Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell Microbiol ; 22(12): e13253, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32827218

RESUMO

Natural resistance-associated macrophage protein 1 (Nramp1) was originally discovered as a genetic determinant of resistance against multiple intracellular pathogens, including Leishmania. It encodes a transmembrane protein of the phago-endosomal compartments, where it functions as an iron transporter. But the mechanism by which Nramp1 controls host-pathogen dynamics and determines final outcome of an infection is yet to be fully deciphered. Whether the expression of Nramp1 is altered in response to a pathogen attack is also unknown. To address these, Nramp1 status was examined in Leishmania major-infected murine macrophages. We observed that at 12 hrs post infection, there was drastic lowering of Nramp1 level accompanied by increased phagolysosomal iron content and enhanced intracellular parasite growth. Leishmania infection-induced Nramp1 downregulation was caused by ubiquitin-proteasome degradation pathway, which in turn was found to be mediated by the iron-regulatory peptide hormone hepcidin. Blocking of Nramp1 degradation with proteasome inhibitor or transcriptional agonist of hepcidin resulted in depletion of phagolysosomal iron pool that led to significant reduction of intracellular parasite burden. Interestingly, Nramp1 level was restored to normalcy after 30 hrs of infection with a concomitant drop in phagolysosomal iron, which is suggestive of a host counteractive response to deprive the pathogen of this essential micronutrient. Taken together, our study implicates Nramp1 as a central player in the host-pathogen battle for phagolysosomal iron. We also report Nramp1 as a novel target for hepcidin, and this 'hepcidin-Nramp1' axis may have a broader role in regulating macrophage iron homeostasis.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Hepcidinas/metabolismo , Ferro/metabolismo , Leishmania major/patogenicidade , Leishmaniose/parasitologia , Fagossomos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Proteínas de Transporte de Cátions/genética , Regulação para Baixo , Hepcidinas/genética , Hepcidinas/imunologia , Homeostase , Interações Hospedeiro-Patógeno , Imunidade Inata , Ferro/análise , Leishmaniose/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Fagossomos/química , Fagossomos/imunologia , Fagossomos/parasitologia , Células RAW 264.7 , Transdução de Sinais
2.
Biosci Biotechnol Biochem ; 85(2): 340-350, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33604635

RESUMO

Hepcidin regulates the quantity of ferroportin (FPN) on cellular membrane. In our cell assay expressing ferroportin labeled with green fluorescence, FPN was internalized and degraded only after treatment with hepcidin-25, not hepcidin-22 or hepcidin-20, leading to accumulation of cellular iron. Thus we generated murine monoclonal antibodies (mAbs) against hepcidin-25, and then characterized and validated their functions. Among them, several mAbs showed a neutralizing activity that may prevent ferroportin internalization induced by hepcidin-25. To measure hepcidin level in various fluids, mAbs specific for human and rat hepcidin-25 were selected. As for rat, a sandwich ELISA developed using clone rHN1 as capture antibody and biotinylated clone mHW1 as a detection reagent had high sensitivity, allowing for the detection of 1-100 ng/mL of hepcidin-25. Rat hepcidin-25 level in plasma was measured at an average concentration of 63.0 ng/mL in healthy condition, and at 218.2 ng/mL after stimulation of lipopolysaccharide.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Hepcidinas/imunologia , Animais , Linhagem Celular , Hepcidinas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Proteólise , Ratos
3.
Blood ; 130(3): 245-257, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28465342

RESUMO

The iron-regulatory hormone hepcidin is induced early in infection, causing iron sequestration in macrophages and decreased plasma iron; this is proposed to limit the replication of extracellular microbes, but could also promote infection with macrophage-tropic pathogens. The mechanisms by which hepcidin and hypoferremia modulate host defense, and the spectrum of microbes affected, are poorly understood. Using mouse models, we show that hepcidin was selectively protective against siderophilic extracellular pathogens (Yersinia enterocolitica O9) by controlling non-transferrin-bound iron (NTBI) rather than iron-transferrin concentration. NTBI promoted the rapid growth of siderophilic but not nonsiderophilic bacteria in mice with either genetic or iatrogenic iron overload and in human plasma. Hepcidin or iron loading did not affect other key components of innate immunity, did not indiscriminately promote intracellular infections (Mycobacterium tuberculosis), and had no effect on extracellular nonsiderophilic Y enterocolitica O8 or Staphylococcus aureus Hepcidin analogs may be useful for treatment of siderophilic infections.


Assuntos
Infecções Relacionadas a Cateter/imunologia , Hemocromatose/imunologia , Hepcidinas/imunologia , Sobrecarga de Ferro/imunologia , Ferro/metabolismo , Infecções Estafilocócicas/imunologia , Animais , Ligação Competitiva , Infecções Relacionadas a Cateter/metabolismo , Infecções Relacionadas a Cateter/microbiologia , Infecções Relacionadas a Cateter/mortalidade , Modelos Animais de Doenças , Resistência à Doença , Expressão Gênica , Hemocromatose/metabolismo , Hemocromatose/microbiologia , Hemocromatose/mortalidade , Hepcidinas/agonistas , Hepcidinas/deficiência , Hepcidinas/genética , Humanos , Ferro/imunologia , Sobrecarga de Ferro/metabolismo , Sobrecarga de Ferro/microbiologia , Sobrecarga de Ferro/mortalidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/metabolismo , Oligopeptídeos/farmacologia , Ligação Proteica , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/mortalidade , Staphylococcus aureus , Análise de Sobrevida , Transferrina/genética , Transferrina/metabolismo , Yersinia enterocolitica/efeitos dos fármacos , Yersinia enterocolitica/crescimento & desenvolvimento , Yersinia enterocolitica/metabolismo
4.
Cytokine ; 122: 154076, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-28648331

RESUMO

IL-35 is a new anti-inflammatory cytokine identified in 2007, which inhibits inflammation and immune responses by inducing regulatory T cells and regulatory B cells and suppressing effector T cells and macrophages. The unique initiator and effector anti-inflammatory properties of IL-35 bring tremendous interest in investigating its role during cardiovascular disease (CVD) development, in which inflammatory processes are firmly established as central to its development and complications. In this review, we update recent understanding of how IL-35 is produced and regulated in the cells. In addition, we outline the signaling pathways affected by IL-35 in different cell types. Furthermore, we summarize the roles of IL-35 in atherosclerosis, diabetes, and sepsis. We propose a new working model that IL-35 and its receptors are novel homeostasis-associated molecular pattern (HAMP) and HAMP receptors, respectively, which explains the complex nature of IL-35 signaling as an anti-inflammatory initiator, effector and blocker. Thorough understanding of this topic is significant towards development of new anti-inflammatory therapies against CVDs and other diseases. (total words: 163).


Assuntos
Aterosclerose/imunologia , Diabetes Mellitus Tipo 1/imunologia , Interleucinas/fisiologia , Sepse/imunologia , Imunidade Adaptativa , Animais , Aterosclerose/metabolismo , Linfócitos B Reguladores/imunologia , Citocinas/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Hepcidinas/imunologia , Hepcidinas/metabolismo , Homeostase , Humanos , Imunidade Inata , Inflamação/imunologia , Inflamação/metabolismo , Interleucinas/metabolismo , Modelos Biológicos , Sepse/metabolismo , Linfócitos T Reguladores/imunologia
5.
Parasite Immunol ; 41(1): e12601, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30402883

RESUMO

AIM: Iron is key ingredient for immunosurveillance and host-pathogen interaction. Intracellular pathogen steals the iron from the host, but how parasite orchestrates iron acquisition and affects immune responses remains controversial. We aimed to study the iron homoeostasis in visceral leishmaniasis (VL) and its influence on immune machinery. METHODS AND RESULTS: This study was performed on purified monocytes and T cells, peripheral blood mononuclear cells and splenic aspirates for transcriptional analyses of iron homoeostasis (hepcidin, DMT1, transferrin receptor, ferroportin) and immune modulations (IFN-γ, HLA-DR, IL-10, iNOS, IL-6). Serum/plasma was used for determination of iron, total/transferrin iron-binding capacity and anti-leishmania antibody titres in cases. We report that VL-induced perturbation in iron homoeostasis may cause immune dysfunctions. VL cases had decreased iron uptake by transferrin-dependent and transferrin-independent routes while elevated hepcidin, degraded sole iron exporter ferroportin. Therefore, it appears that perturbation in iron homoeostasis has essential role in HLA-DR mediated antigen presentation and innate armoury by downregulating iNOS as well as altering IFN-γ, IL-6 and IL-10 profiles. CONCLUSION: The iron homoeostasis by hepcidin can serve as one of the crucial determinants for regulating immune cell signalling; therefore, targeting iron metabolism, specifically hepcidin alone or in combination with agonists, can serve to clear infection.


Assuntos
Hepcidinas/imunologia , Homeostase , Ferro/metabolismo , Leishmaniose Visceral/imunologia , Adulto , Apresentação de Antígeno , Proteínas de Transporte de Cátions/metabolismo , Feminino , Hepcidinas/genética , Humanos , Interleucina-10/metabolismo , Leishmania , Leishmaniose Visceral/metabolismo , Leucócitos Mononucleares/metabolismo , Masculino , Monócitos/metabolismo , Baço/metabolismo , Transcrição Gênica
6.
Fish Shellfish Immunol ; 87: 410-413, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30703553

RESUMO

NK-lysin, despite being a direct effector of cytotoxic T and natural killer cells, is an antimicrobial peptide (AMP) with known antibacterial function in vertebrates and so in fish. Its presence has been described in different tissues of teleost fish. One of the strongest antimicrobial barriers in fish is skin-secreted mucus; however, this mucus has been found to contain only a small number of AMPs. The present study describes for the first time the constitutive expression of NK-lysin in Atlantic salmon (Salmo salar) mucus produced by the skin, recording the AMP at a higher concentration than in serum with greater bacteriostatic activity. Hepcidin may be involved to a greater extent in systemic responses since it was expressed to a higher degree in serum which was more potent for alternative complement and peroxidase activities.


Assuntos
Antibacterianos/imunologia , Hepcidinas/imunologia , Muco/imunologia , Proteolipídeos/imunologia , Salmo salar/imunologia , Animais , Antibacterianos/biossíntese , Hepcidinas/biossíntese , Hepcidinas/sangue , Imunidade Inata , Proteolipídeos/biossíntese , Pele/metabolismo
7.
Fish Shellfish Immunol ; 93: 161-173, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31319209

RESUMO

Two liver-expressed antimicrobial peptide 2 (LEAP2) isoforms were characterized in a primitive chondrostean sturgeon species, Acipenser baerii (Acipenseriformes). A. baerii LEAP2 isoforms represented essentially common structures shared by their vertebrate orthologs at both genomic (i.e., tripartite organization) and peptide (two conserved disulfide bonds) levels. A. baerii LEAP2 isoforms (designed LEAP2AB and LEAP2C, respectively) phylogenetically occupy the most basal position in the actinopterygian lineage and represent an intermediate character between teleostean and tetrapodian LEAP2s in the sequence alignment. Molecular phylogenetic analysis including LEAP2s from extant primitive fish species indicated that the evolutionary origin of ancestral LEAP2 in vertebrate groups should date back to earlier than the actinopterygian-sarcopterygian split. Gene expression assays under both basal and stimulated conditions suggested that A. baerii LEAP2 isoforms have undergone substantial subfunctionalization in tissue distribution pattern, developmental/ontogenetic expression, and immune responses. LEAP2AB showed a predominant liver expression, while LEAP2C exhibited the highest level of expression in the intestine. LEAP2C was a more dominantly expressed isoform during embryonic development and prelarval ontogeny. The LEAP2AB isoform is more closely associated with innate immune response to microbial invasion, compared with LEAP2C, as evidenced by results from LPS, poly(I:C) and Aeromonas hydrophila challenges. Synthetic mature peptides of LEAP2AB displayed a more potent antimicrobial activity than did LEAP2C. Data from this study could be useful not only to provide deeper insights into the evolutionary mechanism of LEAP2 in the actinopterygian lineage but also to better understand the innate immunity of this commercially important chondrostean species.


Assuntos
Doenças dos Peixes/imunologia , Peixes/genética , Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Hepcidinas/genética , Hepcidinas/imunologia , Imunidade Inata/genética , Aeromonas hydrophila/fisiologia , Sequência de Aminoácidos , Animais , Feminino , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Hepcidinas/química , Lipopolissacarídeos/farmacologia , Filogenia , Poli I-C/farmacologia , Alinhamento de Sequência/veterinária
8.
Fish Shellfish Immunol ; 93: 683-693, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31408729

RESUMO

Fish skin mucus is considered to act as the first line of defense against waterborne pathogens and to be potential source of novel antimicrobial components. Here we report the purification and characterization of a novel hepcidin type 2-like antimicrobial peptide (TpHAMP2) from the skin mucus of the pufferfish Takifugu pardalis. The purified TpHAMP2 comprised of 23 amino acids (AAs) with eight Cys residues that form four intramolecular disulfide bonds. The TpHAMP2 gene shared overall structural characteristics with all known hepcidins, which have a tripartite exon-intron gene organization and three structural signatures in the precursor protein. Phylogenetically, TpHAMP2 was classified as HAMP2 class in acanthopterygian fish. Interestingly, the AA sequence of TpHAMP2 did not contain a proprotein cleavage site (RXXR motif) that conserved in most hepcidins and showed a highly positive charged (RKR-) short N-terminus and Val18 and Gly22 residues, which are distinctive structures compared to other known active hepcidins. Recombinant TpHAMP2 identical to the native form exhibited a broad spectrum and potent antimicrobial activity against tested gram-positive and -negative bacteria. Expression of TpHAMP2 mRNA was predominant in the liver and was upregulated in the liver, the spleen, the intestine, and the skin of T. pardalis post immune challenge. Thus, our findings suggests that TpHAMP2 might be of importance in the framework of discovering the fish hepcidins, especially type 2s, and provide noteworthy insight into its gene structure and expression and in the innate immunity as well as the mucosal immunity in regard to hepcidins' evolutionary history in fish species.


Assuntos
Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Hepcidinas/genética , Hepcidinas/imunologia , Imunidade Inata/genética , Takifugu/genética , Takifugu/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Feminino , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Hepcidinas/química , Imunidade nas Mucosas/genética , Masculino , Filogenia , Alinhamento de Sequência/veterinária
9.
Fish Shellfish Immunol ; 87: 243-253, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30648626

RESUMO

Hepcidin, a hepatic antimicrobial peptide, is a key player of the nonspecific immune system. The structure of hepcidin gene from brown trout (Bthepc) has been characterized at the molecular level. The 1158-bp mRNA generates a coding sequence (CDS) of 267 bp, which encodes an 88-amino acid protein. Molecular evolution analysis classified Bthepc to the family Salmonidae. Amino acid sequence homologies between Bthepc and hepcidin in other species such as Oncorhynchus mykiss, Salmo salar, and Hucho taimen were found to be 93.18%, 96.59%, and 92.05% respectively. The mature peptide and the signal peptide of Bthepc are made of 25 and 24 amino acids, respectively. Similar to the other species, eight conserved cysteines in the mature peptide of Bthepc are held together by four disulphide bonds. Expression profiling of Bthepc indicated its highest expression in the liver. Further, iron levels or inflammation did not induce the age-dependent expression of Bthepc. Bthepc mRNA expression analysis in six immune tissues (liver, gill, spleen, skin, head kidney and intestine) indicated different levels of increase when challenged with Aeromonas salmonicida and Aeromonas hydrophila. The antimicrobial activity of synthetic Bthepc to typical pathogens was verified in vitro. In addition, Bthepc showed moderate haemolytic activity to mammalian erythrocytes. The antimicrobial activity of Bthepc was attributed to the disruption of the bacterial outer membrane integrity, which was evident from our scanning electron microscopy results. In summary, hepcidin gene of brown trout was characterized, and its antimicrobial activity was verified on different levels.


Assuntos
Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Hepcidinas/genética , Hepcidinas/imunologia , Imunidade Inata/genética , Truta/genética , Truta/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Hepcidinas/química , Filogenia , Alinhamento de Sequência/veterinária
10.
Fish Shellfish Immunol ; 87: 184-192, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30641185

RESUMO

The liver-expressed antimicrobial peptide 2 (LEAP-2) plays a vital role in host immunity against pathogenic organisms. In the present study, cDNA of the LEAP-2 gene was cloned and sequenced from the barbel steed (Hemibarbus labeo). The predicted amino acid sequence of the barbel steed LEAP-2 comprises a signal peptide and a prodomain, which is followed by the mature peptide. Sequence analysis revealed that barbel steed LEAP-2 belongs to the fish LEAP-2A cluster and that it is closely related to zebrafish LEAP-2A. We found that barbel steed LEAP-2 transcripts were expressed in a wide range of tissues, with the highest mRNA levels detected in the liver. In response to lipopolysaccharide (LPS) treatment, LEAP-2 was significantly upregulated in the liver, head kidney, spleen, gill, and mid intestine. A chemically synthesized LEAP-2 mature peptide exhibited selective antimicrobial activity against several bacteria in vitro. Moreover, LEAP-2, alone or in combination with LPS or phorbol 12-myristate 13-acetate, strongly induced a pro-inflammatory reaction in barbel steed monocytes/macrophages (MO/MФ), involving the induction of iNOS activity, respiratory burst, and the pro-inflammatory cytokines IFN-γ, TNF-α, and IL-1ß. Collectively, the results of this study indicate the importance of fish LEAP-2 in the M1-type polarization of MO/MΦ.


Assuntos
Cyprinidae/genética , Cyprinidae/imunologia , Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Hepcidinas/genética , Hepcidinas/imunologia , Imunidade Inata/genética , Sequência de Aminoácidos , Animais , Bactérias/química , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Hepcidinas/química , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Monócitos/metabolismo , Filogenia , Alinhamento de Sequência/veterinária
11.
Fish Shellfish Immunol ; 90: 288-296, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31071462

RESUMO

Antimicrobial peptides have a wide range of antimicrobial activity and widely occur in different organisms including mollusks, crustaceans and vertebrates. Hepcidins are a group of cysteine-rich antimicrobial peptides that are active against a variety of pathogens including gram-positive and gram-negative bacteria, as well as viruses. In this study, the hepcidin gene of Caspian trout (CtHep) was identified and characterized. Our results showed that CtHep cDNA has a 267-bp Open Reading Frame (ORF), which is translated to 88 amino acids. The CtHep was classified in the HAMP1 class of hepcidins. Comparison of DNA and cDNA sequences showed that CtHep has 3 exons and 2 introns. The signal, prodomain and mature part of CtHep have 24, 39 and 25 amino acids, respectively. The mature peptide has a molecular weight of 2881.43 Da and a theoretical isoelectric point of 8.53. The expression of CtHep mRNA was detected in different tissues of healthy and infected fish. CtHep expression in the liver, head kidney, spleen and skin was significantly enhanced after bacterial challenge. Expression of CtHep in different embryonic development stages was also substantial. Antibacterial activity of synthetic CtHep peptides was investigated against a number of Gram-positive and Gram-negative bacteria. CtHep inhibited some pathogenic bacteria such as Streptococcus iniae and Aeromonas hydrophila. In the in vivo experiment, CtHep upregulated the cytokines IL-6 and TNF-α in both kidney and spleen tissues after 24 h of the peptide injection. In conclusion, our study showed that CtHep plays an important role in the immune system of Caspian trout and also in the embryonic stages. Moreover, CtHep peptide has a potential to be used as an antimicrobial therapeutic agent as well as an immunostimulant in aquaculture.


Assuntos
Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Hepcidinas/genética , Hepcidinas/imunologia , Imunidade Inata/genética , Truta/genética , Truta/imunologia , Aeromonas hydrophila/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Citocinas/genética , Citocinas/metabolismo , Espécies em Perigo de Extinção , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Hepcidinas/química , Interleucina-6/genética , Interleucina-6/metabolismo , Filogenia , Alinhamento de Sequência/veterinária , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/veterinária , Streptococcus iniae/fisiologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
12.
Int J Mol Sci ; 20(22)2019 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-31717495

RESUMO

Hepcidin is a liver-derived peptide hormone that is related to iron balance and immunity in humans. However, its function in Siniperca chuatsi has not been well elucidated. In this study, we analyzed the expression and function of the S. chuatsi hepcidin (Sc-hep) gene. Sc-hep was specifically expressed in the liver and appeared to be one of the most highly expressed genes in the liver. After spleen and kidney necrosis virus (ISKNV) infection and lipopolysaccharide (LPS) and polyinosinic-polycytidylic acid (Poly I:C) stimulation, the expression of Sc-hep in the liver increased by approximately 110, 6500, and 225 times, respectively. After ferrous sulfate (FS) injection, the expression of Sc-hep in the liver increased approximately 520-fold. We found that miR-19c-5p could inhibit Sc-hep expression. Five CpG dinucleotides distributed in the promoter region showed no differential methylation between the liver and the stomach, both presenting high methylation rates. After FS or LPS injection, the expression of three iron balance-related genes (FPN1, TFR1, and FTN) and five immune-related cytokine genes (IL-1ß, IL8, TNF-α, TLR22, and SOCS3) significantly changed. These results indicate that Sc-hep participates in the regulation of iron balance and plays an important role in the immune system. Sc-hep increased approximately 52-fold when mandarin fish were domesticated with artificial diets. Sc-hep might be used as a real-time biomarker of mandarin fish liver because its expression markedly varies under different physiological conditions.


Assuntos
Doenças dos Peixes/genética , Proteínas de Peixes/genética , Peixes/genética , Hepcidinas/genética , Animais , Metilação de DNA , Infecções por Vírus de DNA/genética , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/veterinária , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Proteínas de Peixes/imunologia , Peixes/imunologia , Peixes/virologia , Regulação da Expressão Gênica , Hepcidinas/imunologia , Imunidade , Iridoviridae/imunologia , Lipopolissacarídeos/imunologia , MicroRNAs/genética , MicroRNAs/imunologia , Filogenia
13.
Cytokine ; 103: 90-98, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28982582

RESUMO

Emerging evidence shows that chronic low-grade inflammation and changes in markers of innate immunity are implicated in a range of metabolic abnormalities following an episode of acute pancreatitis. Also, deranged iron metabolism has been linked to type 2 diabetes mellitus, gestational diabetes, and new-onset diabetes after pancreatitis - the conditions characterized by high haemoglobin glycation index (HGI). This study aimed to investigate the associations between markers of innate immunity and iron metabolism in individuals after acute pancreatitis. Fasting blood samples were collected to analyse lipopolysaccharide binding protein (LBP), interleukin (IL)-6, tumor necrosis factor-α, hepcidin, ferritin, soluble transferrin receptor, HbA1c, and glucose. Participants were categorized into two groups: low HGI and high HGI. Linear regression analyses were conducted, and potential confounders (age, sex, ethnicity, body mass index, diabetes mellitus status, smoking status, aetiology of pancreatitis, duration, recurrence, and severity of pancreatitis) were adjusted for in 5 statistical models. A total of 93 patients following an episode of acute pancreatitis were included, of who 40 (43%) had high HGI. In the overall cohort, LBP was significantly associated with hepcidin and ferritin, and IL-6 was significantly associated with hepcidin, consistently in all the models. Further, LBP contributed to 7.7% and 9.5% of variance in hepcidin and ferritin levels, respectively, whereas IL-6 contributed to 5.3% of hepcidin variance. Upon subgroup analysis, the observed LBP associations were maintained in the high HGI subgroup only and the IL-6 association in the low HGI subgroup only. No consistently significant associations were found between any of the other markers. The interplay between LBP, IL-6, hepcidin, and ferritin characterizes metabolic derangements after acute pancreatitis and may play a role in the pathogenesis of new-onset diabetes after pancreatitis.


Assuntos
Proteínas de Transporte/sangue , Ferritinas/imunologia , Imunidade Inata , Interleucina-6/sangue , Ferro/sangue , Glicoproteínas de Membrana/sangue , Pancreatite/sangue , Doença Aguda , Proteínas de Fase Aguda/imunologia , Adulto , Idoso , Proteínas de Transporte/imunologia , Estudos Transversais , Feminino , Ferritinas/sangue , Hepcidinas/imunologia , Humanos , Interleucina-6/imunologia , Ferro/imunologia , Masculino , Glicoproteínas de Membrana/imunologia , Pessoa de Meia-Idade , Pancreatite/imunologia , Pancreatite/patologia
14.
Fish Shellfish Immunol ; 75: 274-283, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29452250

RESUMO

Columnaris disease (CD) caused by Flavobacterium columnare (F. columnare) is lack of knowledge on effective treatment measures. Bacterial pathogens require iron as an essential nutrient to infect the host. While hepcidin acts as a master regulator in iron metabolism, its contribution to host defense is emerging as complex and multifaceted. In vitro, recombinant Ctenopharyngodon idellus (C. idellus) hepcidin (CiHep) and synthetic CiHep both showed the ability to increase the expression of hepcidin and ferritin in C. idellus kidney cells, especially the recombinant CiHep. In vivo, recombinant CiHep improved the survival rate of C. idellus challenged with F. columnare. In addition, the fish fed diet containing recombinant CiHep (group H-1) had a higher survival rate than other pretreatment groups. The study showed that recombinant CiHep regulated iron metabolism causing iron redistribution, decreasing serum iron levels and increasing iron accumulation in the hepatopancreas. Moreover, the expression of iron-related genes was upregulated in various degrees at a different time except for group H-1. Immune-related genes were also evaluated, showing higher expression in the groups pretreated with CiHep at an early stage of infection. Of note, a clear upregulation of more immune genes occurred in the groups pretreated with recombinant CiHep than that pretreated with synthetic CiHep in the late stage of infection. In conclusion, the recombinant CiHep has a protective effect on the host response to bacterial pathogens. We speculate that hepcidin protects C. idellus against F. columnare infection via regulating the iron distribution and immune gene expression.


Assuntos
Carpas/imunologia , Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Hepcidinas/imunologia , Imunidade Inata/genética , Ferro/metabolismo , Sequência de Aminoácidos , Animais , Carpas/genética , Carpas/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Infecções por Flavobacteriaceae/imunologia , Infecções por Flavobacteriaceae/veterinária , Flavobacterium/fisiologia , Perfilação da Expressão Gênica , Hepcidinas/genética , Hepcidinas/metabolismo
15.
PLoS Pathog ; 11(8): e1004998, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26291319

RESUMO

Hepcidin is the master regulator of iron homeostasis in vertebrates. The synthesis of hepcidin is induced by systemic iron levels and by inflammatory stimuli. While the role of hepcidin in iron regulation is well established, its contribution to host defense is emerging as complex and multifaceted. In this review, we summarize the literature on the role of hepcidin as a mediator of antimicrobial immunity. Hepcidin induction during infection causes depletion of extracellular iron, which is thought to be a general defense mechanism against many infections by withholding iron from invading pathogens. Conversely, by promoting iron sequestration in macrophages, hepcidin may be detrimental to cellular defense against certain intracellular infections, although critical in vivo studies are needed to confirm this concept. It is not yet clear whether hepcidin exerts any iron-independent effects on host defenses.


Assuntos
Doenças Transmissíveis/imunologia , Hepcidinas/imunologia , Animais , Humanos
16.
Fish Shellfish Immunol ; 69: 200-210, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28842373

RESUMO

Antimicrobial peptides (AMPs), components of innate immunity, play an important role in protecting fish. In this study we report the molecular cloning of full open reading frames and characterization of expression of three AMP genes (ß-defensin (defb), hepcidin (hep2), piscidin (pisc) in meagre (Argyrosomus regius). A phylogenetic analysis of the expressed sequences obtained shows the defensin isoform forms a clade with the other members of the beta class of this family, hepcidin corresponds to hepcidin 2, and piscidin corresponds to class I of its respective family. Gene expression profiles of AMPs was investigated, by means of quantification of mRNA in nine development stages, from 8 days post-hatching (dph) to accomplishment of juvenile form (120 dph). During development it was demonstrated defb, hep2, pisc were expressed in all stages of larval development and in juvenile tissues (kidney, spleen gut and gill). Moreover, expression patterns suggest the expression levels of theses AMPs are influenced by live prey (rotifer, Artemia) and first intake of commercial diet. Induction experiments in vivo (24 h) and in vitro (4, 12, 24 h) with PAMPs (LPS, poly (I:C), ß-glucan) revealed significant changes in gene expression of the three AMP genes, in kidney, spleen, gut and gill. However, expression profiles differed in magnitude and time course response. defb expression shows a similar trend in vivo and in vitro in kidney at 24 h after LPS and ß-glucan stimulation. The hep2 expression levels were up-regulated upon ß-glucan challenge in vivo, more in gut and gills than kidney, while in vitro hep2 expression was up-regulated in kidney cells by LPS, poly (I:C), ß-glucan (4 h). pisc expression was up-regulated in kidney cells, splenocytes by ß-glucan, but in gill cells by poly (I:C) and ß-glucan in vivo. However, pisc expression was upregulated in kidney cells by ß-glucan and gill cells by LPS at 4 post-stimulation in vitro. These data suggest that AMPs play an important role in defense against pathogens, with each AMP having differing efficacies against specific types of microorganisms, although follow-up studies focusing on the biological activities in fish are needed.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Moléculas com Motivos Associados a Patógenos/farmacologia , Perciformes/genética , Perciformes/imunologia , Animais , Perfilação da Expressão Gênica/veterinária , Hepcidinas/genética , Hepcidinas/imunologia , Filogenia , beta-Defensinas/genética , beta-Defensinas/imunologia
17.
Fish Shellfish Immunol ; 68: 349-358, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28743631

RESUMO

Hepcidin is a kind of cysteine-rich antimicrobial peptide that plays a vital role in host innate immune activity and iron regulation. Here, we report the molecular characterization and functional analysis of a novel hamp1 hepcidin isoforms Tf-Hep from roughskin sculpin, Trachidermus fasciatus. A cDNA fragment of 988 bp with an ORF of 273 bp was obtained. The coding sequence encodes for a signal peptide of 24 amino acids coupled with a prodomain of 40 amino acids and a mature peptide of 26 amino acids. Tissue distribution analysis indicated that Tf-Hep was most abundant in the liver. It could be significantly induced post lipopolysaccharide (LPS) challenge and heavy metal exposure. The mature peptide was expressed as a 6.061 kDa fusion protein in Pichia pastoris GS115. The active purified recombinant protein (rTf-Hep) exhibited a wide spectrum of potent antimicrobial activity in vitro against 4 Gram-negative bacteria Escherichia coli, Vibrio Anguillarum, Klebsiella pneumoniae, and Pseudomonas aeruginosa and 4 Gram-positive bacteria Staphylococcus aureus, Bacillus subtilis, Bacillus thuringiensis, and Bacillus megaterium with minimum inhibitory concentrations (MICs) of 5-80 µg/ml (0.825-13.2 µM). It also displayed high affinity to polysaccharides on bacteria surface including LPS, lipoteichoic acid (LTA) and peptidoglycan (PGN). We further revealed that rTf-hep was capable of agglutinating 6 of the 8 bacteria. All these results suggest that rTf-hep may be both an antibacterial effector and a pattern recognition molecule in fish immune defense. The in vivo bacterial treatment results demonstrated that rTf-Hep could significantly improve the survival rate of fish infected with V. anguillarum. Taken together, these data indicate an important role for Tf-hep in the innate immunity of Trachidermus fasciatus and suggest its potential application in aquaculture for increasing fish resistance to disease.


Assuntos
Doenças dos Peixes/imunologia , Peixes/genética , Peixes/imunologia , Hepcidinas/genética , Hepcidinas/imunologia , Imunidade Inata/genética , Vibrioses/veterinária , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Peixes/classificação , Regulação da Expressão Gênica/imunologia , Hepcidinas/química , Filogenia , Vibrio/fisiologia , Vibrioses/imunologia
18.
J Immunol ; 194(2): 709-18, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25505291

RESUMO

Macrophages are responsible for the control of inflammation and healing, and their malfunction results in cardiometabolic disorders. TGF-ß is a pleiotropic growth factor with dual (protective and detrimental) roles in atherogenesis. We have previously shown that in human macrophages, TGF-ß1 activates Smad2/3 signaling and induces a complex gene expression program. However, activated genes were not limited to known Smad2/3-dependent ones, which prompted us to study TGF-ß1-induced signaling in macrophages in detail. Analysis of Id3 regulatory sequences revealed a novel enhancer, located between +4517 and 4662 bp, but the luciferase reporter assay demonstrated that this enhancer is not Smad2/3 dependent. Because Id3 expression is regulated by Smad1/5 in endothelial cells, we analyzed activation of Smad1/5 in macrophages. We demonstrate here for the first time, to our knowledge, that TGF-ß1, but not BMPs, activates Smad1/5 in macrophages. We show that an ALK5/ALK1 heterodimer is responsible for the induction of Smad1/5 signaling by TGF-ß1 in mature human macrophages. Activation of Smad1/5 by TGF-ß1 induces not only Id3, but also HAMP and PLAUR, which contribute to atherosclerotic plaque vulnerability. We suggest that the balance between Smad1/5- and Smad2/3-dependent signaling defines the outcome of the effect of TGF-ß on atherosclerosis where Smad1/5 is responsible for proatherogenic effects, whereas Smad2/3 regulate atheroprotective effects of TGF-ß.


Assuntos
Macrófagos/imunologia , Placa Aterosclerótica/imunologia , Transdução de Sinais/imunologia , Proteína Smad1/imunologia , Proteína Smad5/imunologia , Fator de Crescimento Transformador beta1/imunologia , Receptores de Activinas Tipo II/imunologia , Proteínas Morfogenéticas Ósseas/imunologia , Células Cultivadas , Hepcidinas/imunologia , Humanos , Proteínas Inibidoras de Diferenciação/imunologia , Macrófagos/patologia , Proteínas de Neoplasias/imunologia , Placa Aterosclerótica/patologia , Proteínas Serina-Treonina Quinases/imunologia , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/imunologia , Receptores de Ativador de Plasminogênio Tipo Uroquinase/imunologia , Proteína Smad2/imunologia , Proteína Smad3/imunologia
19.
J Biol Chem ; 290(51): 30637-47, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26515063

RESUMO

The liver hormone hepcidin is the central regulator of systemic iron metabolism. Its increased expression in inflammatory states leads to hypoferremia and anemia. Elucidation of the mechanisms that up-regulate hepcidin during inflammation is essential for developing rational therapies for this anemia. Using mouse models of inflammatory bowel disease, we have shown previously that colitis-associated hepcidin induction is influenced by intestinal microbiota composition. Here we investigate how two commensal bacteria, Bifidobacterium longum and Bacteroides fragilis, representative members of the gut microbiota, affect hepcidin expression. We found that supernatants of a human macrophage cell line infected with either of the bacteria up-regulated hepcidin when added to a human hepatocyte cell line. This activity was abrogated by neutralization of IL-1ß. Moreover, purified IL-1ß increased hepcidin expression when added to the hepatocyte line or primary human hepatocytes and when injected into mice. IL-1ß activated the bone morphogenetic protein (BMP) signaling pathway in hepatocytes and in mouse liver, as indicated by increased phosphorylation of small mothers against decapentaplegic proteins. Activation of BMP signaling correlated with IL-1ß-induced expression of BMP2 in human hepatocytes and activin B in mouse liver. Treatment of hepatocytes with two different chemical inhibitors of BMP signaling or with a neutralizing antibody to BMP2 prevented IL-1ß-induced up-regulation of hepcidin. Our results clarify how commensal bacteria affect hepcidin expression and reveal a novel connection between IL-1ß and activation of BMP signaling. They also suggest that there may be differences between mice and humans with respect to the mechanism by which IL-1ß up-regulates hepcidin.


Assuntos
Bacteroides fragilis/imunologia , Bifidobacterium/imunologia , Proteínas Morfogenéticas Ósseas/imunologia , Hepatócitos/imunologia , Hepcidinas/imunologia , Interleucina-1beta/imunologia , Macrófagos/imunologia , Transdução de Sinais/imunologia , Regulação para Cima/imunologia , Animais , Linhagem Celular Tumoral , Feminino , Hepatócitos/patologia , Humanos , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/patologia , Macrófagos/patologia , Camundongos
20.
Blood ; 123(8): 1129-36, 2014 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-24357728

RESUMO

Anemia is a common complication of infections and inflammatory diseases, but the few mouse models of this condition are not well characterized. We analyzed in detail the pathogenesis of anemia induced by an injection of heat-killed Brucella abortus and examined the contribution of hepcidin by comparing wild-type (WT) to iron-depleted hepcidin-1 knockout (Hamp-KO) mice. B abortus-treated WT mice developed severe anemia with a hemoglobin nadir at 14 days and partial recovery by 28 days. After an early increase in inflammatory markers and hepcidin, WT mice manifested hypoferremia, despite iron accumulation in the liver. Erythropoiesis was suppressed between days 1 and 7, and erythrocyte destruction was increased as evidenced by schistocytes on blood smears and shortened red blood cell lifespan. Erythropoietic recovery began after 14 days but was iron restricted. In B abortus-treated Hamp-KO compared with WT mice, anemia was milder, not iron restricted, and had a faster recovery. Similarly to severe human anemia of inflammation, the B abortus model shows multifactorial pathogenesis of inflammatory anemia including iron restriction from increased hepcidin, transient suppression of erythropoiesis, and shortened erythrocyte lifespan. Ablation of hepcidin relieves iron restriction and improves the anemia.


Assuntos
Anemia/imunologia , Brucella abortus , Brucelose/imunologia , Hepcidinas/imunologia , Inflamação/imunologia , Doença Aguda , Anemia/genética , Animais , Doença Crônica , Modelos Animais de Doenças , Eritropoese/imunologia , Hemólise/imunologia , Hepcidinas/genética , Temperatura Alta , Humanos , Inflamação/genética , Inflamação/microbiologia , Ferro/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA