Although stress significantly affected sunflower biochemical properties and seed components in the two fields, the effects of stress were more pronounced in the Eg site (significant interaction of field and drought). The plant alleviated the stress by increasing the proline, oleic and linoleic acid concentrations, however, potassium fertilization also increased plant tolerance further under stress by enhancing such components compared with control. Interestingly, the Eg site was more responsive to the potassium fertilization (significant interaction of field and fertilization), as the fertilizer resulted in a higher rate of plant biochemical properties and seed components. The use of potassium fertilization at 300 kg/ha (K3) was the most effective treatment in the alleviation of stress. Interestingly, under drought stress, potassium contributed to the enhanced quantity and quality of sunflower by increasing seed components, and enhancing the biochemical properties of the plant, which can also improve crop physiological mechanisms. The results can further increase our understanding related to the effects of potassium fertilization on the yield and physiology of sunflower under drought stress. Such results are of economic, environmental and health significance.


Assuntos
Helianthus/química , Potássio/farmacologia , Secas , Fertilizantes , Helianthus/efeitos dos fármacos , Helianthus/embriologia , Ácido Linoleico/análise , Ácido Oleico/análise , Prolina/análise , Sementes/química , Sementes/efeitos dos fármacos , Estresse Fisiológico
12.
Ecotoxicol Environ Saf ; 191: 110242, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32004945

RESUMO

A novel green approach was utilized to fabricate sulfur nanoparticles (SNPs) with the aid of Ocimum basilicum leaves extract. The effective formation of the synthesized SNPs was examined and approved using UV-visible spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier transform infrared (FT-IR) spectroscopy. The average particle size was 23 nm with spherical shape and crystalline in nature. In the pot experiment, the synthesized SNPs were applied with different concentrations (12.5, 25, 50, 100 and 200 µM) as pre-soaking to Helianthus annuus seeds and irrigated with 100 mM MnSO4. As a result of manganese (Mn) exposure, the harvested 14-day sunflower seedlings showed a significant decline in the growth parameters (shoot length, leaf area and the relative water content of both shoot and root), photosynthetic pigments, mineral content (N, P, K, Ca, and Mg), and protein content compared to the control. The root length, electrolyte leakage, Na and Mn levels, metabolites content (amino acids, protein, glycine betaine, proline, and cysteine) were greatly raised as affected by Mn stress. Mn toxicity reduction using SNPs was demonstrated, as the medium doses enhanced seedlings growth, photosynthetic pigments, and mineral nutrients. Application of SNPs decreased Mn uptake and enhanced S metabolism through increasing cysteine level. Likewise, SNPs elevated seedlings water content and eliminated physiological drought via increasing osmolytes such as amino acids and proline. It can be concluded that green-synthesized SNPs had the potential to limit the deleterious effects of Mn stress.


Assuntos
Helianthus , Manganês/toxicidade , Nanopartículas/química , Ocimum basilicum/química , Enxofre/farmacologia , Química Verde , Helianthus/efeitos dos fármacos , Helianthus/crescimento & desenvolvimento , Tamanho da Partícula , Fotossíntese/efeitos dos fármacos , Extratos Vegetais/química , Folhas de Planta/química , Prolina/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Enxofre/química , Água/metabolismo
13.
Ecotoxicol Environ Saf ; 187: 109841, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31677566

RESUMO

Drought stress is one of the extreme effects of climate change causing large losses in production of crop plants. The risk of recurrent droughts has increased in next decades hence, the development of shot-gun, inexpensive and effective approaches is essential to ensure high yield of crops in drought-prone areas of the world. Exogenous application of nutrients such as potassium (K) has been reported to increase abiotic resistance and improve yield in crops however, knowledge regarding interaction of K with osmoprotectants like chitosan (Ct) still remains elusive. Here, we report the effects of individual or combined K (using K2SO4 as a source) or Ct application on growth, physiological processes and antioxidative defense system of sunflower under drought stress. At first, various doses of K (0, 5, 10, 15, 20, 25 g/l) and Ct (0, 0.1, 0.2, 0.3, 0.4, 0.5 g/l) were foliar applied to evaluate their role in improving plant biomass, water status and total chlorophyll in drought-induced seedlings of sunflower. The optimized K (11.48 g/l) and Ct (0.28 g/l) doses were further tested in second experiment to understand the underlying mechanisms of drought tolerance. Foliar K + Ct spray markedly enhanced the leaf gas exchange characteristics, increased proline, soluble proteins, and free amino acids, upregulated antioxidant defense system and helped to maintain plant water status in sunflower exposed to drought stress. The impact of drought stress was more pronounced at vegetative than reproductive stage and positive effects of combined K and Ct application were related to improved physiological and metabolic processes to improve yield and quality of sunflower under drought stress.


Assuntos
Antioxidantes/metabolismo , Quitosana/farmacologia , Secas , Helianthus/efeitos dos fármacos , Potássio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Biomassa , Clorofila/metabolismo , Mudança Climática , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Helianthus/crescimento & desenvolvimento , Helianthus/metabolismo , Água/metabolismo
14.
Ecotoxicol Environ Saf ; 203: 110964, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32678754

RESUMO

Soil salinization is the most common abiotic stress limiting agricultural productivity worldwide. Recent research has suggested that the application of silicon (Si) has beneficial effects against salt stress in sorghum (Sorghum bicolor L. Moench) and sunflower (Helianthus annuus L.) by regulating the antioxidant system, mineral nutrients, and other important mechanisms. However, whether these effects can be achieved through foliar application of Si, or whether Si application affects Si-accumulating (e.g., sorghum), and intermediate-Si-accumulating (e.g., sunflower) plant species differently, remains unclear. This study investigated different methods of Si application in attenuating the detrimental effects of salt stress, based on the biological responses of two distinct species of Si accumulators, under greenhouse conditions. Two pot experiments were designed as a factorial (2 × 4), randomized complete blocks design (RCBD) with control and salt-stress groups (0 and 100 mmol.L-1 NaCl), and four Si-treatment groups: control (no Si), foliar application (28.6 mmol.L-1), root application (2 mmol.L-1), and combined foliar and root applications. Our results showed that the harmful effects of salt stress were attenuated by Si treatments in both plant species, which decreased Na+ uptake and lipid peroxidation, and increased Si and K+ uptake, relative leaf water content, antioxidant enzyme activities, leaf area, and shoot dry matter. These results were more prominent when Si was applied via nutrient solution in the sorghum plants, and the combined foliar and root applications of Si in sunflower plants. In addition, foliar application of Si alone is an efficient alternative in attenuating the effects of salinity in both plant species when Si is not available in the growth medium. These results suggest that the Si application method plays an important role in Na+ detoxification by modifying the antioxidative defense mechanism, which could actively mediate some important physiological and biochemical processes and helps to increase the shoot dry matter production in sorghum and sunflower plants under salt stress.


Assuntos
Antioxidantes/metabolismo , Helianthus/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Salino , Silício/farmacologia , Sorghum/efeitos dos fármacos , Grão Comestível/efeitos dos fármacos , Grão Comestível/metabolismo , Helianthus/metabolismo , Componentes Aéreos da Planta/efeitos dos fármacos , Componentes Aéreos da Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Distribuição Aleatória , Salinidade , Solo/química , Sorghum/metabolismo
15.
Int J Phytoremediation ; 21(3): 191-199, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30663886

RESUMO

The effects of Ethylenediamine disuccinic acid (EDDS) (0 and 5 mmol·kg-1) as a synthetic chemical amendment, vermicompost (0 and 5%w/w) as an organic amendment and their combined application were evaluated for the phytoextraction by sunflower (Helianthus annuus L.) of cadmium (Cd) and lead (Pb) at three artificial contamination levels in soils (0, 50, and 100 mg·kg-1 for Cd and 0, 100, and 200 mg·kg-1 for Pb). The results showed that the application of EDDS was the most effective method to increase Pb and Cd concentrations in both parts of the plant. The results also showed that the application of EDDS increased 9.27% shoot Pb content at 200 mg·kg-1 but decreased 15.95% shoot Cd content at 100 mg·kg-1 contamination level with respect to the respective controls. The bioavailable concentrations of Cd at 100 mg·kg-1 and Pb at 200 mg·kg-1 contamination level in the soil at the end of experiment increased 25% and 26%, respectively after the application of EDDS but vermicompost decreased 43.28% the bioavailable Pb concentration relative to their controls. Vermicompost increased the remediation factor index of Cd, thus making it the best treatment for the phytoextraction of Cd. The combined application of EDDS and vermicompost was the best amendment for Pb phytoextraction.


Assuntos
Helianthus/efeitos dos fármacos , Poluentes do Solo/análise , Biodegradação Ambiental , Cádmio , Etilenodiaminas/química , Chumbo , Succinatos
16.
Arch Biochem Biophys ; 654: 27-39, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30006136

RESUMO

We investigated if wheat (Wh) and sunflower (Sf) plants watering with 1 mM CdCl2 or CuCl2 for 5-15 d during germination and seedling altered membrane fluidity (MF) of their leaves and roots, and if plant pre-treatment with the polyamines (PAs) putrescine (Put), spermidine (Spd) or spermine (Spm) prevented those alterations. Cd impaired Wh and Sf growth, while Cu only affected Sf growth. Cu and Cd increased MF of leaves of both plant species, while Cd decreased MF of Sf roots. Plant treatment for 15 d with 0.1 mM Put, Spd or Spm did not affect plant growth and had opposed effects on the MF of both plants. Finally, Wh and Sf were pre-treated with PAs for either 5 or 10 days followed by metal treatment until day 15. While Put did not affect membrane MF, Spd and Spm decreased it between 5 and 10 d of plant treatment. Together, experimental results demonstrate that during plant development (a) Cd and Cu have noxious effects on plants membrane biophysical properties that could be partially responsible of their toxicity, and (b) this deleterious effect could be only partially prevented by plant pretreatment with the PAs.


Assuntos
Cádmio/toxicidade , Cobre/toxicidade , Helianthus/efeitos dos fármacos , Fluidez de Membrana/efeitos dos fármacos , Poliaminas/farmacologia , Plântula/efeitos dos fármacos , Triticum/efeitos dos fármacos , Fenômenos Biofísicos , Helianthus/crescimento & desenvolvimento , Helianthus/metabolismo , Raízes de Plantas/metabolismo , Plântula/metabolismo , Fatores de Tempo , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
17.
Physiol Plant ; 162(1): 49-72, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28902403

RESUMO

Nitric oxide (NO) and various reactive nitrogen species produced in cells in normal growth conditions, and their enhanced production under stress conditions are responsible for a variety of biochemical aberrations. The present findings demonstrate that sunflower seedling roots exhibit high sensitivity to salt stress in terms of nitrite accumulation. A significant reduction in S-nitrosoglutathione reductase (GSNOR) activity is evident in response to salt stress. Restoration of GSNOR activity with dithioerythritol shows that the enzyme is reversibly inhibited under conditions of 120 mM NaCl. Salt stress-mediated S-nitrosylation of cytosolic proteins was analyzed in roots and cotyledons using biotin-switch assay. LC-MS/MS analysis revealed opposite patterns of S-nitrosylation in seedling cotyledons and roots. Salt stress enhances S-nitrosylation of proteins in cotyledons, whereas roots exhibit denitrosylation of proteins. Highest number of proteins having undergone S-nitrosylation belonged to the category of carbohydrate metabolism followed by other metabolic proteins. Of the total 61 proteins observed to be regulated by S-nitrosylation, 17 are unique to cotyledons, 4 are unique to roots whereas 40 are common to both. Eighteen S-nitrosylated proteins are being reported for the first time in plant systems, including pectinesterase, phospholipase d-alpha and calmodulin. Further physiological analysis of glyceraldehyde-3-phosphate dehydrogenase and monodehydroascorbate reductase showed that salt stress leads to a reversible inhibition of both these enzymes in cotyledons. However, seedling roots exhibit enhanced enzyme activity under salinity stress. These observations implicate the role of S-nitrosylation and denitrosylation in NO signaling thereby regulating various enzyme activities under salinity stress in sunflower seedlings.


Assuntos
Helianthus/fisiologia , Salinidade , Plântula/fisiologia , Estresse Fisiológico , Aldeído Oxirredutases/metabolismo , Sequência de Aminoácidos , Cromatografia Líquida , Cotilédone/efeitos dos fármacos , Cotilédone/fisiologia , Citosol/metabolismo , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Helianthus/efeitos dos fármacos , NADH NADPH Oxirredutases , Nitritos/metabolismo , Nitrosação , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/fisiologia , Proteômica , Plântula/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Compostos de Sulfidrila/metabolismo , Espectrometria de Massas em Tandem
18.
Ecotoxicol Environ Saf ; 147: 206-216, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28843530

RESUMO

Root induced changes are deemed to have an important role in the success of remediation techniques in contaminated soils. Here, the effects of two nano-particles [SiO2 and zeolite] with an application rate of 200mgkg-1, and two bacteria [Bacillus safensis FO-036b(T) and Pseudomonas fluorescens p.f.169] in the rhizosphere of sunflower on Zn and Pb dynamics were studied in greenhouse conditions. The treatments reduced the exchangeable Zn (from 13.68% to 30.82%) and Pb (from 10.34% to 25.92%) in the rhizosphere compared to the control. The EC and microbial respiration/population of the rhizosphere and bulk soil had an opposite trend with the exchangeable fraction of Zn and Pb, but dissolved organic carbon followed a similar trend with the more bioavailable fractions. As a result, the accumulation of Pb and Zn in the plant tissues was significantly (p < 0.05) reduced by the application of amendments, which might be due to the shift of the metals to immobile forms induced by the nature of the treatments and changes in the rhizosphere process. The empirical conditions of this research produced the intensification of the rhizosphere process because the findings highlight those changes in the rhizosphere EC, pH and dissolved organic carbon can affect the efficiency of zeolite/SiO2 NPs and bacteria to immobilize Pb and Zn in the soil, depending on the chemical character of the metals and the treatments. Generally, the affinity of the biotic treatment for Pb was more than the abiotic and conversely, the abiotic treatment showed a higher ability to immobilize Zn than the biotic treatment.


Assuntos
Helianthus/efeitos dos fármacos , Chumbo/análise , Microbiologia do Solo , Poluentes do Solo/análise , Solo/química , Zinco/análise , Bacillus/crescimento & desenvolvimento , Biodegradação Ambiental , Helianthus/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Pseudomonas fluorescens/crescimento & desenvolvimento , Rizosfera , Dióxido de Silício/química , Solo/normas , Microbiologia do Solo/normas , Zeolitas/química
19.
Ecotoxicol Environ Saf ; 147: 972-981, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29976009

RESUMO

The aim of this study is to determine in detail the genotoxic effects of Olive Oil Wastewater (OOWW) on sunflower. For this reason, different concentrations of OOWW (1/1,1/10,1/100) were applied as irrigation water to sunflowers at different times (3-day, 5-day, 10-day). In the plants taken during these times, RAPD-based genomic template stability (GTS) assays and gene expression (transcriptomic) levels of different free radical scavenging enzyme genes (SOD, CAT, SOD2, GST, GPX, APX), protein repair/chaperoning genes (HSP26, HSP70, HSP83), N metabolism gene (GS) and apoptotic genes (BAX, BCL2, BCLXL, CYT-C, XIAP) were compared to the those of the control (OOWW-free) group. As a result; The GTS rates seemed to be fairly lower than the control and therefore the OOWW was likely to cause significant damage to the DNA's nucleotide and genomic structure, and the GTS value increased inversely proportional when the OOWW concentration was reduced from 1/1 to 1/10, and after a 10-day application, it seemed to be partly healing. In transcriptomic analysis; all OOWW experiments caused a free radical threat, and especially in 5-day OOWW applications, this raised significantly almost all expressions of antioxidants, protein repair, N metabolism, and apoptotic genes. So, the damages of 5-day OOWW treatments were found to be relatively more than those of 3-day treatments. Regarding 10-day transcriptomic data; a partial repair was found. Additionally, it was determined that the values of B, F, Al, Mn, Ni, Cr, As, Se, Cd, Pb and total polyphenols were high in OOWW. Our findings were also supported by plant images and various heavy metals' and OOWW polyphenols' toxicity results. Our results pointed to key findings in OOWW genotoxicology.


Assuntos
Genoma de Planta , Helianthus/efeitos dos fármacos , Azeite de Oliva , Águas Residuárias/toxicidade , Irrigação Agrícola/métodos , Antioxidantes/metabolismo , Perfilação da Expressão Gênica , Instabilidade Genômica , Helianthus/genética , Metais Pesados/análise , Testes de Mutagenicidade , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polifenóis/genética , Polifenóis/metabolismo , Técnica de Amplificação ao Acaso de DNA Polimórfico , Águas Residuárias/química
20.
Ecotoxicol Environ Saf ; 151: 255-265, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-29353175

RESUMO

Soil contamination with heavy metals is threatening the food security around the globe. Chromium (Cr) contamination results in poor quality and reduction in yield of crops. The present research was performed to figure out the Cr toxicity in sunflower and the ameliorative role of 5-aminolevulinic acid (ALA) as a plant growth regulator. The sunflower (FH-614) was grown under increasing concentration of Cr (0, 5, 10 and 20mgkg-1) alone and/or in combination with 5-ALA (0, 10 and 20mgL-1). Results showed that Cr suppressed the overall growth, biomass, gas exchange attributes and chlorophyll content of sunflower plants. Moreover, lower levels of Cr (5 and 10mgkg-1) increased the production of reactive oxygen species (ROS) and electrolyte leakage (EL) along with the activities of antioxidant enzymes i.e., superoxide dismutase (SOD), guaiacole peroxidase (POD), ascorbate (APX), catalase (CAT). But at higher concentration of Cr (20mgkg-1), the activities of these enzymes presented a declining trend. However, the addition of 5-ALA significantly alleviated the Cr-induced toxicity in sunflower plant and enhanced the plant growth and biomass parameters along with increased chlorophyll content, gas exchange attributes, soluble proteins and soil plant analysis development (SPAD) values by scavenging the ROS and lowering down the EL. The 5-ALA also enhanced the activities of antioxidant enzymes at all levels of Cr. The increase in Cr concentration in all plant parts such as leaf, root and stem was directly proportional to the Cr concentration in soil. The application of 5-ALA further enhanced the uptake of Cr and its concentration in the plants. To understand this variation in response of plants to 5-ALA, detailed studies are required on plant biochemistry and genetic modifications.


Assuntos
Ácido Aminolevulínico/farmacologia , Cromo/toxicidade , Helianthus/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Poluentes do Solo/toxicidade , Catalase/metabolismo , Clorofila/análise , Cromo/análise , Relação Dose-Resposta a Droga , Helianthus/efeitos dos fármacos , Peroxidase/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Poluentes do Solo/análise , Estresse Fisiológico , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA