Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Neuroendocrinology ; 113(6): 615-624, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36634641

RESUMO

INTRODUCTION: Diet rich in purines may increase the serum level of uric acid causing hyperuricemia, contributing to learning and memory to impairments. Ascorbic acid has a potent antioxidant potential. The hippocampus is a pivotal component of human brains and other vertebrates that plays crucial roles in the consolidation of information and spatial memory. Our study was mainly designated to examine the potential palliative role of ascorbic acid supplements on harmful effects induced hyperuricemia on the hippocampus of albino Wistar rats. METHODS: Forty rats were subgrouped into the control group, ascorbate-only group, hyperuricemic group, and combined hyperuricemia and ascorbate group. RESULTS: Ascorbic acid has strongly preserved the histological architecture and maintained the normal hippocampal functions in the hyperuricemic group. CONCLUSION: The anti-inflammatory and antioxidant properties of ascorbic acid could protect the hippocampus of albino Wistar rats against the hazardous impact of hyperuricemia.


Assuntos
Ácido Ascórbico , Hiperuricemia , Humanos , Ratos , Animais , Ratos Wistar , Ácido Ascórbico/farmacologia , Antioxidantes/farmacologia , Hiperuricemia/induzido quimicamente , Hiperuricemia/tratamento farmacológico , Hiperuricemia/patologia , Hipocampo/patologia
2.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(6): 1121-1127, 2023 Nov 20.
Artigo em Zh | MEDLINE | ID: mdl-38162075

RESUMO

Objective: To investigate the effect of uric acid on the clinicopathological characteristics and prognosis of immunoglobulin A nephropathy (IgAN) in patients with stage 3-4 chronic kidney disease (CKD). Methods: The clinical and pathological data of 263 IgAN patients who had stage 3-4 CKD and who had confrimed diagosis through renal biopsy at the First Affiliated Hospital of Air Force Medical University between December 2008 and January 2020 were retrospectively collected. According to the levels of uric acid, the patients were divided into a hyperuricemia group (n=102) and a normal uric acid group (n=161), and the clinicopathological characteristics of the two groups were compared accordingly. With progression to end-stage renal disease or death as the endpoint event, the renal survival rate of the two groups was compared by the Kaplan-Meier method and the relationship between uric acid and the prognosis was analyzed by Cox regression and LASSO regression. Results: Compared with the normal uric acid group, the hyperuricemia group had a significantly higher proportion of male patients and patients with a history of hypertension, a significantly higher level of blood urea nitrogen, and lower levels of estimated glomerular filtration rate and high-density lipoprotein. In terms of pathology, patients in the hyperuricemia group had significantly higher proportion of glomerulosclerosis, higher mesangial hypercellularity, and higher tubular atrophy/interstitial fibrosis (P<0.05). Kaplan-Meier curve showed that there was a significant difference in renal survival rate between the two groups (P<0.0001). LASSO regression showed that high uric acid was a risk factor for the prognosis of IgAN patients with stage 3-4 CKD. Further multivariate Cox analysis showed that, compared with the normal uric acid group, the hyperuricemia group had a higher risk of incurring composite outcomes (hazard ratio [HR]=1.61, 95% confidence interval [CI]: 1.10-2.34). When uric acid was used as a continuous variable, the increase of 1 mg/dL in uric acid concentration was associated with an increased HR of 1.18 (95% CI: 1.08-1.29) for the composite outcome. Conclusion: High uric acid is a risk factor for poor renal prognosis in IgAN patients with stage 3-4 CKD and reducing uric acid levels may effectively improve the prognosis of high-risk IgAN patients.


Assuntos
Glomerulonefrite por IGA , Hiperuricemia , Insuficiência Renal Crônica , Humanos , Masculino , Glomerulonefrite por IGA/complicações , Estudos Retrospectivos , Ácido Úrico , Hiperuricemia/complicações , Hiperuricemia/patologia , Progressão da Doença , Prognóstico , Insuficiência Renal Crônica/complicações , Taxa de Filtração Glomerular
3.
J Biol Chem ; 297(4): 101166, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34487763

RESUMO

Hibernation is an example of extreme hypometabolic behavior. How mammals achieve such a state of suspended animation remains unclear. Here we show that several strains of type 2 diabetic mice spontaneously enter into hibernation-like suspended animation (HLSA) in cold temperatures. Nondiabetic mice injected with ATP mimic the severe hypothermia analogous to that observed in diabetic mice. We identified that uric acid, an ATP metabolite, is a key molecular in the entry of HLSA. Uric acid binds to the Na+ binding pocket of the Na+/H+ exchanger protein and inhibits its activity, acidifying the cytoplasm and triggering a drop in metabolic rate. The suppression of uric acid biosynthesis blocks the occurrence of HLSA, and hyperuricemic mice induced by treatment with an uricase inhibitor can spontaneously enter into HLSA similar to that observed in type 2 diabetic mice. In rats and dogs, injection of ATP induces a reversible state of HLSA similar to that seen in mice. However, ATP injection fails to induce HLSA in pigs due to the lack of their ability to accumulate uric acid. Our results raise the possibility that nonhibernating mammals could spontaneously undergo HLSA upon accumulation of ATP metabolite, uric acid.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Hibernação , Ácido Úrico/metabolismo , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Cães , Hiperuricemia/genética , Hiperuricemia/metabolismo , Hiperuricemia/patologia , Masculino , Camundongos , Camundongos Knockout , Ratos , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo
4.
Protein Expr Purif ; 189: 105978, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34562586

RESUMO

Urate oxidase is a promising biological medicine for hyperuricemia treatment, but immunogenicity obstructs the development of its clinical application. The recombinant porcine-human chimeric uricase mutant named dHU-wPU is a humanized chimeric uricase based on wild porcine uricase (wPU), which can effectively reduce the limitation of potential immunogenicity with a high homology (92.76%) to deduced human uricase (dHU). Unfortunately, the insoluble expression form of dHU-wPU in E. coli increases the difficulty of production. In this study, we described a more convenient method to efficiently obtain recombinant dHU-wPU protein from E. coli. Combination small ubiquitin-related modifier protein (SUMO) and maltose-binding protein (MBP) was employed to achieve the soluble expression of dHU-wPU. MBP-SUMO-dHU-wPU fusion protein was not only overexpressed in a soluble form, but also showed high purification and cleavage efficiency. Subsequently, we optimized the culture conditions of shake flasks and expanded the production of MBP-SUMO-dHU-wPU fusion protein in a 5 L bioreactor. Finally, about 15 mg of recombinant dHU-wPU was obtained from 1 L M9 fermentation culture by using two-step affinity chromatography, with a SDS-PAGE purity over 90%. In vitro activity analysis showed that dHU-wPU had better ability to catalyze uric acid than wPU.


Assuntos
Clonagem Molecular/métodos , Proteínas Ligantes de Maltose/genética , Proteínas Recombinantes de Fusão/genética , Proteína SUMO-1/genética , Urato Oxidase/genética , Animais , Reatores Biológicos , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Hiperuricemia/genética , Hiperuricemia/metabolismo , Hiperuricemia/patologia , Hiperuricemia/terapia , Proteínas Ligantes de Maltose/metabolismo , Mutação , Plasmídeos/química , Plasmídeos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína SUMO-1/metabolismo , Solubilidade , Suínos , Urato Oxidase/metabolismo , Ácido Úrico/metabolismo
5.
J Immunol ; 205(3): 789-800, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32561569

RESUMO

Although monosodium urate (MSU) crystals are known to trigger inflammation, published data on soluble uric acid (sUA) in this context are discrepant. We hypothesized that diverse sUA preparation methods account for this discrepancy and that an animal model with clinically relevant levels of asymptomatic hyperuricemia and gouty arthritis can ultimately clarify this issue. To test this, we cultured human monocytes with different sUA preparation solutions and found that solubilizing uric acid (UA) by prewarming created erroneous results because of UA microcrystal contaminants triggering IL-1ß release. Solubilizing UA with NaOH avoided this artifact, and this microcrystal-free preparation suppressed LPS- or MSU crystal-induced monocyte activation, a process depending on the intracellular uptake of sUA via the urate transporter SLC2A9/GLUT9. CD14+ monocytes isolated from hyperuricemic patients were less responsive to inflammatory stimuli compared with monocytes from healthy individuals. Treatment with plasma from hyperuricemic patients impaired the inflammatory function of CD14+ monocytes, an effect fully reversible by removing sUA from hyperuricemic plasma. Moreover, Alb-creERT2;Glut9 lox/lox mice with hyperuricemia (serum UA of 9-11 mg/dl) showed a suppressed inflammatory response to MSU crystals compared with Glut9 lox/lox controls without hyperuricemia. Taken together, we unravel a technical explanation for discrepancies in the published literature on immune effects of sUA and identify hyperuricemia as an intrinsic suppressor of innate immunity, in which sUA modulates the capacity of monocytes to respond to danger signals. Thus, sUA is not only a substrate for the formation of MSU crystals but also an intrinsic inhibitor of MSU crystal-induced tissue inflammation.


Assuntos
Artrite Gotosa/imunologia , Hiperuricemia/imunologia , Monócitos/imunologia , Ácido Úrico/toxicidade , Animais , Artrite Gotosa/induzido quimicamente , Artrite Gotosa/genética , Artrite Gotosa/patologia , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/imunologia , Humanos , Hiperuricemia/induzido quimicamente , Hiperuricemia/genética , Hiperuricemia/patologia , Inflamação , Camundongos , Camundongos Transgênicos , Monócitos/patologia , Solubilidade
6.
Am J Physiol Endocrinol Metab ; 320(6): E1032-E1043, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33900847

RESUMO

Uric acid is the end metabolite derived from the oxidation of purine compounds. Overwhelming evidence shows the vital interrelationship between hyperuricemia (HUA) and nonalcoholic fatty liver disease (NAFLD). However, the mechanisms for this association remain unclear. In this study, we established a urate oxidase-knockout (Uox-KO) mouse model by clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology. To study the correlation between HUA and NAFLD, human HepG2 hepatoma cells were treated in culture medium with high level of uric acid. In vivo, the Uox-KO mice spontaneously developed hyperuricemia and aberrant lipid-metabolism, concomitant with abnormal hepatic fat accumulation. HUA activated c-Jun N-terminal kinase (JNK) in vivo and in vitro. Furthermore, inhibiting JNK activation by a JNK-specific inhibitor, SP600125, decreased fat accumulation and lipogenic gene expression induced by HUA. Overexpression of the lipogenic enzymes fatty acid synthase and acetyl-CoA carboxylase 1 was via activation of JNK, which was blocked by the JNK inhibitor SP600125. HUA activated AP-1 to upregulate lipogenic gene expression via JNK activation. In addition, HUA caused mitochondrial dysfunction and reactive oxygen species production. Pretreatment with the antioxidant N-acetyl-l-cysteine could ameliorate HUA-activated JNK and hepatic steatosis. These data suggest that ROS/JNK/AP-1 signaling plays an important role in HUA-mediated fat accumulation in liver.NEW & NOTEWORTHY Hyperuricemia and nonalcoholic fatty liver disease are global public health problems, which are strongly associated with metabolic syndrome. In this study, we demonstrate that uric acid induces hepatic fat accumulation via the ROS/JNK/AP-1 pathway. This study identifies a new mechanism of NAFLD pathogenesis and new potential therapeutic strategies for HUA-induced NAFLD.


Assuntos
Hiperuricemia/metabolismo , Fígado/efeitos dos fármacos , Ácido Úrico/farmacologia , Animais , Células Hep G2 , Humanos , Hiperuricemia/patologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipogênese/efeitos dos fármacos , Fígado/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição AP-1/metabolismo , Ácido Úrico/metabolismo
7.
Biochem Biophys Res Commun ; 581: 6-11, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34637964

RESUMO

Cluster of differentiation (CD) 38, a major enzyme for nicotinamide adenine dinucleotide (NAD+) degradation, plays a key role in inflammation. Meanwhile, intracellular NAD+ decline is also associated with inflammatory responses. However, whether CD38 activation is involved in gouty inflammation has not been elucidated. The present study aimed to clarify the role of CD38 in monosodium urate crystals (MSU)-triggered inflammatory responses. The results showed that MSU crystals increased the protein expression of CD38 in time- and concentration-dependent manner in THP-1 macrophages and mouse bone marrow-derived macrophages (BMDMs). Moreover, intracellular NAD+ levels were reduced by MSU crystals along with the increased IL-1ß release. However, CD38 inhibition by 78c elevated intracellular NAD+ levels and suppressed IL-1ß release in MSU crystals-treated THP-1 macrophages and BMDMs. Interestingly, CD38 inhibition without significant elevation of intracellular NAD+ also decreased IL-1ß release driven by MSU crystals in THP-1 macrophages. In conclusion, the present study revealed that MSU crystals could activate CD38 with the ensuing intracellular NAD+ decline to promote inflammatory responses in THP-1 macrophages and BMDMs, while CD38 inhibition could suppress MSU crystals-triggered inflammatory responses, indicating that CD38 is a potential therapeutic target for gout.


Assuntos
ADP-Ribosil Ciclase 1/genética , Interleucina-1beta/genética , Macrófagos/efeitos dos fármacos , Glicoproteínas de Membrana/genética , Ácido Úrico/farmacologia , ADP-Ribosil Ciclase 1/agonistas , ADP-Ribosil Ciclase 1/metabolismo , Animais , Cristalização , Feminino , Regulação da Expressão Gênica , Gota/etiologia , Gota/genética , Gota/metabolismo , Gota/patologia , Humanos , Hiperuricemia/etiologia , Hiperuricemia/genética , Hiperuricemia/metabolismo , Hiperuricemia/patologia , Inflamação , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Glicoproteínas de Membrana/agonistas , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , NAD/metabolismo , Cultura Primária de Células , Transdução de Sinais , Células THP-1
8.
J Hum Genet ; 66(2): 161-169, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32778763

RESUMO

Gout is a complex inflammatory arthritis affecting ~20% of people with an elevated serum urate level (hyperuricemia). Gout and hyperuricemia are essentially specific to humans and other higher primates, with varied prevalence across ancestral groups. SLC2A9 and ABCG2 are major loci associated with both urate and gout in multiple ancestral groups. However, fine mapping has been challenging due to extensive linkage disequilibrium underlying the associated regions. We used trans-ancestral fine mapping integrated with primate-specific genomic information to address this challenge. Trans-ancestral meta-analyses of GWAS cohorts of either European (EUR) or East Asian (EAS) ancestry resulted in single-variant resolution mappings for SLC2A9 (rs3775948 for urate and rs4697701 for gout) and ABCG2 (rs2622621 for gout). Tests of colocalization of variants in both urate and gout suggested existence of a shared candidate causal variant for SLC2A9 only in EUR and for ABCG2 only in EAS. The fine-mapped gout variant rs4697701 was within an ancient enhancer, whereas rs2622621 was within a primate-specific transposable element, both supported by functional evidence from the Roadmap Epigenomics project in human primary tissues relevant to urate and gout. Additional primate-specific elements were found near both loci and those adjacent to SLC2A9 overlapped with known statistical epistatic interactions associated with urate as well as multiple super-enhancers identified in urate-relevant tissues. We conclude that by leveraging ancestral differences trans-ancestral fine mapping has identified ancestral and functional variants for SLC2A9 or ABCG2 with primate-specific regulatory effects on urate and gout.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Proteínas Facilitadoras de Transporte de Glucose/genética , Gota/genética , Hiperuricemia/genética , Proteínas de Neoplasias/genética , Locos de Características Quantitativas , Característica Quantitativa Herdável , Sequências Reguladoras de Ácido Nucleico , Animais , Evolução Molecular , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Gota/patologia , Humanos , Hiperuricemia/patologia , Masculino , Polimorfismo de Nucleotídeo Único , Primatas , Especificidade da Espécie , Ácido Úrico/sangue
9.
Clin Exp Pharmacol Physiol ; 48(10): 1305-1316, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34133780

RESUMO

Hyperuricaemia (HU) caused by disorders of purine metabolism is a metabolic disease. A number of epidemiological reports have confirmed that HU is correlated with multiple disorders, such as chronic kidney diseases, cardiovascular disease and gout. Recent studies showed that the expression and functional changes of uric acid transporters, including URAT1, GLUT9 and ABCG2, were associated with HU. Moreover, a large number of genome-wide association studies have shown that these transporters' dysfunction leads to HU. In this review, we describe the recent progress of aetiology and related transporters of HU, and we also summarise the common co-morbidities possible mechanisms, as well as the potential pharmacological and non-pharmacological treatment methods for HU, aiming to provide new ideas for the treatment of HU.


Assuntos
Gota/terapia , Hiperuricemia/genética , Hiperuricemia/terapia , Doenças Cardiovasculares/sangue , Comorbidade , Estudo de Associação Genômica Ampla , Gota/sangue , Gota/patologia , Humanos , Hiperuricemia/metabolismo , Hiperuricemia/patologia , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/terapia , Ácido Úrico/sangue
10.
J Clin Lab Anal ; 35(8): e23859, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34251052

RESUMO

BACKGROUND: This study aimed to evaluate the urate-lowering effects of Yi-Suan-Cha and explore its underlying mechanisms in experimental hyperuricemia induced in rats. METHODS: Forty-eight male SD rats were randomly allocated into normal control, model, allopurinol, benzbromarone, low-dose Yi-Suan-Cha (0.2 g/ml), and high-dose Yi-Suan-Cha (0.4 g/ml) groups (n = 8 rats per group). Rat models of hyperuricemia were established through intragastric administration of adenine 25 mg/kg + potassium oxalate 300 mg/kg for 3 weeks. After the last administration, serum uric acid, creatinine, and urea nitrogen levels were measured. Renal histopathology was observed by hematoxylin-eosin staining. Xanthine oxidase level in serum and liver homogenates was measured by ELISA. The protein and mRNA expression of URAT1, ABCG2, OAT1, and GLUT9 in the kidney was detected by Western blotting and RT-PCR, respectively. RESULTS: The serum uric acid levels were significantly lowered in all medication groups than in the model group. The benzbromarone and both Yi-Suan-Cha groups showed clear kidney structures with no obvious abnormalities. Compared with the normal control group, the model group showed increased URAT1/GLUT9 protein expression and decreased ABCG2/OAT1 protein expression. Compared with the model group, both Yi-Suan-Cha groups showed decreased URAT1/GLUT9 protein expression and increased ABCG2/OAT1 protein expression. Compared with that in the normal control group, URAT1/GLUT9 mRNA expression increased in the model group. Compared with the model group, the low-dose and high-dose Yi-Suan-Cha groups showed decreased URAT1/GLUT9 mRNA expression and increased ABCG2/OAT1 mRNA expression. CONCLUSION: Yi-Suan-Cha may lower uric acid level by downregulating URAT1/GLUT9 expression and upregulating ABCG2/OAT1 expression.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Hiperuricemia/tratamento farmacológico , Rim/efeitos dos fármacos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Nitrogênio da Ureia Sanguínea , Creatinina/sangue , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Hiperuricemia/metabolismo , Hiperuricemia/patologia , Rim/metabolismo , Rim/patologia , Masculino , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteína 1 Transportadora de Ânions Orgânicos/genética , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Ratos Sprague-Dawley , Ácido Úrico/sangue , Xantina Oxidase/sangue , Xantina Oxidase/metabolismo
11.
J Am Soc Nephrol ; 31(12): 2773-2792, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32938648

RESUMO

BACKGROUND: The roles of asymptomatic hyperuricemia or uric acid (UA) crystals in CKD progression are unknown. Hypotheses to explain links between UA deposition and progression of CKD include that (1) asymptomatic hyperuricemia does not promote CKD progression unless UA crystallizes in the kidney; (2) UA crystal granulomas may form due to pre-existing CKD; and (3) proinflammatory granuloma-related M1-like macrophages may drive UA crystal-induced CKD progression. METHODS: MALDI-FTICR mass spectrometry, immunohistochemistry, 3D confocal microscopy, and flow cytometry were used to characterize a novel mouse model of hyperuricemia and chronic UA crystal nephropathy with granulomatous nephritis. Interventional studies probed the role of crystal-induced inflammation and macrophages in the pathology of progressive CKD. RESULTS: Asymptomatic hyperuricemia alone did not cause CKD or drive the progression of aristolochic acid I-induced CKD. Only hyperuricemia with UA crystalluria due to urinary acidification caused tubular obstruction, inflammation, and interstitial fibrosis. UA crystal granulomas surrounded by proinflammatory M1-like macrophages developed late in this process of chronic UA crystal nephropathy and contributed to the progression of pre-existing CKD. Suppressing M1-like macrophages with adenosine attenuated granulomatous nephritis and the progressive decline in GFR. In contrast, inhibiting the JAK/STAT inflammatory pathway with tofacitinib was not renoprotective. CONCLUSIONS: Asymptomatic hyperuricemia does not affect CKD progression unless UA crystallizes in the kidney. UA crystal granulomas develop late in chronic UA crystal nephropathy and contribute to CKD progression because UA crystals trigger M1-like macrophage-related interstitial inflammation and fibrosis. Targeting proinflammatory macrophages, but not JAK/STAT signaling, can attenuate granulomatous interstitial nephritis.


Assuntos
Hiperuricemia/complicações , Hiperuricemia/patologia , Nefrite Intersticial/etiologia , Nefrite Intersticial/patologia , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/patologia , Animais , Doenças Assintomáticas , Modelos Animais de Doenças , Progressão da Doença , Granuloma/etiologia , Granuloma/metabolismo , Granuloma/patologia , Hiperuricemia/metabolismo , Camundongos , Nefrite Intersticial/sangue , Insuficiência Renal Crônica/sangue
12.
FASEB J ; 33(12): 13334-13345, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31553887

RESUMO

Recent data suggested a causative role of uric acid (UA) in the development of renal disease, in which endothelial dysfunction is regarded as the key mechanism. Endothelial-to-mesenchymal transition (EndoMT) and shedding of the glycocalyx are early changes of endothelial dysfunction. We investigated whether UA induced EndoMT in HUVECs and an animal model of hyperuricemia fed with 2% oxonic acid for 4 wk. UA induced EndoMT in HUVECs with a generation of reactive oxygen species via the activation of membranous NADPH oxidase (from 15 min) and mitochondria (from 6 h) along with glycocalyx shedding (from 6 h), which were blocked by probenecid. GM6001, an inhibitor of matrix metalloproteinase, alleviated UA-induced glycocalyx shedding and EndoMT. Antioxidants including N-acetyl cysteine, apocynin, and mitotempo ameliorated EndoMT; however, they did not change glycocalyx shedding in HUVECs. In the kidney of hyperuricemic rats, endothelial staining in peritubular capillaries (PTCs) was substantially decreased with a de novo expression of α-smooth muscle actin in PTCs. Plasma level of syndecan-1 was increased in hyperuricemic rats, which was ameliorated by allopurinol. UA caused a phenotypic transition of endothelial cells via induction of oxidative stress with glycocalyx shedding, which could be one of the mechanisms of UA-induced endothelial dysfunction and kidney disease.-Ko, J., Kang, H.-J., Kim, D.-A., Kim, M.-J., Ryu, E.-S., Lee, S., Ryu, J.-H., Roncal, C., Johnson, R. J., Kang, D.-H. Uric acid induced the phenotype transition of vascular endothelial cells via induction of oxidative stress and glycocalyx shedding.


Assuntos
Endotélio Vascular/patologia , Glicocálix/patologia , Hiperuricemia/patologia , Nefropatias/patologia , Estresse Oxidativo/efeitos dos fármacos , Ácido Úrico/toxicidade , Alopurinol/toxicidade , Animais , Células Cultivadas , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Glicocálix/metabolismo , Supressores da Gota/toxicidade , Hiperuricemia/induzido quimicamente , Hiperuricemia/metabolismo , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Masculino , Fenótipo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
13.
Horm Metab Res ; 52(10): 732-741, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33049785

RESUMO

Association between vitamin D and uric acid is complex and might be bidirectional. Our study aimed to determine the bidirectional association between vitamin D and uric acid in adults. Using MEDLINE via PubMed and Scopus, we systematically searched for observational or interventional studies in adults, which assessed the association between serum vitamin D and serum uric acid, extracted the data, and conducted analysis by direct and network meta-analysis. The present review included 32 studies, of which 21 had vitamin D as outcome and 11 had uric acid as outcome. Meta-analysis showed a significant pooled beta coefficient of serum uric acid level on serum 25(OH)D level from 3 studies of 0.512 (95% confidence interval: 0.199, 0.825) and a significant pooled odds ratio between vitamin D deficiency and hyperuricemia of 1.496 (1.141, 1.963). The pooled mean difference of serum 25(OH)D between groups with hyperuricemia and normouricemia was non-significant at 0.138 (-0.430, 0.707) ng/ml, and the pooled mean difference of serum uric acid between categories of 25(OH)D were also non-significant at 0.072 (-0.153, 0.298) mg/dl between deficiency and normal, 0.038 (-0.216, 0.292) mg/dl between insufficiency and normal, and 0.034 (-0.216, 0.283) mg/dl between deficiency and insufficiency. In conclusion, increasing serum uric acid might be associated with increasing 25(OH)D level, while vitamin D deficiency is associated with hyperuricemia. These reverse relationships should be further evaluated in a longitudinal study.


Assuntos
Hiperuricemia/etiologia , Ácido Úrico/sangue , Deficiência de Vitamina D/complicações , Vitamina D/sangue , Humanos , Hiperuricemia/sangue , Hiperuricemia/patologia , Vitaminas/sangue
14.
Int J Mol Sci ; 21(11)2020 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-33561034

RESUMO

Since the publication of the Framingham Heart Study, which suggested that uric acid should no longer be associated with coronary heart disease after additional adjustment for cardiovascular disease risk factors, the number of publications challenging this statement has dramatically increased. The aim of this paper was to review and discuss the most recent studies addressing the possible relation between sustained elevated serum uric acid levels and the onset or worsening of cardiovascular and renal diseases. Original studies involving American teenagers clearly showed that serum uric acid levels were directly correlated with systolic and diastolic pressures, which has been confirmed in adult cohorts revealing a 2.21-fold increased risk of hypertension. Several studies involving patients with coronary artery disease support a role for serum uric acid level as a marker and/or predictor for future cardiovascular mortality and long-term adverse events in patients with coronary artery disease. Retrospective analyses have shown an inverse relationship between serum uric acid levels and renal function, and even a mild hyperuricemia has been shown to be associated with chronic kidney disease in patients with type 2 diabetes. Interventional studies, although of small size, showed that uric acid (UA)-lowering therapies induced a reduction of blood pressure in teenagers and a protective effect on renal function. Taken together, these studies support a role for high serum uric acid levels (>6 mg/dL or 60 mg/L) in hypertension-associated morbidities and should bring awareness to physicians with regards to patients with chronic hyperuricemia.


Assuntos
Doença da Artéria Coronariana/patologia , Diabetes Mellitus Tipo 2/patologia , Hipertensão/patologia , Hiperuricemia/patologia , Insuficiência Renal Crônica/patologia , Animais , Doença da Artéria Coronariana/tratamento farmacológico , Doença da Artéria Coronariana/etiologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Hipertensão/complicações , Hipertensão/tratamento farmacológico , Hiperuricemia/complicações , Hiperuricemia/tratamento farmacológico , Estudos Longitudinais , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/etiologia
15.
J Cell Physiol ; 234(8): 14364-14376, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30693505

RESUMO

The association between hyperuricemia or gout and cancer risk has been investigated in various published studies, but their results are conflicting. We conducted a meta-analysis to investigate whether hyperuricemia or gout was associated with the cancer incidence and mortality. Linear and nonlinear trend analyses were conducted to explore the dose-response association between them. The pooled relative risk (RR) and 95% confidence interval (CI) were used to evaluate cancer risk. A total of 24 articles (33 independent studies) were eligible for inclusion. When compared participants with the highest SUA (hyperuricemia) levels and those with the lowest SUA levels, the pooled RR was 1.08 (95% CI, 1.04-1.12), it was significantly associated among males but not among females (males, RR = 1.07; 95% CI, 1.03-1.11; females, RR = 1.06; 95% CI, 0.96-1.17). Hyperuricemia increased total cancer mortality (RR = 1.15; 95% CI, 1.05-1.26), but a significant association was observed in females rather than in males (females: RR = 1.26; 95% CI, 1.09-1.45; males, RR = 1.02; 95% CI, 0.80-1.30). Linear relationships of SUA levels with overall cancer incidence (p for nonlinearity = 0.238) and overall cancer mortality (p for nonlinearity = 0.263) were identified. However, 1 mg/dL increment in SUA levels was weakly significant in overall cancer incidence (RR = 1.01; 95% CI, 1.01-1.01) but not associated with overall cancer mortality (RR = 1.01; 95% CI, 0.99-1.03). Gout was significantly associated with increased cancer incidence (RR = 1.19; 95% CI, 1.12-1.25). In conclusion, Hyperuricemia or gout was associated with higher cancer incidence and mortality. Though a potential linear relationship between them was found, we'd better treat this result with caution.


Assuntos
Gota/mortalidade , Hiperuricemia/mortalidade , Neoplasias/mortalidade , Gota/complicações , Gota/patologia , Humanos , Hiperuricemia/complicações , Hiperuricemia/patologia , Neoplasias/complicações , Neoplasias/patologia , Fatores de Risco
16.
Am J Physiol Renal Physiol ; 316(4): F660-F673, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30648910

RESUMO

Extracellular signal-regulated kinases 1 and 2 (ERK1/2) are serine/threonine kinases and function as regulators of cellular proliferation and differentiation. Recently, we demonstrated that inhibition of ERK1/2 alleviates the development and progression of hyperuricemia nephropathy (HN). However, its potential roles in uric acid-induced tubular epithelial-mesenchymal transition (EMT) and tubular epithelial cell injury are unknown. In this study, we showed that hyperuricemic injury induced EMT as characterized by downregulation of E-cadherin and upregulation of vimentin and Snail1 in a rat model of HN. This was coincident with epithelial cells arrested at the G2/M phase of cell cycle, activation of Notch1/Jagged-1 and Wnt/ß-catenin signaling pathways, and upregulation of matrix metalloproteinase-2 (MMP-2) and MMP-9. Administration of U0126, a selective inhibitor of ERK1/2, blocked all these responses. U0126 was also effective in inhibiting renal tubular cell injury, as shown by decreased expression of lipocalin-2 and kidney injury molecule-1 and active forms of caspase-3. U0126 or ERK1/2 siRNA can inhibit tubular cell EMT and cell apoptosis as characterized with decreased expression of cleaved caspase-3. Moreover, ERK1/2 inhibition suppressed hyperuricemic injury-induced oxidative stress as indicated by decreased malondialdehyde and increased superoxide dismutase. Collectively, ERK1/2 inhibition-elicited renal protection is associated with inhibition of EMT through inactivation of multiple signaling pathways and matrix metalloproteinases, as well as attenuation of renal tubule injury by enhancing cellular resistance to oxidative stress.


Assuntos
Butadienos/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Hiperuricemia/patologia , Hiperuricemia/prevenção & controle , Nefropatias/patologia , Nefropatias/prevenção & controle , Túbulos Renais/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Nitrilas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Caderinas/metabolismo , Ciclo Celular/efeitos dos fármacos , Inativação Gênica , Lipocalina-2/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Masculino , Metaloproteinase 2 da Matriz/efeitos dos fármacos , Metaloproteinase 9 da Matriz/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Fatores de Transcrição da Família Snail/biossíntese , Vimentina/metabolismo
17.
Am J Physiol Gastrointest Liver Physiol ; 317(4): G484-G492, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31369290

RESUMO

Hyperuricemia is associated with many metabolic diseases. However, the underlying mechanism remains unknown. The gut microbiota has been demonstrated to play significant roles in the immunity and metabolism of the host. In the present study, we constructed a hyperuricemic mouse model to investigate whether the metabolic disorder caused by hyperuricemia is related to intestinal dysbiosis. A significantly increased intestinal permeability was detected in hyperuricemic mice. The difference in microflora between wild-type and hyperuricemic mice accompanies the translocation of gut microbiota to the extraintestinal tissues. Such a process is followed by an increase in innate immune system activation. We observed increased LPS and TNF-α levels in the hyperuricemic mice, indicating that hyperuricemic mice were in a state of low-grade systemic inflammation. In addition, hyperuricemic mice presented early injury of parenteral tissue and disordered lipid metabolism. These findings suggest that intestinal dysbiosis due to an impaired intestinal barrier may be the key cause of metabolic disorders in hyperuricemic mice. Our findings should aid in paving a new way of preventing and treating hyperuricemia and its complications.NEW & NOTEWORTHY Hyperuricemia is associated with many metabolic diseases. However, the underlying mechanism remains unknown. We constructed a hyperuricemic mouse model to explore the relationship between intestinal dysbiosis and metabolic disorder caused by hyperuricemia.


Assuntos
Hiperuricemia/patologia , Absorção Intestinal , Animais , Disbiose , Microbioma Gastrointestinal , Hiperuricemia/microbiologia , Imunidade Inata , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Permeabilidade , Fator de Necrose Tumoral alfa/metabolismo
18.
Biochem Biophys Res Commun ; 508(2): 440-444, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30502082

RESUMO

Hyperuricemia contributes to vascular injury and dysfunction, yet the potential mechanisms are not well understood. Uric acid (UA) has been found to stimulate macrophage migration inhibitory factor (MIF) up-regulation in renal tubules from rats subjected to UA-induced nephropathy. Given that MIF is able to induce vascular smooth muscle cell (VSMC) de-differentiation (from contractile state to a secretory state), we thus hypothesized that UA-induced vascular injury is via up-regulating of MIF in VSMCs, which enhancing vascular inflammation and VSMC transition. Within a mouse model of UA injection (500 mg/kg, twice/day, 14 days), we measured circulating and vascular MIF levels under UA stimulation at 6 h, day 1, and 14. We tested the efficacy of MIF inhibitor (10 mg/kg, twice/day, 14 days) on UA-induced vascular inflammation and remodeling. High plasma level of UA induced vascular MIF release into the plasma at acute phase. In the chronic phase, the protein level of MIF is up-regulated in the vessels. MIF inhibitor suppressed vascular inflammatory responses, repressed VSMC de-differentiation, and attenuated vascular remodeling and dysfunction following UA stimulation. Knockdown of MIF in cultured VSMCs repressed UA-induced de-differentiation. Our results provided a novel mechanism for MIF-mediated vascular injury in response to UA stimulation, and suggested that anti-MIF interventions may be of therapeutic value in hyperuricemic patients.


Assuntos
Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Remodelação Vascular/fisiologia , Animais , Desdiferenciação Celular/efeitos dos fármacos , Desdiferenciação Celular/fisiologia , Células Cultivadas , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Humanos , Hiperuricemia/patologia , Hiperuricemia/fisiopatologia , Oxirredutases Intramoleculares/antagonistas & inibidores , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/fisiologia , Fatores Inibidores da Migração de Macrófagos/genética , Fatores Inibidores da Migração de Macrófagos/fisiologia , Masculino , Camundongos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Ácido Úrico/toxicidade , Remodelação Vascular/efeitos dos fármacos , Vasculite/induzido quimicamente , Vasculite/prevenção & controle
19.
Pediatr Nephrol ; 34(5): 801-809, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29931555

RESUMO

The association between serum uric acid levels and human disease has garnered intense interest over the last decade including chronic kidney disease. Animal studies have provided evidence for a potential mechanistic role of uric acid in promoting progression of chronic kidney disease. Epidemiologic studies have also suggested an association between elevated serum uric acid levels and worsening renal function in the general population as well as in patients with chronic kidney disease. However, there is currently insufficient evidence to recommend the use of uric acid-lowering therapy to delay progression of chronic kidney disease in this patient population. Adequately powered, randomized, placebo-controlled trials are required to more precisely evaluate the risk and benefits of uric acid-lowering therapy in pediatric patients.


Assuntos
Supressores da Gota/administração & dosagem , Hiperuricemia/patologia , Insuficiência Renal Crônica/patologia , Ácido Úrico/sangue , Fatores Etários , Alopurinol/administração & dosagem , Alopurinol/efeitos adversos , Animais , Criança , Dietoterapia/métodos , Modelos Animais de Doenças , Progressão da Doença , Taxa de Filtração Glomerular/efeitos dos fármacos , Supressores da Gota/efeitos adversos , Humanos , Hiperuricemia/sangue , Hiperuricemia/fisiopatologia , Hiperuricemia/terapia , Estudos Observacionais como Assunto , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/fisiopatologia , Insuficiência Renal Crônica/terapia , Resultado do Tratamento
20.
Lipids Health Dis ; 18(1): 81, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30935401

RESUMO

BACKGROUND: The aim of this study was to determine the association between hypertriglyceridemia and hyperuricemia (HUA). METHODS: The study was conducted in 3884 subjects who had not received medication enrolled as a baseline. Each participant received at least three annual health check-ups between 2011 and 2017. The risk of hyperuricemia was assessed in four Quartiles (Q1 to Q4) according to TG levels using multivariate-adjusted logistic regression models. RESULTS: The total incidence rate of HUA was 62.3/1000 person-years. In the univariate analysis, the risk of hyperuricemia in people with hypertriglyceridemia was 2.353 times that of normal triglycerides, with a 95% confidence interval of (2.011, 2.754), and the risk of hyperuricemia in men was 1.86 times of female, and the 95% confidence interval is (1.634, 2.177). After adjusting the potential confounders, the relative risk RR of TG at Q2 Q3 Q4 was 1.445 (95%CI:1.114, 1.901), 2.075 (1.611, 2.674), 2.972 (2.322, 3.804). CONCLUSIONS: TG is an independent risk factor for hyperuricemia. As the level of TG increases, the risk of HUA increases.


Assuntos
Hipertrigliceridemia/epidemiologia , Hiperuricemia/epidemiologia , Metabolismo dos Lipídeos , Triglicerídeos/sangue , Adulto , Idoso , Feminino , Humanos , Hipertrigliceridemia/sangue , Hipertrigliceridemia/patologia , Hiperuricemia/sangue , Hiperuricemia/patologia , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Caracteres Sexuais , População Urbana , Ácido Úrico/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA