Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 70(3): 422-434.e6, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29681499

RESUMO

PRC2 is a therapeutic target for several types of cancers currently undergoing clinical trials. Its activity is regulated by a positive feedback loop whereby its terminal enzymatic product, H3K27me3, is specifically recognized and bound by an aromatic cage present in its EED subunit. The ensuing allosteric activation of the complex stimulates H3K27me3 deposition on chromatin. Here we report a stepwise feedback mechanism entailing key residues within distinctive interfacing motifs of EZH2 or EED that are found to be mutated in cancers and/or Weaver syndrome. PRC2 harboring these EZH2 or EED mutants manifested little activity in vivo but, unexpectedly, exhibited similar chromatin association as wild-type PRC2, indicating an uncoupling of PRC2 activity and recruitment. With genetic and chemical tools, we demonstrated that targeting allosteric activation overrode the gain-of-function effect of EZH2Y646X oncogenic mutations. These results revealed critical implications for the regulation and biology of PRC2 and a vulnerability in tackling PRC2-addicted cancers.


Assuntos
Regulação Alostérica/fisiologia , Cromatina/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Anormalidades Múltiplas/metabolismo , Linhagem Celular Tumoral , Hipotireoidismo Congênito/metabolismo , Anormalidades Craniofaciais/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Deformidades Congênitas da Mão/metabolismo , Histonas/metabolismo , Humanos , Neoplasias/metabolismo
2.
Mol Syst Biol ; 20(9): 1049-1075, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39103653

RESUMO

Many cellular processes are governed by protein-protein interactions that require tight spatial and temporal regulation. Accordingly, it is necessary to understand the dynamics of these interactions to fully comprehend and elucidate cellular processes and pathological disease states. To map de novo protein-protein interactions with time resolution at an organelle-wide scale, we developed a quantitative mass spectrometry method, time-resolved interactome profiling (TRIP). We apply TRIP to elucidate aberrant protein interaction dynamics that lead to the protein misfolding disease congenital hypothyroidism. We deconvolute altered temporal interactions of the thyroid hormone precursor thyroglobulin with pathways implicated in hypothyroidism pathophysiology, such as Hsp70-/90-assisted folding, disulfide/redox processing, and N-glycosylation. Functional siRNA screening identified VCP and TEX264 as key protein degradation components whose inhibition selectively rescues mutant prohormone secretion. Ultimately, our results provide novel insight into the temporal coordination of protein homeostasis, and our TRIP method should find broad applications in investigating protein-folding diseases and cellular processes.


Assuntos
Dobramento de Proteína , Humanos , Hipotireoidismo Congênito/metabolismo , Hipotireoidismo Congênito/genética , Proteína com Valosina/metabolismo , Proteína com Valosina/genética , Tireoglobulina/metabolismo , Espectrometria de Massas/métodos , Mapas de Interação de Proteínas , Mapeamento de Interação de Proteínas/métodos , Proteólise , Proteostase , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/genética
3.
Proc Natl Acad Sci U S A ; 119(45): e2210645119, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36322758

RESUMO

Thyroid hormones (THs) regulate gene expression by binding to nuclear TH receptors (TRs) in the cell. THs are indispensable for brain development. However, we have little knowledge about how congenital hypothyroidism in neurons affects functions of the central nervous system in adulthood. Here, we report specific TH effects on functional development of the cerebellum by using transgenic mice overexpressing a dominant-negative TR (Mf-1) specifically in cerebellar Purkinje cells (PCs). Adult Mf-1 mice displayed impairments in motor coordination and motor learning. Surprisingly, long-term depression (LTD)-inductive stimulation caused long-term potentiation (LTP) at parallel fiber (PF)-PC synapses in adult Mf-1 mice, although there was no abnormality in morphology or basal properties of PF-PC synapses. The LTP phenotype was turned to LTD in Mf-1 mice when the inductive stimulation was applied in an extracellular high-Ca2+ condition. Confocal calcium imaging revealed that dendritic Ca2+ elevation evoked by LTD-inductive stimulation is significantly reduced in Mf-1 PCs but not by PC depolarization only. Single PC messenger RNA quantitative analysis showed reduced expression of SERCA2 and IP3 receptor type 1 in Mf-1 PCs, which are essential for mGluR1-mediated internal calcium release from endoplasmic reticulum in cerebellar PCs. These abnormal changes were not observed in adult-onset PC-specific TH deficiency mice created by adeno-associated virus vectors. Thus, we propose the importance of TH action during neural development in establishing proper cerebellar function in adulthood, independent of its morphology. The present study gives insight into the cellular and molecular mechanisms underlying congenital hypothyroidism-induced dysfunctions of central nervous system and cerebellum.


Assuntos
Hipotireoidismo Congênito , Células de Purkinje , Camundongos , Animais , Células de Purkinje/metabolismo , Potenciação de Longa Duração/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Cálcio/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Depressão , Hipotireoidismo Congênito/metabolismo , Sinapses/metabolismo , Cerebelo/fisiologia
4.
Horm Behav ; 162: 105548, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636205

RESUMO

Thyroid hormones are crucial for brain development and their deficiency during fetal and postnatal periods can lead to mood and cognitive disorders. We aimed to examine the consequences of thyroid hormone deficiency on anxiety-related behaviors and protein expression of hippocampal glutamate transporters in congenital hypothyroid male offspring rats. Possible beneficial effects of treadmill exercise have also been examined. Congenital hypothyroidism was induced by adding propylthiouracil (PTU) to drinking water of pregnant Wistar rats from gestational day 6 until the end of the weaning period (postnatal day 28). Next, following 4 weeks of treadmill exercise (5 days per week), anxiety-related behaviors were examined using elevated plus maze (EPM) and light/dark box tests. Thereafter, protein expression of astrocytic (GLAST and GLT-1) and neuronal (EAAC1) glutamate transporters were measured in the hippocampus by immunoblotting. Hypothyroid rats showed decreased anxiety-like behavior, as measured by longer time spent in the open arms of the EPM and in the light area of the light/dark box, compared to control rats. Hypothyroid rats had significantly higher GLAST and GLT-1 and lower EAAC1 protein levels in the hippocampus than did the euthyroid rats. Following exercise, anxiety levels decreased in the euthyroid group while protein expression of EAAC1 increased and returned to normal levels in the hypothyroid group. Our findings indicate that thyroid hormone deficiency was associated with alterations in protein expression of glutamate transporters in the hippocampus. Up-regulation of hippocampal GLAST and GLT-1 could be at least one of the mechanisms associated with the anxiolytic effects of congenital hypothyroidism.


Assuntos
Ansiedade , Hipotireoidismo Congênito , Transportador 2 de Aminoácido Excitatório , Hipocampo , Ratos Wistar , Animais , Masculino , Hipocampo/metabolismo , Ansiedade/metabolismo , Ansiedade/etiologia , Ratos , Feminino , Hipotireoidismo Congênito/metabolismo , Gravidez , Transportador 2 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Hormônios Tireóideos/metabolismo , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 1 de Aminoácido Excitatório/genética , Transportador 3 de Aminoácido Excitatório/metabolismo , Transportador 3 de Aminoácido Excitatório/genética , Comportamento Animal/fisiologia , Propiltiouracila , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Sistema X-AG de Transporte de Aminoácidos/genética , Efeitos Tardios da Exposição Pré-Natal/metabolismo
5.
Mol Cell Proteomics ; 20: 100008, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33581410

RESUMO

Thyroglobulin (Tg) is a secreted iodoglycoprotein serving as the precursor for triiodothyronine and thyroxine hormones. Many characterized Tg gene mutations produce secretion-defective variants resulting in congenital hypothyroidism. Tg processing and secretion is controlled by extensive interactions with chaperone, trafficking, and degradation factors comprising the secretory proteostasis network. While dependencies on individual proteostasis network components are known, the integration of proteostasis pathways mediating Tg protein quality control and the molecular basis of mutant Tg misprocessing remain poorly understood. We employ a multiplexed quantitative affinity purification-mass spectrometry approach to define the Tg proteostasis interactome and changes between WT and several congenital hypothyroidism variants. Mutant Tg processing is associated with common imbalances in proteostasis engagement including increased chaperoning, oxidative folding, and engagement by targeting factors for endoplasmic reticulum-associated degradation. Furthermore, we reveal mutation-specific changes in engagement with N-glycosylation components, suggesting distinct requirements for 1 Tg variant on dual engagement of both oligosaccharyltransferase complex isoforms for degradation. Modulating dysregulated proteostasis components and pathways may serve as a therapeutic strategy to restore Tg secretion and thyroid hormone biosynthesis.


Assuntos
Hipotireoidismo Congênito/metabolismo , Tireoglobulina/metabolismo , Linhagem Celular , Hipotireoidismo Congênito/genética , Humanos , Mutação , Mapas de Interação de Proteínas , Proteômica , Proteostase , Espectrometria de Massas em Tandem , Tireoglobulina/genética
6.
FASEB J ; 35(8): e21681, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34196428

RESUMO

The sodium/iodide symporter (NIS) expresses at the basolateral plasma membrane of the thyroid follicular cell and mediates iodide accumulation required for normal thyroid hormonogenesis. Loss-of-function NIS variants cause congenital hypothyroidism due to impaired iodide accumulation in thyroid follicular cells underscoring the significance of NIS for thyroid physiology. Here we report novel findings derived from the thorough characterization of the nonsense NIS mutant p.R636* NIS-leading to a truncated protein missing the last eight amino acids-identified in twins with congenital hypothyroidism. R636* NIS is severely mislocalized into intracellular vesicular compartments due to the lack of a conserved carboxy-terminal type 1 PDZ-binding motif. As a result, R636* NIS is barely targeted to the plasma membrane and therefore iodide transport is reduced. Deletion of the PDZ-binding motif causes NIS accumulation into late endosomes and lysosomes. Using PDZ domain arrays, we revealed that the PDZ-domain containing protein SCRIB binds to the carboxy-terminus of NIS by a PDZ-PDZ interaction. Furthermore, in CRISPR/Cas9-based SCRIB deficient cells, NIS expression at the basolateral plasma membrane is compromised, leading to NIS localization into intracellular vesicular compartments. We conclude that the PDZ-binding motif is a plasma membrane retention signal that participates in the polarized expression of NIS by selectively interacting with the PDZ-domain containing protein SCRIB, thus retaining the transporter at the basolateral plasma membrane. Our data provide insights into the molecular mechanisms that regulate NIS expression at the plasma membrane, a topic of great interest in the thyroid cancer field considering the relevance of NIS-mediated radioactive iodide therapy for differentiated thyroid carcinoma.


Assuntos
Proteínas de Membrana/metabolismo , Simportadores/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Membrana Celular/metabolismo , Códon sem Sentido , Hipotireoidismo Congênito/genética , Hipotireoidismo Congênito/metabolismo , Sequência Conservada , Cães , Endossomos/metabolismo , Células HEK293 , Humanos , Lisossomos/metabolismo , Células Madin Darby de Rim Canino , Proteínas de Membrana/química , Proteínas de Membrana/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Domínios PDZ/genética , Estrutura Secundária de Proteína , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Simportadores/química , Simportadores/genética , Glândula Tireoide/metabolismo , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética
7.
Horm Metab Res ; 53(5): 311-318, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33862642

RESUMO

The contribution of PAX8 genetic variants to congenital hypothyroidism (CH) is not well understood. We aimed to study the genetic variability of exons 3 and 5 of PAX8 gene among a cohort of children with congenital hypothyroidism in correspondence to their clinical aspect. Blood samples were collected from 117 children (63 girls and 54 boys) with CH and enrolled as cases (Group I). All cases underwent biochemical confirmation with low FT4 and high TSH levels and thyroid gland imaging, along with equal number of matched apparently healthy individuals who served as controls (Group II). Genomic materials for exons 3 and 5 of PAX8 gene were extracted, amplified by PCR, detected by electrophoresis, purified, and sequenced by the Sanger technique through the application of ABI 3730x1 DNA Sequencer. Out of 117 cases, eight different effective PAX8 mutations were detected in exon 3 (G23D, V35I, I34T, Q40P, p.R31C, p.R31H, p.R31A, and p.I47T) in 14 patients with their sonographic findings ranged from normal, hypoplastic to thyroid agenesis. Besides the reported mutations, one novel mutation; R31A was detected in 1 euotopic case. Exon 5 analysis revealed no detected mutations elsewhere. In contrast, all healthy control children showed no mutation and normal sonographic findings. Mutations in exon 3 of PAX8 gene, implies its important role in thyroid development and function, as a first estimate of PA8 mutation rate in Egyptian patients with CH having normal and dysgenetic gland. Using ultrasound is mandatory for diagnosis and guiding the treatment of children with CH.


Assuntos
Hipotireoidismo Congênito/genética , Fator de Transcrição PAX8/genética , Sequência de Aminoácidos , Criança , Pré-Escolar , Estudos de Coortes , Hipotireoidismo Congênito/diagnóstico por imagem , Hipotireoidismo Congênito/metabolismo , Hipotireoidismo Congênito/terapia , Éxons , Feminino , Variação Genética , Humanos , Lactente , Masculino , Mutação , Fator de Transcrição PAX8/química , Fator de Transcrição PAX8/metabolismo , Alinhamento de Sequência , Glândula Tireoide/diagnóstico por imagem , Glândula Tireoide/metabolismo , Ultrassonografia
8.
Horm Metab Res ; 52(11): 815-821, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32559769

RESUMO

Thyroid hormone deficiency during crucial stages of development causes congenital hypothyroidism. This syndrome alters hypothalamic pathways involved in long-term bodyweight regulation as ObRb-STAT3 leptin signaling pathway, which is associated with metabolic syndrome. This study aimed to determine if thyroxine treatment during pregnancy and lactation in hypothyroid mothers avoids, in the congenital hypothyroid offspring, the alterations in metabolic programming related to metabolic syndrome and the ObRb-STAT3 leptin signaling pathway in hypothalamus. Twenty-four virgin female Wistar rats were divided into euthyroid, hypothyroid, and hypothyroid with thyroxine treatment (20 µg/kg/day T4 since pregnancy until lactation). The bodyweight and energy intake, insulin resistance, glucose tolerance, metabolic and hormonal parameters were determined in offspring at 28 weeks after birth. Then, the rats were euthanized to obtain adipose tissue reserves and hypothalamus to measure the expression of ObRb, STAT3, pSTAT3, and SOCS3. Congenital hypothyroidism presented metabolic syndrome such as insulin resistance, glucose tolerance, dyslipidemias, an increase in cardiovascular risk (Castelli I males:166.67%, females: 173.56%; Castelli II males: 375.51%, females: 546.67%), and hypothalamic leptin resistance (SOCS3, Males: 10.96%, females: 25.85%). Meanwhile, the thyroxine treatment in the mothers during pregnancy and lactation prevents the metabolic disturbance. In conclusion, thyroxine treatment during the critical perinatal stage for metabolic programming prevents congenital hypothyroidism-caused metabolic syndrome and hypothalamic leptin resistance.


Assuntos
Hipotireoidismo Congênito/tratamento farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Leptina/metabolismo , Receptores para Leptina/metabolismo , Fator de Transcrição STAT3/metabolismo , Tiroxina/administração & dosagem , Animais , Animais Recém-Nascidos , Hipotireoidismo Congênito/etiologia , Hipotireoidismo Congênito/metabolismo , Hipotireoidismo Congênito/patologia , Feminino , Masculino , Ratos , Ratos Wistar , Receptores para Leptina/genética , Fator de Transcrição STAT3/genética , Transdução de Sinais
9.
Pediatr Dev Pathol ; 23(4): 285-295, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32212960

RESUMO

INTRODUCTION: The objective of this study is to investigate the role of thyroid hormone (TH) in the pathogenesis of intestinal dysganglionosis (ID). METHODS: A zebrafish model of congenital hypothyroidism (CH) was created by exposing the larvae to the 6-propyl-2-thiouracil (PTU). The enteric neurons were labeled with anti-HuC/D antibodies. The number of enteric neurons was counted. The larval intestine was dissociated and stained with anti-p75 and anti-α4 integrin antibodies. Mitosis and apoptosis of the p75+ α4 integrin+ enteric neural crest cells (ENCCs) were studied using flow cytometry. Intestinal motility was studied by analyzing the transit of fluorescent tracers. RESULTS: PTU (25 mg/L) significantly reduced TH production at 6- and 9-days post fertilization without changing the body length, body weight, and intestinal length of the larvae. Furthermore, PTU inhibited mitosis of ENCCs and reduced the number of enteric neurons throughout the larval zebrafish intestine. Importantly, PTU inhibited intestinal transit of fluorescent tracers. Finally, thyroxine supplementation restored ENCC mitosis, increased the number of enteric neurons, and recovered intestinal motility in the PTU-treated larvae. CONCLUSIONS: PTU inhibited TH production, reduced the number of enteric neurons, impaired intestinal motility, and impeded ENCC mitosis in zebrafish, suggesting a possible role of CH in the pathogenesis of ID.


Assuntos
Hipotireoidismo Congênito/complicações , Sistema Nervoso Entérico/embriologia , Doença de Hirschsprung/embriologia , Hormônios Tireóideos/metabolismo , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Movimento Celular , Proliferação de Células , Hipotireoidismo Congênito/embriologia , Hipotireoidismo Congênito/metabolismo , Hipotireoidismo Congênito/patologia , Sistema Nervoso Entérico/metabolismo , Sistema Nervoso Entérico/patologia , Citometria de Fluxo , Motilidade Gastrointestinal , Doença de Hirschsprung/metabolismo , Doença de Hirschsprung/patologia , Crista Neural/embriologia , Crista Neural/metabolismo , Crista Neural/patologia , Peixe-Zebra
10.
Hum Mol Genet ; 26(13): 2507-2514, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28444304

RESUMO

Congenital hypothyroidism (CH), the most frequent form of preventable mental retardation, is predicted to have a relevant genetic origin. However, CH is frequently reported to be sporadic and candidate gene variations were found in <10% of the investigated patients. Here, we characterize the involvement of 11 candidate genes through a systematic Next Generation Sequencing (NGS) analysis. The NGS was performed in 177 unrelated CH patients (94 gland-in-situ; 83 dysgenesis) and in 3,538 control subjects. Non-synonymous or splicing rare variants (MAF < 0.01) were accepted, and their functional impact was predicted by a comprehensive bioinformatic approach and co-segregation studies. The frequency of variations in cases and controls was extended to 18 CH-unrelated genes. At least one rare variant was accepted in 103/177 patients. Monogenic recessive forms of the disease were found in five cases, but oligogenic involvement was detected in 39 patients. The 167 variations were found to affect all genes independently of the CH phenotype. These findings were replicated in an independent cohort of additional 145 CH cases. When compared to 3,538 controls, the CH population was significantly enriched with disrupting variants in the candidate genes (P = 5.5 × 10-7), but not with rare variations in CH-unrelated genes. Co-segregation studies of the hypothyroid phenotype with multiple gene variants in several pedigrees confirmed the potential oligogenic origin of CH. The systematic NGS approach reveals the frequent combination of rare variations in morphogenetic or functional candidate genes in CH patients independently of phenotype. The oligogenic origin represents a suitable explanation for the frequent sporadic CH occurrence.


Assuntos
Hipotireoidismo Congênito/genética , Estudos de Coortes , Biologia Computacional/métodos , Hipotireoidismo Congênito/metabolismo , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Itália , Masculino , Herança Multifatorial/genética , Mutação , Linhagem , Fenótipo
11.
Horm Metab Res ; 51(5): 330-335, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30943548

RESUMO

The goal of this study is to investigate whether congenital hypothyroidism induced by MMI during gestation (G) or gestation plus lactation (GL) would affect the leptin action upon body weight control on hypothalamus. Six to eight pups per group were killed at 90 days of age. For statistical analysis one-way ANOVA followed by the Holm-Sìdak post hoc test was used. Hypothyroidism resulted in a significant increase in leptin serum levels in G 20% and GL 25% (p<0.04). There was a significant expression decrease of OBR in G 45% and GL 63%; pSTAT3 in G 56% and GL 51%; pERK in G 50% and GL 48%; POMC in G 41% and GL 46% (p<0.04), while a significant increase was assigned to SOCS3 in G 52% and GL 170% (p<0.04) protein expression. We can conclude that hypothyroxinemia condition in rats on adulthood results in impairment of the leptin signaling pathway via ObRb-STAT3 in the hypothalamus, which is likely to be involved in the leptin resistance.


Assuntos
Envelhecimento/metabolismo , Hipotireoidismo Congênito/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Transdução de Sinais , Animais , Peso Corporal , Hipotireoidismo Congênito/sangue , Comportamento Alimentar , Feminino , Hormônios/sangue , Leptina/sangue , Masculino , Ratos Wistar
12.
Int J Mol Sci ; 20(22)2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31703413

RESUMO

1) Background: Central congenital hypothyroidism (CCH) is a rare endocrine disorder that can be caused by mutations in the ß-subunit of thyrotropin (TSHB). The TSHB mutation C105Vfs114X leads to isolated thyroid-stimulating-hormone-(TSH)-deficiency and results in a severe phenotype. The aim of this study was to gain more insight into the underlying molecular mechanism and the functional effects of this mutation based on two assumptions: a) the three-dimensional (3D) structure of TSH should be modified with the C105V substitution, and/or b) whether the C-terminal modifications lead to signaling differences. 2) Methods: wild-type (WT) and different mutants of hTSH were generated in human embryonic kidney 293 cells (HEK293 cells) and TSH preparations were used to stimulate thyrotropin receptor (TSHR) stably transfected into follicular thyroid cancer cells (FTC133-TSHR cells) and transiently transfected into HEK293 cells. Functional characterization was performed by determination of Gs, mitogen activated protein kinase (MAPK) and Gq/11 activation. 3) Results: The patient mutation C105Vfs114X and further designed TSH mutants diminished cyclic adenosine monophosphate (cAMP) signaling activity. Surprisingly, MAPK signaling for all mutants was comparable to WT, while none of the mutants induced PLC activation. 4) Conclusion: We characterized the patient mutation C105Vfs114X concerning different signaling pathways. We identified a strong decrease of cAMP signaling induction and speculate that this could, in combination with diverse signaling regarding the other pathways, accounting for the patient's severe phenotype.


Assuntos
Hipotireoidismo Congênito , Sistema de Sinalização das MAP Quinases , Mutação , Receptores da Tireotropina , Sistemas do Segundo Mensageiro , Tireotropina Subunidade beta , Linhagem Celular Tumoral , Hipotireoidismo Congênito/genética , Hipotireoidismo Congênito/metabolismo , AMP Cíclico/genética , AMP Cíclico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Domínios Proteicos , Receptores da Tireotropina/química , Receptores da Tireotropina/genética , Receptores da Tireotropina/metabolismo , Tireotropina Subunidade beta/química , Tireotropina Subunidade beta/genética , Tireotropina Subunidade beta/metabolismo
13.
Cell Physiol Biochem ; 43(6): 2338-2352, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29073628

RESUMO

BACKGROUND/AIMS: Transient congenital hypothyroidism (TCH) could disturb carbohydrate metabolism in adulthood. Aging is associated with increased risk of type 2 diabetes. This study aims to address effects of TCH on mRNA expressions of glucose transporters (GLUTs) and glucokinase (GcK) in islets and insulin target tissues of aged offspring rats. METHODS: The TCH group received water containing 0.025% 6-propyl-2-thiouracil during gestation. Offspring from control and TCH groups (n=6 in each group) were followed until month 19. Gene expressions of GLUTs and GcK were measured at months 3 and 19. RESULTS: Compared to controls, aged TCH rats had higher GLUT4 expression in heart (4.88 fold) and soleus (6.91 fold), while expression was lower in epididymal fat (12%). In TCH rats, GLUT2 and GcK expressions in islets were lower in young (12% and 10%, respectively) and higher in aged (10.85 and 8.42 fold, respectively) rats. In addition, liver GLUT2 and GcK expressions were higher in young (13.11 and 21.15 fold, respectively) and lower in aged rats (44% and 5%, respectively). CONCLUSION: Thyroid hormone deficiency during fetal period impaired glucose sensing apparatus and changed glucose transporter expression in insulin-sensitive tissues of aged offspring rats. These changes may contribute to impaired carbohydrate metabolism.


Assuntos
Envelhecimento , Hipotireoidismo Congênito/patologia , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 2/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Animais , Glicemia/análise , Peso Corporal , Hipotireoidismo Congênito/metabolismo , Hipotireoidismo Congênito/veterinária , Glucoquinase/genética , Glucoquinase/metabolismo , Teste de Tolerância a Glucose , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 4/genética , Insulina/análise , Ilhotas Pancreáticas/metabolismo , Fígado/metabolismo , Masculino , Miocárdio/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Tireotropina/sangue , Tiroxina/sangue , Transcriptoma , Tri-Iodotironina/sangue
14.
Endocr J ; 64(11): 1087-1097, 2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-28867693

RESUMO

Thyroid peroxidase (TPO) deficiency, caused by biallelic TPO mutations, is a well-established genetic form of congenital hypothyroidism (CH). More than 100 patients have been published, and the patients have been diagnosed mostly in the frame of newborn screening (NBS) programs. Correlation between clinical phenotypes and TPO activity remains unclear. Here, we report clinical and molecular findings of two unrelated TPO mutation-carrying mildly hypothyroid patients. The two patients were born at term after an uneventful pregnancy and delivery, and were NBS negative. They sought medical attention due to goiter at age 8 years. Evaluation of the thyroid showed mild elevation of serum TSH levels, normal or slightly low serum T4 levels, high serum T3 to T4 molar ratio, high serum thyroglobulin levels, and high thyroidal 123I uptake. We performed next-generation sequencing-based genetic screening, and found that one patient was compound heterozygous for two novel TPO mutations (p.Asp224del; c.820-2A>G), and the other was homozygous for a previously known mutation (p.Trp527Cys). In vitro functional analyses using HEK293 cells showed that the two amino acid-altering mutations (p.Asp224del and p.Trp527Cys) caused partial loss of the enzymatic activity. In conclusion, we report that TPO mutations with residual activity are associated with mild TPO deficiency, which is clinically characterized by marked goiter, mild TSH elevation, high serum T3 to T4 molar ratio, and high serum thyroglobulin levels. Our findings illuminate the hitherto under-recognized correlation between clinical phenotypes and residual enzymatic activity among patients with TPO deficiency.


Assuntos
Autoantígenos/genética , Autoantígenos/metabolismo , Hipotireoidismo Congênito/genética , Hipotireoidismo Congênito/metabolismo , Iodeto Peroxidase/deficiência , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Mutação , Criança , Hipotireoidismo Congênito/diagnóstico , Hipotireoidismo Congênito/patologia , Análise Mutacional de DNA , Feminino , Estudos de Associação Genética , Testes Genéticos , Células HEK293 , Humanos , Recém-Nascido , Iodeto Peroxidase/genética , Iodeto Peroxidase/metabolismo , Masculino , Triagem Neonatal , Linhagem , Fenótipo , Índice de Gravidade de Doença
15.
Rev Endocr Metab Disord ; 17(4): 499-519, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27154040

RESUMO

Abnormalities in thyroid function are common endocrine disorders that affect 5-10 % of the general population, with hypothyroidism occurring more frequently than hyperthyroidism. Clinical symptoms and signs are often nonspecific, particularly in hypothyroidism. Muscular symptoms (stiffness, myalgias, cramps, easy fatigability) are mentioned by the majority of patients with frank hypothyroidism. Often underestimated is the fact that muscle symptoms may represent the predominant or the only clinical manifestation of hypothyroidism, raising the issue of a differential diagnosis with other causes of myopathy, which sometimes can be difficult. Elevated serum creatine kinase, which not necessarily correlates with the severity of the myopathic symptoms, is certainly suggestive of muscle impairment, though it does not explain the cause. Rare muscular manifestations, associated with hypothyroidism, are rhabdomyolysis, acute compartment syndrome, Hoffman's syndrome and Kocher-Debré-Sémélaigne syndrome. Though the pathogenesis of hypothyroid myopathy is not entirely known, proposed mechanisms include altered glycogenolytic and oxidative metabolism, altered expression of contractile proteins, and neuro-mediated damage. Correlation studies of haplotype, muscle gene expression and protein characterization, could help understanding the pathophysiological mechanisms of this myopathic presentation of hypothyroidism.


Assuntos
Hipotireoidismo/patologia , Doenças Musculares/patologia , Glândula Tireoide/patologia , Animais , Hipotireoidismo Congênito/metabolismo , Hipotireoidismo Congênito/patologia , Humanos , Hipertrofia/metabolismo , Hipertrofia/patologia , Hipotireoidismo/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Doenças Musculares/metabolismo , Rabdomiólise/metabolismo , Rabdomiólise/patologia , Glândula Tireoide/metabolismo
16.
Nitric Oxide ; 55-56: 82-90, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27074518

RESUMO

Aging is associated with increased prevalence of cardiovascular disease. Thyroid hormone deficiency during fetal life decreases myocardial tolerance to ischemia-reperfusion (IR) injury in later life. The long-term effects of fetal hypothyroidism (FH) on response to IR injury in aged rats have not been well documented. The aim of this study was therefore to compare the effect of FH on tolerance to IR injury in young and aged male rats and to determine contribution of iNOS (inducible nitric oxide synthase), Bax, and Bcl-2. Pregnant female rats were divided into two groups: The FH group received water containing 0.025% 6-propyl-2-thiouracil during gestation and the controls consumed tap water. Isolated perfused hearts from young (3 months) and aged (12 months) rats were subjected to IR. Hemodynamic parameters, infarct size, and heart NOx (nitrite+nitrate) levels were measured; in addition, mRNA expression of iNOS, Bax, and Bcl-2 and their protein levels in heart were measured. Recovery of post-ischemic LVDP and ±dp/dt were lower and infarct sizes were higher than controls in aged FH rats (68.38 ± 6.7% vs. 50.5 ± 1.7%; P < 0.05). Aged FH rats had higher heart NOx values than controls (74.3 ± 2.6 vs. 47.6 ± 2.5 µmol/L, P < 0.05). After IR, in FH rats, mRNA expression of iNOS and Bax were higher and Bcl-2 was lower in both the young (350 and 240% for iNOS and Bax, respectively and 51% for Bcl-2) and aged rats (504 and 567% for iNOS and Bax, respectively and 67% for Bcl-2). Compared to controls, in FH rats protein levels of iNOS (37% for young and 45% for aged rats) and Bax (94% for young and 118% for aged rats) were higher while for Bcl-2 (36% for young and 62% for aged rats) were lower. After IR, in FH rats, aminoguanidine, a selective iNOS inhibitor, decreased mRNA expression of iNOS and Bax and increased expression of Bcl-2 in both young (65% and 58% for iNOS and Bax, respectively and 152% for Bcl-2) and aged rats (76% and 64% for iNOS and Bax, respectively and 222% for Bcl-2). In addition, in the heart of FH rats, aminoguanidine decreased protein levels of iNOS (47% for young and 60% for aged rats) and Bax (57% for young and 80% for aged rats) and increased protein levels of Bcl-2 (124% for young and 180% for aged rats). In conclusion, thyroid hormone deficiency during fetal life decreases tolerance to IR injury in aged rats; this effect is at least in part, due to increased expression of iNOS and Bax-to-Bcl-2 ratio in the heart and is restored by iNOS inhibition.


Assuntos
Envelhecimento/metabolismo , Hipotireoidismo Congênito/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Óxido Nítrico/metabolismo , Animais , Hipotireoidismo Congênito/complicações , Creatina Quinase/metabolismo , L-Lactato Desidrogenase/metabolismo , Masculino , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Nitratos/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Nitritos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA/metabolismo , Ratos Wistar , Regulação para Cima , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
17.
Clin Endocrinol (Oxf) ; 83(3): 394-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25263060

RESUMO

OBJECTIVES: Mutations in the dual oxidase 2 gene (DUOX2) is the most common genetic cause of congenital hypothyroidism (CH) in Japan. All previously described DUOX2 mutation-carrying families have followed autosomal recessive inheritance. We report a nonconsanguineous Japanese family harbouring biallelic DUOX2 mutations, which presented an apparently dominant inheritance of nonautoimmune hypothyroidism. DESIGN AND METHODS: The proband and her two sisters had been diagnosed as having CH on newborn screening and were treated with levothyroxine. Their mother had subclinical hypothyroidism. We sequenced DUOX2 in the proband and her family members. Pathogenicity of the identified novel mutation (p.Y1347C) was verified in vitro. RESULTS: We found that the proband and her sisters were compound heterozygous for a novel DUOX2 mutation p.Y1347C and a previously reported functional variant p.H678R. Unexpectedly, we found that the mother was homozygous for p.H678R. Expression experiments showed that the p.Y1347C mutant had reduced H2 O2 -producing activity, although there was no significant difference in the level of protein expression or localization, between wild type and p.Y1347C. CONCLUSIONS: We report a DUOX2 mutation-carrying pedigree presenting pseudodominant inheritance of nonautoimmune hypothyroidism. We speculate that the relatively high frequency of DUOX2 mutations could lead to pseudodominant inheritance in Japan.


Assuntos
Hipotireoidismo Congênito/genética , Genes Dominantes , Padrões de Herança/genética , Mutação de Sentido Incorreto , NADPH Oxidases/genética , Alelos , Hipotireoidismo Congênito/metabolismo , Análise Mutacional de DNA , Oxidases Duais , Saúde da Família , Feminino , Genótipo , Humanos , Immunoblotting , Masculino , Microscopia de Fluorescência , NADPH Oxidases/metabolismo , Linhagem
18.
J Endocrinol Invest ; 38(8): 835-40, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25916430

RESUMO

BACKGROUND: In the last decades, a higher incidence of congenital hypothyroidism (CH) has been recorded in Italy (1:1940) and worldwide, mainly due to the shift to lower screening TSH cutoffs. Although CH can also be caused by dysgenetic defects, most CH cases have recently been found to be more frequently associated with functional defects of an in situ thyroid gland. Although the clinical phenotype is milder with high prevalence of transient forms, some cases eventually prove to be permanent. RESULTS: Possible explanations of the raised incidence of CH are ethnic modifications of the screened population and the increasing incidence of preterm birth and multiple pregnancies. These findings are important in terms of public health and standardization of screening programmes for special at-risk categories such as preterms, acutely ill term neonates, low birth weight and very low birth weight infants, and newborns with specific drug exposure. Other environmental factors have contributed to the increased incidence of hypothyroidism, including thyroid disrupting chemicals, iodine supply (excess/deficiency), and drugs interfering with thyroid function. Finally, an increased prevalence of hypothyroidism has been documented in obese children and patients with syndromic forms (Williams, Down, Turner, pseudohypoparathyroidism). The clinical and molecular phenotype of patients with CH will be better defined thanks to novel genetic approach based on the systematic analysis of a panel of genes (TSHR, DUOX2, DUOXA, TPO, PDS, TG, NKX2.1, JAG1, GLIS3, FOXE1, PAX-8). CONCLUSIONS: This review summarizes significant advances in the epidemiology and aetiology of non-autoimmune hypothyroidism, with a focus on thyroid dysfunction in preterm infants.


Assuntos
Hipotireoidismo Congênito/diagnóstico , Hipotireoidismo Congênito/genética , Recém-Nascido Prematuro , Fenótipo , Criança , Hipotireoidismo Congênito/metabolismo , Humanos , Recém-Nascido Prematuro/metabolismo
19.
Thyroid ; 34(5): 659-667, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38482822

RESUMO

Background: Congenital hypothyroidism (CH) is caused by mutations in cysteine residues, including Cys655 and Cys825 that form disulfide bonds in thyroid peroxidase (TPO). It is highly likely that these disulfide bonds could play an important role in TPO activity. However, to date, no study has comprehensively analyzed cysteine mutations that form disulfide bonds in TPO. In this study, we induced mutations in cysteine residues involved in disulfide bonds formation and analyzed their effect on subcellular localization, degradation, and enzyme activities to evaluate the importance of disulfide bonds in TPO activity. Methods: Vector plasmid TPO mutants, C655F and C825R, known to occur in CH, were transfected into HEK293 cells. TPO activity and protein expression levels were measured by the Amplex red assay and Western blotting. The same procedure was performed in the presence of MG132 proteasome inhibitor. Subcellular localization was determined using immunocytochemistry and flow cytometry. The locations of all disulfide bonds within TPO were predicted using in silico analysis. All TPO mutations associated with disulfide bonds were induced. TPO activity and protein expression levels were also measured in all TPO mutants associated with disulfide bonds using the Amplex red assay and Western blotting. Results: C655F and C825R showed significantly decreased activity and protein expression compared with the wild type (WT) (p < 0.05). In the presence of the MG132 proteasome inhibitor, the protein expression level of TPO increased to a level comparable with that of the WT without increases in its activity. The degree of subcellular distribution of TPO to the cell surface in the mutants was lower compared with the WT TPO. Twenty-four cysteine residues were involved in the formation of 12 disulfide bonds in TPO. All TPO mutants harboring an amino acid substitution in each cysteine showed significantly reduced TPO activity and protein expression levels. Furthermore, the differences in TPO activity depended on the position of the disulfide bond. Conclusions: All 12 disulfide bonds play an important role in the activity of TPO. Furthermore, the mutations lead to misfolding, degradation, and membrane insertion.


Assuntos
Dissulfetos , Iodeto Peroxidase , Complexo de Endopeptidases do Proteassoma , Humanos , Iodeto Peroxidase/metabolismo , Iodeto Peroxidase/genética , Iodeto Peroxidase/química , Células HEK293 , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Dissulfetos/metabolismo , Dissulfetos/química , Mutação , Hipotireoidismo Congênito/genética , Hipotireoidismo Congênito/metabolismo , Cisteína/metabolismo , Proteólise , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Autoantígenos
20.
Semin Cell Dev Biol ; 22(6): 645-52, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21802524

RESUMO

Iodine is an essential component of the hormones produced by the thyroid gland. Thyroid hormones, and therefore iodine, are essential for mammalian life. Iodine deficiency is a major public health problem; globally, it is estimated that two billion individuals have an insufficient iodine intake. Although goiter is the most visible sequelae of iodine deficiency, the major impact of hypothyroidism due to iodine deficiency is impaired neurodevelopment, particularly early in life. In the fetal brain, inadequate thyroid hormone impairs myelination, cell migration, differentiation and maturation. Moderate-to-severe iodine deficiency during pregnancy increases rates of spontaneous abortion, reduces birth weight, and increases infant mortality. Offspring of deficient mothers are at high risk for cognitive disability, with cretinism being the most severe manifestation. It remains unclear if development of the offspring is affected by mild maternal iodine deficiency. Moderate-to-severe iodine deficiency during childhood reduces somatic growth. Correction of mild-to-moderate iodine deficiency in primary school aged children improves cognitive and motor function. Iodine prophylaxis of deficient populations with periodic monitoring is an extremely cost effective approach to reduce the substantial adverse effects of iodine deficiency throughout the life cycle.


Assuntos
Biologia do Desenvolvimento , Desenvolvimento Fetal/fisiologia , Doenças do Recém-Nascido/metabolismo , Iodo/deficiência , Glândula Tireoide/metabolismo , Hormônios Tireóideos/deficiência , Aborto Espontâneo/metabolismo , Aborto Espontâneo/fisiopatologia , Adulto , Peso ao Nascer , Diferenciação Celular , Movimento Celular , Criança , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/fisiopatologia , Hipotireoidismo Congênito/tratamento farmacológico , Hipotireoidismo Congênito/metabolismo , Hipotireoidismo Congênito/fisiopatologia , Embrião de Mamíferos , Feminino , Feto , Bócio/tratamento farmacológico , Bócio/metabolismo , Bócio/fisiopatologia , Humanos , Mortalidade Infantil , Recém-Nascido , Doenças do Recém-Nascido/tratamento farmacológico , Doenças do Recém-Nascido/fisiopatologia , Iodo/metabolismo , Iodo/uso terapêutico , Gravidez , Índice de Gravidade de Doença , Cloreto de Sódio na Dieta/metabolismo , Cloreto de Sódio na Dieta/uso terapêutico , Glândula Tireoide/embriologia , Glândula Tireoide/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA