Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.508
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 622(7983): 507-513, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37730997

RESUMO

Marine-derived cyclic imine toxins, portimine A and portimine B, have attracted attention because of their chemical structure and notable anti-cancer therapeutic potential1-4. However, access to large quantities of these toxins is currently not feasible, and the molecular mechanism underlying their potent activity remains unknown until now. To address this, a scalable and concise synthesis of portimines is presented, which benefits from the logic used in the two-phase terpenoid synthesis5,6 along with other tactics such as exploiting ring-chain tautomerization and skeletal reorganization to minimize protecting group chemistry through self-protection. Notably, this total synthesis enabled a structural reassignment of portimine B and an in-depth functional evaluation of portimine A, revealing that it induces apoptosis selectively in human cancer cell lines with high potency and is efficacious in vivo in tumour-clearance models. Finally, practical access to the portimines and their analogues simplified the development of photoaffinity analogues, which were used in chemical proteomic experiments to identify a primary target of portimine A as the 60S ribosomal export protein NMD3.


Assuntos
Antineoplásicos , Técnicas de Química Sintética , Iminas , Compostos de Espiro , Humanos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Iminas/síntese química , Iminas/química , Iminas/farmacologia , Neoplasias/tratamento farmacológico , Proteômica , Ribossomos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Compostos de Espiro/síntese química , Compostos de Espiro/química , Compostos de Espiro/farmacologia , Relação Estrutura-Atividade , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia
2.
Nature ; 604(7904): 86-91, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35388195

RESUMO

Chiral amine diastereomers are ubiquitous in pharmaceuticals and agrochemicals1, yet their preparation often relies on low-efficiency multi-step synthesis2. These valuable compounds must be manufactured asymmetrically, as their biochemical properties can differ based on the chirality of the molecule. Herein we characterize a multifunctional biocatalyst for amine synthesis, which operates using a mechanism that is, to our knowledge, previously unreported. This enzyme (EneIRED), identified within a metagenomic imine reductase (IRED) collection3 and originating from an unclassified Pseudomonas species, possesses an unusual active site architecture that facilitates amine-activated conjugate alkene reduction followed by reductive amination. This enzyme can couple a broad selection of α,ß-unsaturated carbonyls with amines for the efficient preparation of chiral amine diastereomers bearing up to three stereocentres. Mechanistic and structural studies have been carried out to delineate the order of individual steps catalysed by EneIRED, which have led to a proposal for the overall catalytic cycle. This work shows that the IRED family can serve as a platform for facilitating the discovery of further enzymatic activities for application in synthetic biology and organic synthesis.


Assuntos
Aminas , Oxirredutases , Aminação , Aminas/química , Biocatálise , Iminas/química , Oxirredutases/genética , Oxirredutases/metabolismo , Estereoisomerismo
3.
J Biol Chem ; 300(2): 105642, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199566

RESUMO

Imine reductases (IREDs) and reductive aminases have been used in the synthesis of chiral amine products for drug manufacturing; however, little is known about their biological contexts. Here we employ structural studies and site-directed mutagenesis to interrogate the mechanism of the IRED RedE from the biosynthetic pathway to the indolocarbazole natural product reductasporine. Cocrystal structures with the substrate-mimic arcyriaflavin A reveal an extended active site cleft capable of binding two indolocarbazole molecules. Site-directed mutagenesis of a conserved aspartate in the primary binding site reveals a new role for this residue in anchoring the substrate above the NADPH cofactor. Variants targeting the secondary binding site greatly reduce catalytic efficiency, while accumulating oxidized side-products. As indolocarbazole biosynthetic intermediates are susceptible to spontaneous oxidation, we propose the secondary site acts to protect against autooxidation, and the primary site drives catalysis through precise substrate orientation and desolvation effects. The structure of RedE with its extended active site can be the starting point as a new scaffold for engineering IREDs and reductive aminases to intercept large substrates relevant to industrial applications.


Assuntos
Iminas , Oxirredutases , Sítios de Ligação , Catálise , Cristalografia por Raios X , Iminas/química , Iminas/metabolismo , Oxirredução , Oxirredutases/metabolismo , Estrutura Terciária de Proteína , Estrutura Quaternária de Proteína , Modelos Moleculares
4.
Chemistry ; 30(7): e202302485, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37967030

RESUMO

Iminoboronates and diazaborines are related classes of compounds that feature an imine ortho to an arylboronic acid (iminoboronate) or a hydrazone that cyclizes with an ortho arylboronic acid (diazaborine). Rather than acting as independent chemical motifs, the arylboronic acid impacts the rate of imine/hydrazone formation, hydrolysis, and exchange with competing nucleophiles. Increasing evidence has shown that the imine/hydrazone functionality also impacts arylboronic acid reactivity toward diols and reactive oxygen and nitrogen species (ROS/RNS). Untangling the communication between C=N linked functionalities and arylboronic acids has revealed a powerful and tunable motif for bioconjugation chemistries and other applications in chemical biology. Here, we survey the applications of iminoboronates and diazaborines in these fields with an eye toward understanding their utility as a function of neighboring group effects.


Assuntos
Ácidos Borônicos , Iminas , Ácidos Borônicos/química , Iminas/química , Hidrazonas/química , Biologia
5.
Chem Res Toxicol ; 37(5): 698-710, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38619497

RESUMO

Reactive metabolite formation is a major mechanism of hepatotoxicity. Although reactive electrophiles can be soft or hard in nature, screening strategies have generally focused on the use of glutathione trapping assays to screen for soft electrophiles, with many data sets available to support their use. The use of a similar assay for hard electrophiles using cyanide as the trapping agent is far less common, and there is a lack of studies with sufficient supporting data. Using a set of 260 compounds with a defined hepatotoxicity status by the FDA, a comprehensive literature search yielded cyanide trapping data on an unbalanced set of 20 compounds that were all clinically hepatotoxic. Thus, a further set of 19 compounds was selected to generate cyanide trapping data, resulting in a more balanced data set of 39 compounds. Analysis of the data demonstrated that the cyanide trapping assay had high specificity (92%) and a positive predictive value (83%) such that hepatotoxic compounds would be confidently flagged. Structural analysis of the adducts formed revealed artifactual methylated cyanide adducts to also occur, highlighting the importance of full structural identification to confirm the nature of the adduct formed. The assay was demonstrated to add the most value for compounds containing typical structural alerts for hard electrophile formation: half of the severe hepatotoxins with these structural alerts formed cyanide adducts, while none of the severe hepatotoxins with no relevant structural alerts formed adducts. The assay conditions used included cytosolic enzymes (e.g., aldehyde oxidase) and an optimized cyanide concentration to minimize the inhibition of cytochrome P450 enzymes by cyanide. Based on the demonstrated added value of this assay, it is to be initiated for use at GSK as part of the integrated hepatotoxicity strategy, with its performance being reviewed periodically as more data is generated.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Cianetos , Cianetos/metabolismo , Cianetos/química , Humanos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Iminas/química , Iminas/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Estrutura Molecular
6.
Nitric Oxide ; 147: 26-41, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614230

RESUMO

Nitric oxide (NO) acts in different physiological processes, such as blood pressure control, antiparasitic activities, neurotransmission, and antitumor action. Among the exogenous NO donors, ruthenium nitrosyl/nitro complexes are potential candidates for prodrugs, due to their physicochemical properties, such as thermal and physiological pH stability. In this work, we proposed the synthesis and physical characterization of the new nitro terpyridine ruthenium (II) complexes of the type [RuII(L)(NO2)(tpy)]PF6 where tpy = 2,2':6',2″-terpyridine; L = 3,4-diaminobenzoic acid (bdq) or o-phenylenediamine (bd) and evaluation of influence of diimine bidentate ligand NH.NHq-R (R = H or COOH) in the HSA/DNA interaction as well as antiviral activity. The interactions between HSA and new nitro complexes [RuII(L)(NO2)(tpy)]+ were evaluated. The Ka values for the HSA-[RuII(bdq)(NO2)(tpy)]+ is 10 times bigger than HSA-[RuII(bd)(NO2)(tpy)]+. The sites of interaction between HSA and the complexes via synchronous fluorescence suppression indicate that the [RuII(bdq)(NO2)(tpy)]+ is found close to the Trp-241 residue, while the [RuII(bd)(NO2)(tpy)]+ complex is close to Tyr residues. The interaction with fish sperm fs-DNA using direct spectrophotometric titration (Kb) and ethidium bromide replacement (KSV and Kapp) showed weak interaction in the system fs-DNA-[RuII(bdq)(NO)(tpy)]+. Furthermore, fs-DNA-[RuII(bd)(NO2)(tpy)]+ and fs-DNA-[RuII(bd)(NO)(tpy)]3+ system showed higher intercalation constant. Circular dichroism spectra for fs-DNA-[RuII(bd)(NO2)(tpy)]+ and fs-DNA-[RuII(bd)(NO)(tpy)]3+, suggest semi-intercalative accompanied by major groove binding interaction modes. The [RuII(bd)(NO2)(tpy)]+ and [RuII(bd)(NO)(tpy)]3+ inhibit replication of Zika and Chikungunya viruses based in the nitric oxide release under S-nitrosylation reaction with cysteine viral.


Assuntos
Antivirais , DNA , Rutênio , Humanos , DNA/metabolismo , DNA/química , Rutênio/química , Rutênio/farmacologia , Antivirais/farmacologia , Antivirais/química , Antivirais/metabolismo , Ligantes , Animais , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo , Piridinas/química , Piridinas/farmacologia , Iminas/química , Iminas/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo
7.
Bioorg Med Chem Lett ; 106: 129761, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38642810

RESUMO

Helicase-primase is an interesting target for the therapy of herpes simplex virus (HSV) infections. Since amenamevir is already approved for varicella-zoster virus (VZV) and HSV in Japan and pritelivir has received breakthrough therapy status for the treatment of acyclovir-resistant HSV infections in immunocompromised patients, the target has sparked interest in me-too approaches. Here, we describe the attempt to improve nervous tissue penetration in Phaeno Therapeutics drug candidate HN0037 to target the latent reservoir of HSV by installing less polar moieties, mainly a difluorophenyl instead of a pyridyl group, and replacing the primary sulfonamide with a methyl sulfoximine moiety. However, all obtained stereoisomers exhibited a weaker inhibitory activity on HSV-1 and HSV-2.


Assuntos
Antivirais , DNA Primase , Sulfonamidas , Sulfonamidas/química , Sulfonamidas/farmacologia , Sulfonamidas/síntese química , DNA Primase/antagonistas & inibidores , DNA Primase/metabolismo , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Relação Estrutura-Atividade , DNA Helicases/antagonistas & inibidores , DNA Helicases/metabolismo , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 2/efeitos dos fármacos , Humanos , Estrutura Molecular , Testes de Sensibilidade Microbiana , Relação Dose-Resposta a Droga , Iminas/química , Iminas/farmacologia , Iminas/síntese química
8.
Mar Drugs ; 22(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38667766

RESUMO

Macrocyclic imine phycotoxins are an emerging class of chemical compounds associated with harmful algal blooms and shellfish toxicity. Earlier binding and electrophysiology experiments on nAChR subtypes and their soluble AChBP surrogates evidenced common trends for substantial antagonism, binding affinities, and receptor-subtype selectivity. Earlier, complementary crystal structures of AChBP complexes showed that common determinants within the binding nest at each subunit interface confer high-affinity toxin binding, while distinctive determinants from the flexible loop C, and either capping the nest or extending toward peripheral subsites, dictate broad versus narrow receptor subtype selectivity. From these data, small spiroimine enantiomers mimicking the functional core motif of phycotoxins were chemically synthesized and characterized. Voltage-clamp analyses involving three nAChR subtypes revealed preserved antagonism for both enantiomers, despite lower subtype specificity and binding affinities associated with faster reversibility compared with their macrocyclic relatives. Binding and structural analyses involving two AChBPs pointed to modest affinities and positional variability of the spiroimines, along with a range of AChBP loop-C conformations denoting a prevalence of antagonistic properties. These data highlight the major contribution of the spiroimine core to binding within the nAChR nest and confirm the need for an extended interaction network as established by the macrocyclic toxins to define high affinities and marked subtype specificity. This study identifies a minimal set of functional pharmacophores and binding determinants as templates for designing new antagonists targeting disease-associated nAChR subtypes.


Assuntos
Iminas , Toxinas Marinhas , Antagonistas Nicotínicos , Receptores Nicotínicos , Toxinas Marinhas/química , Toxinas Marinhas/farmacologia , Toxinas Marinhas/toxicidade , Iminas/química , Iminas/farmacologia , Antagonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/química , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/efeitos dos fármacos , Animais , Compostos Macrocíclicos/farmacologia , Compostos Macrocíclicos/química , Relação Estrutura-Atividade
9.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542315

RESUMO

Fluorinated imines (Schiff bases) and fluorinated hydrazones are of particular interest in medicinal chemistry due to their potential usefulness in treating opportunistic strains of bacteria that are resistant to commonly used antibacterial agents. The present review paper is focused on these fluorinated molecules revealing strong, moderate or weak in vitro antibacterial activities, which have been reported in the scientific papers during the last fifteen years. Fluorinated building blocks and reaction conditions used for the synthesis of imines and hydrazones are mentioned. The structural modifications, which have an influence on the antibacterial activity in all the reported classes of fluorinated small molecules, are highlighted, focusing mainly on the importance of specific substitutions. Advanced research techniques and innovations for the synthesis, design and development of fluorinated imines and hydrazones are also summarized.


Assuntos
Antibacterianos , Hidrazonas , Hidrazonas/química , Antibacterianos/farmacologia , Iminas/farmacologia , Iminas/química , Bases de Schiff/química , Bactérias
10.
Int J Mol Sci ; 25(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892102

RESUMO

The synthesis, antioxidant capacity, and anti-inflammatory activity of four novel N-benzyl-2-[4-(aryl)-1H-1,2,3-triazol-1-yl]ethan-1-imine oxides 10a-d are reported herein. The nitrones 10a-d were tested for their antioxidant properties and their ability to inhibit soybean lipoxygenase (LOX). Four diverse antioxidant tests were used for in vitro antioxidant assays, namely, interaction with the stable free radical DPPH (1,1-diphenyl-2-picrylhydrazyl radical) as well as with the water-soluble azo compound AAPH (2,2'-azobis(2-amidinopropane) dihydrochloride), competition with DMSO for hydroxyl radicals, and the scavenging of cationic radical ABTS•+ (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) radical cation). Nitrones 10b, 10c, and 10d, having the 4-fluorophenyl, 2,4-difluorophenyl, and 4-fluoro-3-methylphenyl motif, respectively, exhibited high interaction with DPPH (64.5-81% after 20 min; 79-96% after 60 min), whereas nitrone 10a with unfunctionalized phenyl group showed the lowest inhibitory potency (57% after 20 min, 78% after 60 min). Nitrones 10a and 10d, decorated with phenyl and 4-fluoro-3-methylphenyl motif, respectively, appeared the most potent inhibitors of lipid peroxidation. The results obtained from radical cation ABTS•+ were not significant, since all tested compounds 10a-d showed negligible activity (8-46%), much lower than Trolox (91%). Nitrone 10c, bearing the 2,4-difluorophenyl motif, was found to be the most potent LOX inhibitor (IC50 = 10 µM).


Assuntos
Antioxidantes , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/síntese química , Lipoxigenase/metabolismo , Glycine max/enzimologia , Glycine max/química , Inibidores de Lipoxigenase/farmacologia , Inibidores de Lipoxigenase/química , Inibidores de Lipoxigenase/síntese química , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , Iminas/química , Iminas/farmacologia , Compostos de Bifenilo/química , Compostos de Bifenilo/antagonistas & inibidores , Picratos/química , Picratos/antagonistas & inibidores , Óxidos de Nitrogênio/química , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/síntese química
11.
Molecules ; 29(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38675623

RESUMO

Since the discovery of cisplatin in the 1960s, the search for metallo-drugs that are more efficient than platinum complexes with negligible side effects has attracted much interest. Among the other metals that have been examined for potential applications as anticancer agents is copper. The interest in copper was recently boosted by the discovery of cuproptosis, a recently evidenced form of cell death mediated by copper. However, copper is also known to induce the proliferation of cancer cells. In view of these contradictory results, there is a need to find the most suitable copper chelators, among which Schiff-based derivatives offer a wide range of possibilities. Gathering several metal complexes in a single, larger entity may provide enhanced properties. Among the nanometric objects suitable for such purpose are dendrimers, precisely engineered hyperbranched macromolecules, which are outstanding candidates for improving therapy and diagnosis. In this review article, we present an overview of the use of a particular Schiff base, namely pyridine-imine, linked to the surface of dendrimers, suitable for complexing copper, and the use of such dendrimer complexes in biology, in particular against cancers.


Assuntos
Cobre , Iminas , Piridinas , Animais , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Quelantes/química , Quelantes/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cobre/química , Dendrímeros/química , Iminas/química , Neoplasias/tratamento farmacológico , Piridinas/química , Bases de Schiff/química
12.
Trends Biochem Sci ; 44(10): 849-860, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31103411

RESUMO

Metabolic networks are webs of integrated reactions organized to maximize growth and replication while minimizing the detrimental impact that reactive metabolites can have on fitness. Enamines and imines, such as 2-aminoacrylate (2AA), are reactive metabolites produced as short-lived intermediates in a number of enzymatic processes. Left unchecked, the inherent reactivity of enamines and imines may perturb the metabolic network. Genetic and biochemical studies have outlined a role for the broadly conserved reactive intermediate deaminase (Rid) (YjgF/YER057c/UK114) protein family, in particular RidA, in catalyzing the hydrolysis of enamines and imines to their ketone product. Herein, we discuss new findings regarding the biological significance of enamine and imine production and outline the importance of RidA in controlling the accumulation of reactive metabolites.


Assuntos
Aminas/metabolismo , Proteínas de Choque Térmico/metabolismo , Iminas/metabolismo , Ribonucleases/metabolismo , Aminas/química , Catálise , Proteínas de Choque Térmico/química , Humanos , Hidrólise , Iminas/química , Cetonas/química , Cetonas/metabolismo , Redes e Vias Metabólicas , Ribonucleases/química
13.
J Am Chem Soc ; 145(1): 610-625, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36538490

RESUMO

Enantioselective [2 + 2] cyclization between an imine and a carbon-carbon double bond is a versatile strategy to build chiral azetidines. However, α-branched allenoates have never been successfully applied in [2 + 2] cyclization reactions with imines, as they always undergo Kwon's [4 + 2] annulation in previous catalytic methods. Herein, a simple in situ generated magnesium catalyst was employed to successfully achieve the enantioselective [2 + 2] cyclization reaction of DPP-imines and α-branched allenoates for the first time. Insightful experiments including KIE experiments, controlled experiments, Hammett plot analysis, and 31P NMR studies of initial intermediates indicate that the current [2 + 2] cyclization of imine most likely involves an asynchronous concerted transition state. Further mechanistic investigations by combining kinetic studies, ESI experiments, 31P NMR studies of coordination complexes, and controlled experiments on reaction rates under different catalyst loading amounts provided the coordination details for this [2 + 2] cyclization reaction between DPP-imines and α-branched allenoates. This new approach was applied to the synthesis of various chiral aza-heterocycles, including the enantioselective synthesis of the key intermediate of a lipid-lowering agent Ezetimibe.


Assuntos
Iminas , Magnésio , Reação de Cicloadição , Estrutura Molecular , Iminas/química , Estereoisomerismo , Cinética , Catálise , Carbono
14.
J Org Chem ; 88(13): 8874-8881, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37294553

RESUMO

This article describes the development of a mild method for the N-dealkylation of tertiary amines via photoredox catalysis and its application in late-stage functionalization. Using the developed method, more than 30 diverse aliphatic, aniline-type, and complex substrates are shown to undergo N-dealkylation, providing a method with broader functional group tolerance compared to methods found in the literature. The scope also includes tertiary and secondary amine molecules with complex substructures and drug substrates. Interestingly, α-oxidation to imines was observed in several cyclic substructures instead of N-dealkylation, suggesting that imines are relevant reaction intermediates.


Assuntos
Aminas , Iminas , Aminas/química , Oxirredução , Catálise , Iminas/química , Remoção de Radical Alquila
15.
Org Biomol Chem ; 21(6): 1222-1234, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36633001

RESUMO

13-Desmethyl spirolide C is a marine natural product of the cyclic imine class that demonstrates remarkable bioactivity against several biomarkers of Alzheimer's Disease, which renders its [7,6]-spirocyclic imine pharmacophore of significant synthetic interest. This work describes a facile and efficient synthesis of the [7,6]-spirocyclic core of 13-desmethyl spirolide C from inexpensive starting materials, featuring an aza-Claisen rearrangement to simultaneously set both stereocentres of the dimethyl moiety with complete atom economy, and a highly exo-selective Diels-Alder cycloaddition to construct the challenging contiguous tertiary and quaternary stereocentres of the spirocyclic core of 13-desmethyl spirolide C. A comprehensive study of the key Diels-Alder reaction was also performed to evaluate the stereoselectivity and reactivity of various functionalised dienes and protected lactam dienophiles, wherein the first successful exo-selective Diels-Alder cycloaddition to construct spirocyclic structures using a bromodiene and α-exo-methylene dienophiles is reported. This strategy not only establishes a more efficient stereoselective access to the spirocyclic core that can be used for the total synthesis of 13-desmethyl spirolide C, but also serves as a sound platform for convenient preparations of a range of spirocyclic analogues required for a comprehensive biological evaluation of this desirable pharmacophore.


Assuntos
Compostos de Espiro , Reação de Cicloadição , Compostos de Espiro/química , Polienos , Iminas/química
16.
Chem Rev ; 121(12): 6991-7031, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-33104332

RESUMO

The merging of click chemistry with discrete photochemical processes has led to the creation of a new class of click reactions, collectively known as photoclick chemistry. These light-triggered click reactions allow the synthesis of diverse organic structures in a rapid and precise manner under mild conditions. Because light offers unparalleled spatiotemporal control over the generation of the reactive intermediates, photoclick chemistry has become an indispensable tool for a wide range of spatially addressable applications including surface functionalization, polymer conjugation and cross-linking, and biomolecular labeling in the native cellular environment. Over the past decade, a growing number of photoclick reactions have been developed, especially those based on the 1,3-dipolar cycloadditions and Diels-Alder reactions owing to their excellent reaction kinetics, selectivity, and biocompatibility. This review summarizes the recent advances in the development of photoclick reactions and their applications in chemical biology and materials science. A particular emphasis is placed on the historical contexts and mechanistic insights into each of the selected reactions. The in-depth discussion presented here should stimulate further development of the field, including the design of new photoactivation modalities, the continuous expansion of λ-orthogonal tandem photoclick chemistry, and the innovative use of these unique tools in bioconjugation and nanomaterial synthesis.


Assuntos
Química Click/métodos , Fotoquímica/métodos , Reação de Cicloadição , Iminas/química , Nitrilas/química , Tetrazóis/química
17.
Int J Mol Sci ; 24(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36674803

RESUMO

Nitrile imine cycloaddition to hydantoins containing an exocyclic C=C double bond has been previously described in a very limited number of examples. In this work, regioselective synthesis of spiro-pyrazoline-imidazolidine-2,4-diones based on a 1,3-dipolar cycloaddition reaction of nitrile imines to 5-methylidene-3-phenyl-hydantoin have been proposed. It was found that, regardless of the nature of the aryl substituents at the terminal C and N atoms of the C-N-N fragment of nitrile imine (electron donor or electron acceptor), cycloaddition to the 5-methylidenhydantoin exocyclic C=C bond proceeds regioselectively, and the terminal nitrogen atom of the nitrile imine connects to the more sterically hindered carbon atom of the double bond, which leads to the formation of a 5-disubstituted pyrazoline ring. The observed cycloaddition regioselectivity was rationalized using DFT calculations of frontier molecular orbital interactions, global CDFT reactivity indices, and minimum energy paths.


Assuntos
Hidantoínas , Reação de Cicloadição , Teoria da Densidade Funcional , Iminas/química , Nitrilas/química , Anticonvulsivantes
18.
Molecules ; 28(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36838659

RESUMO

This paper thoroughly explores the formation of Schiff bases derived from salicylaldehydes and a conformationally restricted amino alcohol (1-amino-2-indanol), as well as the generation of 1,3-oxazolidines, a key heterocyclic core present in numerous bioactive compounds. We provide enough evidences, both experimental-including crystallographic analyses and DFT-based calculations on imine/enamine tautomerism in the solid state and solution. In the course of imine formation, a pentacyclic oxazolidine-oxazine structure could be isolated with complete stereocontrol, whose configuration has been determined by merging theory and experiment. Mechanistic studies reveal that, although oxazolidines can be obtained under kinetic conditions, the prevalence of imines obeys to thermodynamic control as they are the most stable structures. The stereochemical outcome of imine cyclization under acylating conditions leads to formation of 2,4-trans-oxazolidines.


Assuntos
Iminas , Bases de Schiff , Bases de Schiff/química , Iminas/química , Oxazóis
19.
Angew Chem Int Ed Engl ; 62(25): e202303069, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37068049

RESUMO

Aziridines are highly valued synthetic targets in organic and medicinal chemistry. The organocatalytic synthesis of such structures with broad substrate scope and good diastereoselectivity, however, is rare. Herein, we report a broadly applicable and diastereoselective synthetic method for the synthesis of trans-aziridines from imines and benzylic or alkyl halides utilizing sulfenate anions (PhSO- ) as the catalyst. Substrates bearing heterocyclic aromatic groups, alkyl, and electron-rich and electron-poor aryl groups were shown to be compatible with this method (33 examples), giving good yields and high diastereoselectivities (trans : cis >20 : 1). Further functionalization of aziridines containing cyclopropyl or cyclobutyl groups was achieved through ring-opening reactions, with a cyclobutyl-substituted norephedrine derivative obtained through a four-step synthesis. We offer a mechanistic proposal involving reversible addition of the deprotonated benzyl sulfoxide to the imine to explain the high trans-diastereoselectivity.


Assuntos
Aziridinas , Aziridinas/química , Ânions/química , Iminas/química , Catálise , Estereoisomerismo
20.
J Am Chem Soc ; 144(20): 8897-8901, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35575699

RESUMO

Whereas triplet-nitrene complexes of the late transition metals are isolable and key intermediates in catalysis, singlet-nitrene ligands remain elusive. Herein we communicate three such palladium terminal imido complexes with singlet ground states. UV-vis-NIR electronic spectroscopy with broad bands up to 1400 nm as well as high-level computations (DFT, STEOM-CCSD, CASSCF/NEVPT2, EOS analysis) and reactivity studies suggest significant palladium(0) singlet-nitrene character. Although the aliphatic nitrene complexes proved to be too reactive for isolation in analytically pure form as a result of elimination of isobutylene, the aryl congener could be characterized by SC-XRD, elemental analysis, IR-, NMR spectroscopy, and HRMS. The complexes' distinguished ambiphilicity allows them to activate hexafluorobenzene, triphenylphosphine, and pinacol borane, catalytically dehydrogenate cyclohexene, and aminate ethylene via nitrene transfer at or below room temperature.


Assuntos
Iminas , Paládio , Catálise , Iminas/química , Ligantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA