Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 899
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732055

RESUMO

Knowledge of gender-specific drug distributions in different organs are of great importance for personalized medicine and reducing toxicity. However, such drug distributions have not been well studied. In this study, we investigated potential differences in the distribution of imipramine and chloroquine, as well as their metabolites, between male and female kidneys. Kidneys were collected from mice treated with imipramine or chloroquine and then subjected to atmospheric pressure matrix-assisted laser desorption ionization-mass spectrometry imaging (AP-MALDI-MSI). We observed differential distributions of the drugs and their metabolites between male and female kidneys. Imipramine showed prominent distributions in the cortex and medulla in male and female kidneys, respectively. Desipramine, one of the metabolites of imipramine, showed significantly higher (*** p < 0.001) distributions in the medulla of the male kidney compared to that of the female kidney. Chloroquine and its metabolites were accumulated in the pelvis of both male and female kidneys. Interestingly, they showed a characteristic distribution in the medulla of the female kidney, while almost no distributions were observed in the same areas of the male kidney. For the first time, our study revealed that the distributions of imipramine, chloroquine, and their metabolites were different in male and female kidneys.


Assuntos
Cloroquina , Imipramina , Rim , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Animais , Imipramina/metabolismo , Masculino , Cloroquina/metabolismo , Cloroquina/farmacologia , Feminino , Camundongos , Rim/metabolismo , Fatores Sexuais , Caracteres Sexuais , Distribuição Tecidual
2.
Int J Mol Sci ; 25(14)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39063212

RESUMO

Mass spectrometry imaging (MSI) is essential for visualizing drug distribution, metabolites, and significant biomolecules in pharmacokinetic studies. This study mainly focuses on imipramine, a tricyclic antidepressant that affects endogenous metabolite concentrations. The aim was to use atmospheric pressure matrix-assisted laser desorption/ionization (AP-MALDI)-MSI combined with different dimensionality reduction methods to examine the distribution and impact of imipramine on endogenous metabolites in the brains of treated wild-type mice. Brain sections from both control and imipramine-treated mice underwent AP-MALDI-MSI. Dimensionality reduction methods, including principal component analysis, multivariate curve resolution, and sparse autoencoder (SAE), were employed to extract valuable information from the MSI data. Only the SAE method identified phosphorylcholine (ChoP) as a potential marker distinguishing between the control and treated mice brains. Additionally, a significant decrease in ChoP accumulation was observed in the cerebellum, hypothalamus, thalamus, midbrain, caudate putamen, and striatum ventral regions of the treated mice brains. The application of dimensionality reduction methods, particularly the SAE method, to the AP-MALDI-MSI data is a novel approach for peak selection in AP-MALDI-MSI data analysis. This study revealed a significant decrease in ChoP in imipramine-treated mice brains.


Assuntos
Encéfalo , Imipramina , Fosforilcolina , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Animais , Imipramina/metabolismo , Camundongos , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Fosforilcolina/metabolismo , Fosforilcolina/análogos & derivados , Masculino , Antidepressivos Tricíclicos/farmacocinética , Antidepressivos Tricíclicos/farmacologia , Antidepressivos Tricíclicos/metabolismo , Camundongos Endogâmicos C57BL , Análise de Componente Principal
3.
Pharm Res ; 39(2): 223-237, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35112227

RESUMO

PURPOSE: The present study aimed to elucidate the transport properties of imipramine and paroxetine, which are the antidepressants, across the blood-brain barrier (BBB) in rats. METHODS: In vivo influx and efflux transport of imipramine and paroxetine across the BBB were tested using integration plot analysis and a combination of brain efflux index and brain slice uptake studies, respectively. Conditionally immortalized rat brain capillary endothelial cells, TR-BBB13 cells, were utilized to characterize imipramine and paroxetine transport at the BBB in vitro. RESULTS: The in vivo influx clearance of [3H]imipramine and [3H]paroxetine in rats was determined to be 0.322 mL/(min·g brain) and 0.313 mL/(min·g brain), respectively. The efflux clearance of [3H]imipramine and [3H]paroxetine was 0.380 mL/(min·g brain) and 0.126 mL/(min·g brain), respectively. These results suggest that the net flux of paroxetine, but not imipramine, at the BBB in vivo was dominated by transport to the brain from the circulating blood. The uptake of imipramine and paroxetine by TR-BBB13 cells exhibited time- and temperature-dependence and one-saturable kinetics with a Km of 37.6 µM and 89.2 µM, respectively. In vitro uptake analyses of extracellular ion dependency and the effect of substrates/inhibitors for organic cation transporters and transport systems revealed minor contributions to known transporters and transport systems and the difference in transport properties in the BBB between imipramine and paroxetine. CONCLUSIONS: Our study showed the comprehensive outcomes of imipramine and paroxetine transport at the BBB, implying that molecular mechanism(s) distinct from previously reported transporters and transport systems are involved in the transport.


Assuntos
Antidepressivos de Segunda Geração/metabolismo , Antidepressivos Tricíclicos/metabolismo , Barreira Hematoencefálica/metabolismo , Imipramina/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Paroxetina/metabolismo , Animais , Antidepressivos de Segunda Geração/administração & dosagem , Antidepressivos Tricíclicos/administração & dosagem , Transporte Biológico , Linhagem Celular , Imipramina/administração & dosagem , Injeções Intravenosas , Cinética , Masculino , Modelos Biológicos , Paroxetina/administração & dosagem , Permeabilidade , Ratos Wistar
4.
Pharm Res ; 35(12): 243, 2018 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-30361780

RESUMO

PURPOSE: The organic cation transporters (OCTs) and multidrug and toxin extrusions (MATEs) together are regarded as an organic cation transport system critical to the disposition and response of many organic cationic drugs. Patient response to the analgesic morphine, a characterized substrate for human OCT1, is highly variable. This study was aimed to examine whether there is any organic cation transporter-mediated drug and drug interaction (DDI) between morphine and commonly co-administrated drugs. METHODS: The uptake of morphine and its inhibition by six drugs which are commonly co-administered with morphine in the clinic were assessed in human embryonic kidney 293 (HEK293) cells stably expressing OCT1, OCT2 and MATE1. The in vivo interaction between morphine and the select irinotecan was determined by comparing the disposition of morphine in the absence versus presence of irinotecan treatment in mice. RESULTS: The uptake of morphine in the stable HEK293 cells expressing human OCT1 and OCT2 was significantly increased by 3.56 and 3.04 fold, respectively, than that in the control cells, with no significant uptake increase in the cells expressing human MATE1. All of the six drugs examined, including amitriptyline, fluoxetine, imipramine, irinotecan, ondansetron, and verapamil, were inhibitors of OCT1/2-mediated morphine uptake. The select irinotecan significantly increased the plasma concentrations and decreased hepatic and renal accumulation of morphine in mice. CONCLUSIONS: Morphine is a substrate of OCT1 and OCT2. Clinician should be aware that the disposition of and thus the response to morphine may be altered by co-administration of an OCT1/2 inhibitor, such as irinotecan.


Assuntos
Irinotecano/metabolismo , Morfina/metabolismo , Entorpecentes/metabolismo , Transportador 1 de Cátions Orgânicos/antagonistas & inibidores , Transportador 2 de Cátion Orgânico/antagonistas & inibidores , Amitriptilina/metabolismo , Amitriptilina/farmacologia , Animais , Interações Medicamentosas , Fluoxetina/metabolismo , Fluoxetina/farmacologia , Células HEK293 , Humanos , Imipramina/metabolismo , Imipramina/farmacologia , Irinotecano/farmacologia , Camundongos Endogâmicos C57BL , Ondansetron/metabolismo , Ondansetron/farmacologia , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Transportador 1 de Cátions Orgânicos/metabolismo , Transportador 2 de Cátion Orgânico/metabolismo , Distribuição Tecidual , Verapamil/metabolismo , Verapamil/farmacologia
5.
Drug Metab Dispos ; 45(10): 1060-1067, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28784689

RESUMO

Flavin-containing monooxygenases (FMO) are metabolic enzymes mediating the oxygenation of nucleophilic atoms such as nitrogen, sulfur, phosphorus, and selenium. These enzymes share similar properties to the cytochrome P450 system but can be differentiated through heat inactivation and selective substrate inhibition by methimazole. This study investigated 10 compounds with varying degrees of FMO involvement to determine the nature of the correlation between human in vitro and in vivo unbound intrinsic clearance. To confirm and quantify the extent of FMO involvement six of the compounds were investigated in human liver microsomal (HLM) in vitro assays using heat inactivation and methimazole substrate inhibition. Under these conditions FMO contribution varied from 21% (imipramine) to 96% (itopride). Human hepatocyte and HLM intrinsic clearance (CLint) data were scaled using standard methods to determine the predicted unbound intrinsic clearance (predicted CLint u) for each compound. This was compared with observed unbound intrinsic clearance (observed CLint u) values back calculated from human pharmacokinetic studies. A good correlation was observed between the predicted and observed CLint u using hepatocytes (R2 = 0.69), with 8 of the 10 compounds investigated within or close to a factor of 2. For HLM the in vitro-in vivo correlation was maintained (R2 = 0.84) but the accuracy was reduced with only 3 out of 10 compounds falling within, or close to, twofold. This study demonstrates that human hepatocytes and HLM can be used with standard scaling approaches to predict the human in vivo clearance for FMO substrates.


Assuntos
Hidrocarboneto de Aril Hidroxilases/metabolismo , Dinitrocresóis/metabolismo , Taxa de Depuração Metabólica/fisiologia , Benzamidas/metabolismo , Compostos de Benzil/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Feminino , Hepatócitos/metabolismo , Humanos , Imipramina/metabolismo , Cinética , Fígado/metabolismo , Masculino , Microssomos Hepáticos/metabolismo , Oxirredução
6.
Pharm Res ; 32(12): 3937-51, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26224396

RESUMO

PURPOSE: To assess accumulation and lysosomal sequestration of 9 drugs used in respiratory indications (plus imipramine as positive control) in the alveolar macrophage (AM) cell line NR8383. METHODS: For all drugs, uptake at 5 µM was investigated at 37 and 4°C to delineate active uptake and passive diffusion processes. Accumulation of basic clarithromycin, formoterol and imipramine was also assessed over 0.1-100 µM concentration range. Lysosomal sequestration was investigated using ammonium chloride (NH4Cl), monensin and nigericin. Impact of lysosomal sequestration on clarithromycin accumulation kinetics was investigated. RESULTS: Both cell-to-medium concentration ratio (Kp) and uptake clearance (CLuptake) ranged > 400-fold for the drugs investigated. The greatest Kp was observed for imipramine (391) and clarithromycin (82), in contrast to no accumulation seen for terbutaline. A concentration-dependent accumulation was evident for the basic drugs investigated. Imipramine and clarithromycin Kp and CLuptake were reduced by 59-85% in the presence of NH4Cl and monensin/nigericin, indicating lysosomal accumulation, whereas lysosomal sequestration was not pronounced for the other 8 respiratory drugs. Clarithromycin uptake rate was altered by NH4Cl, highlighting the impact of subcellular distribution on accumulation kinetics. CONCLUSIONS: This study provides novel evidence of the utility of NR8383 for investigating accumulation and lysosomal sequestration of respiratory drugs in AMs.


Assuntos
Lisossomos/metabolismo , Macrófagos Alveolares/metabolismo , Preparações Farmacêuticas/metabolismo , Inibidores da Captação Adrenérgica/metabolismo , Anti-Infecciosos/metabolismo , Broncodilatadores/metabolismo , Linhagem Celular , Claritromicina/metabolismo , Humanos , Imipramina/metabolismo , Macrófagos Alveolares/citologia , Terbutalina/metabolismo
7.
Chem Pharm Bull (Tokyo) ; 63(4): 286-94, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25832023

RESUMO

Cytochrome P450 reductase (CPR) is an important redox partner of microsomal CYPs. CPR is composed of a membrane anchor and a catalytic domain that contains FAD and flavin mononucleotide (FMN) as redox centers and mediates electron transfer to CYP. Although the CPR membrane anchor is believed to be requisite for interaction with CYP, its physiological role is still controversial. To clarify the role of the anchor, we constructed a mutant (Δ60-CPR) in which the N-terminal membrane anchor was truncated, and studied its effect on binding properties, electron transfer to CYP2C19, and drug metabolism. We found that Δ60-CPR could bind to and transfer electrons to CYP2C19 as efficiently as WT-CPR, even in the absence of lipid membrane. In accordance with this, Δ60-CPR could mediate metabolism of amitriptyline (AMT) and imipramine (IMP) in the absence of lipids, although activity was diminished. However, Δ60-CPR failed to metabolize omeprazole (OPZ) and lansoprazole (LPZ). To clarify the reason for this discrepancy in drug metabolism, we investigated the uncoupling reaction of the CYP catalytic cycle. By measuring the amount of H2O2 by-product, we found that shunt pathways were markedly activated in the presence of OPZ/LPZ in the Δ60-CPR mutant. Because H2O2 levels varied among the drugs, we conclude that the proton network in the distal pocket of CYP2C19 is perturbed differently by different drugs, and activated oxygen is degraded to become H2O2. Therefore, we propose a novel role for the membrane anchor as a suppressor of the uncoupling reaction in drug metabolism by CYP.


Assuntos
Citocromo P-450 CYP2C19/metabolismo , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Amitriptilina/química , Amitriptilina/metabolismo , Biocatálise , Humanos , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Imipramina/química , Imipramina/metabolismo , Lansoprazol/química , Lansoprazol/metabolismo , Mutação , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/isolamento & purificação , Omeprazol/química , Omeprazol/metabolismo , Oxirredução
8.
Anal Bioanal Chem ; 406(2): 421-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24196121

RESUMO

A small and very simple electromembrane extraction probe (EME-probe) was developed and coupled directly to electrospray ionization mass spectrometry (ESI-MS), and this system was used to monitor in real time in vitro metabolism by rat liver microsomes of drug substances from a small reaction (incubation) chamber (37 °C). The drug-related substances were continuously extracted from the 1.0 mL metabolic reaction mixture and into the EME-probe by an electrical potential of 2.5 V. The extraction probe consisted of a 1-mm long and 350-µm ID thin supported liquid membrane (SLM) of 2-nitrophenyl octyl ether. The drugs and formed metabolites where extracted through the SLM and directly into a 3 µL min(-1) flow of 60 mM HCOOH inside the probe serving as the acceptor solution. The acceptor solution was directed into the ESI-MS-system, and the MS continuously monitored the drug-related substances extracted by the EME-probe. The extraction efficiency of the EME-probe was dependant on the applied electrical potential and the length of the SLM, and these parameters as well as the volume of the reaction chamber were set to the values mentioned above to avoid serious depletion from the reaction chamber (soft extraction). Soft extraction was mandatory in order not to affect the reaction kinetics by sample composition changes induced by the EME-probe. The EME-probe/MS-system was used to establish kinetic profiles for the in vitro metabolism of promethazine, amitriptyline and imipramine as model substances.


Assuntos
Técnicas Eletroquímicas/métodos , Éteres/química , Membranas Artificiais , Extração em Fase Sólida/métodos , Amitriptilina/isolamento & purificação , Amitriptilina/metabolismo , Animais , Biotransformação , Imipramina/isolamento & purificação , Imipramina/metabolismo , Masculino , Microssomos Hepáticos/metabolismo , Prometazina/isolamento & purificação , Prometazina/metabolismo , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas por Ionização por Electrospray , Fatores de Tempo
9.
Biopharm Drug Dispos ; 35(6): 313-20, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24752421

RESUMO

The microminipig, a small minipig, was bred as a novel experimental animal for nonclinical pharmacology/toxicology studies by Fuji Micra Inc. (Shizuoka, Japan). Species differences in drug metabolism between humans and the microminipig need to be elucidated in more detail in order to discuss the results of nonclinical studies. Glucuronidation catalysed by UDP-glucuronosyltransferase (UGT) is an important pathway in the metabolism of a wide variety of compounds. The aim of the present study was to identify the characteristics of hepatic UGT activity in the microminipig and compare them with those in humans and other experimental animals. This study examined in vitro UGT activities using liver microsomes from microminipigs (8 months old and 1 day old), humans, mice, rats, dogs, monkeys and minipigs. The glucuronides of estradiol, imipramine, serotonin, propofol, 3'-azido-3'-deoxythymidine (AZT) and morphine, selective substrates of human UGT1A1, 1A4, 1A6, 1A9 and 2B7 (AZT and morphine), respectively, were measured using LC-MS/MS. Estradiol-3-glucuronidation activity was higher in the microminipig than in humans and the other animals. High levels of estradiol-3-glucuronidation were observed in the microsomes of 1-day-old microminipigs. Imipramine-N-glucuronidation, a distinctive conjugation by human UGT1A4, was catalysed by microminipig liver microsomes, but not by dog liver microsomes. Although AZT-glucuronidation activity was low in the microminipig compared with humans, morphine-3-glucuronidation activity in the microminipig was higher than that in humans. The UGT activities in the microminipig were similar to those in the minipig. The results of the present study have provided useful information for selecting an appropriate animal model for nonclinical studies.


Assuntos
Glucuronosiltransferase/metabolismo , Microssomos Hepáticos/metabolismo , Porco Miniatura , Adulto , Idoso , Animais , Cromatografia Líquida , Cães , Estradiol/metabolismo , Feminino , Glucuronídeos/metabolismo , Humanos , Imipramina/metabolismo , Macaca fascicularis , Masculino , Camundongos Endogâmicos ICR , Pessoa de Meia-Idade , Morfina/metabolismo , Propofol/metabolismo , Ratos Sprague-Dawley , Serotonina/metabolismo , Especificidade da Espécie , Suínos , Espectrometria de Massas em Tandem , Adulto Jovem , Zidovudina/metabolismo
10.
Chem Pharm Bull (Tokyo) ; 62(2): 176-81, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24492587

RESUMO

Although cytochromes P450 2C9 (CYP2C9) and 2C19 (CYP2C19) have 91% amino acid identity, they have different substrate specificities. Previous studies have suggested that several amino acid residues may be involved in substrate specificity. In this study, we focused on the roles of two amino acids, residues 72 and 241. The amino acids in these positions have opposite charges in CYP2C9 and 2C19; the former has lysines in both positions (Lys72 and Lys241), and the latter has glutamic acids (Glu72 and Glu241). Reciprocal mutants for both CYP2C19 and 2C9 were produced, and their metabolic activities and spectroscopic properties were examined using three tricyclic antidepressant (TCA) drugs: amitriptyline, imipramine, and dothiepin. Although CYP2C19 wild-type (WT) had a high metabolic activity for all three drugs, the E72K mutation decreased enzymatic activity by 29-37%, while binding affinities were diminished 2.5- to 20-fold. On the other hand, low activity and low affinity of CYP2C9 WT were recovered notably by K72E mutation. The metabolic activities and binding affinities were minimally affected by CYP2C19 E241K and CYP2C9 K241E mutations. We could also show linear correlations between metabolic activities and binding affinities, and hence we conclude that amino acid residue 72 plays a key role in TCA drug metabolism by limiting the binding affinities of CYP2C19 and CYP2C9.


Assuntos
Amitriptilina/metabolismo , Antidepressivos Tricíclicos/metabolismo , Hidrocarboneto de Aril Hidroxilases/metabolismo , Dotiepina/metabolismo , Imipramina/metabolismo , Sequência de Aminoácidos , Hidrocarboneto de Aril Hidroxilases/química , Hidrocarboneto de Aril Hidroxilases/genética , Citocromo P-450 CYP2C19 , Citocromo P-450 CYP2C9 , Humanos , Dados de Sequência Molecular , Mutação Puntual , Ligação Proteica , Especificidade por Substrato
11.
J Pharm Sci ; 113(9): 2933-2939, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39053728

RESUMO

In early stages of drug development, the absence of authentic metabolite standards often results in semi-quantitative measurements of metabolite formation in reaction phenotyping studies using mass spectrometry (MS), leading to inaccuracies in the determination of enzyme kinetic parameters, such as the Michaelis constant (Km). Moreover, it is impossible to ascertain the maximum rate of enzyme-catalyzed reactions (kcat or Vmax). The use of radiolabeled parent compounds can circumvent this problem. However, radiometric detection exhibits significantly lower sensitivity compared to MS. To address these challenges, we have developed a stepwise approach that leverages biosynthesized radiolabeled and non-radiolabeled metabolites as standards, enabling accurate determination of Km, kcat or Vmax without the need for authentic metabolite standards. This approach, using the carbon-14 [14C] labeled metabolite to calibrate the unlabeled metabolite (14C calibration method), combines radiometric with LC-MS/MS detection to generate both [14C]-labeled and unlabeled metabolite standard curves to ensure that the sample concentrations measured are accurately quantitated. Two case studies were presented to demonstrate the utility of this method. We first compared the accuracy of the 14C calibration method to the use of authentic standards for quantitating imipramine metabolites. Next, we biosynthesized and quantitated the metabolites of BI 894416 using 14C calibration method and evaluated the enzyme kinetics of metabolite formation. The Km values of the metabolite formation demonstrated substantially improved accuracy compared to MS semi-quantitation. Moreover, the 14C calibration method offers a streamlined approach to prepare multiple metabolite standards from a single biosynthesis, reducing the time required for structure elucidation and metabolite synthesis.


Assuntos
Radioisótopos de Carbono , Espectrometria de Massas em Tandem , Calibragem , Cinética , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Enzimas/metabolismo , Padrões de Referência , Imipramina/metabolismo
12.
EMBO J ; 28(8): 1043-54, 2009 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-19300439

RESUMO

We have earlier shown that microglia, the immune cells of the CNS, release microparticles from cell plasma membrane after ATP stimulation. These vesicles contain and release IL-1beta, a crucial cytokine in CNS inflammatory events. In this study, we show that microparticles are also released by astrocytes and we get insights into the mechanism of their shedding. We show that, on activation of the ATP receptor P2X7, microparticle shedding is associated with rapid activation of acid sphingomyelinase, which moves to plasma membrane outer leaflet. ATP-induced shedding and IL-1beta release are markedly reduced by the inhibition of acid sphingomyelinase, and completely blocked in glial cultures from acid sphingomyelinase knockout mice. We also show that p38 MAPK cascade is relevant for the whole process, as specific kinase inhibitors strongly reduce acid sphingomyelinase activation, microparticle shedding and IL-1beta release. Our results represent the first demonstration that activation of acid sphingomyelinase is necessary and sufficient for microparticle release from glial cells and define key molecular effectors of microparticle formation and IL-1beta release, thus, opening new strategies for the treatment of neuroinflammatory diseases.


Assuntos
Micropartículas Derivadas de Células/enzimologia , Neuroglia/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Inibidores da Captação Adrenérgica/metabolismo , Marcadores de Afinidade/metabolismo , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Encéfalo/patologia , Micropartículas Derivadas de Células/ultraestrutura , Células Cultivadas , Ativação Enzimática , Imipramina/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Camundongos Knockout , Modelos Biológicos , Neuroglia/citologia , Tamanho da Partícula , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2X7 , Transdução de Sinais/fisiologia , Esfingomielina Fosfodiesterase/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Quinases da Família src/metabolismo
13.
J Pharmacol Exp Ther ; 344(1): 113-23, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23010362

RESUMO

The interaction of the selective norepinephrine reuptake inhibitor (-)-reboxetine with the human α4ß2 nicotinic acetylcholine receptor (nAChR) in different conformational states was studied by several functional and structural approaches. Patch-clamp and Ca(2+)-influx results indicate that (-)-reboxetine does not activate hα4ß2 nAChRs via interaction with the orthosteric sites, but inhibits agonist-induced hα4ß2 activation by a noncompetitive mechanism. Consistently, the results from the electrophysiology-based functional approach suggest that (-)-reboxetine may act via open channel block; therefore, it is capable of producing a use-dependent type of inhibition of the hα4ß2 nAChR function. We tested whether (-)-reboxetine binds to the luminal [(3)H]imipramine site. The results indicate that, although (-)-reboxetine binds with low affinity to this site, it discriminates between the resting and desensitized hα4ß2 nAChR ion channels. Patch-clamp results also indicate that (-)-reboxetine progressively inhibits the hα4ß2 nAChR with two-fold higher potency at the end of one-second application of agonist, compared with the peak current. The molecular docking studies show that (-)-reboxetine blocks the ion channel at the level of the imipramine locus, between M2 rings 6' and 14'. In addition, we found a (-)-reboxetine conformer that docks in the helix bundle of the α4 subunit, near the middle region. According to molecular dynamics simulations, (-)-reboxetine binding is stable for both sites, albeit less stable than imipramine. The interaction of these drugs with the helix bundle might alter allostericaly the functionality of the channel. In conclusion, the clinical action of (-)-reboxetine may be produced (at least partially) by its inhibitory action on hα4ß2 nAChRs.


Assuntos
Inibidores da Captação Adrenérgica/farmacologia , Morfolinas/farmacologia , Receptores Nicotínicos/metabolismo , Inibidores da Captação Adrenérgica/química , Alcaloides/metabolismo , Animais , Azocinas/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/antagonistas & inibidores , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Cálcio/metabolismo , Relação Dose-Resposta a Droga , Fenômenos Eletrofisiológicos , Células Epiteliais/efeitos dos fármacos , Células HEK293 , Humanos , Imipramina/metabolismo , Modelos Moleculares , Conformação Molecular , Morfolinas/química , Agonistas Nicotínicos/farmacologia , Técnicas de Patch-Clamp , Piridinas/antagonistas & inibidores , Piridinas/farmacologia , Quinolizinas/metabolismo , Ensaio Radioligante , Reboxetina , Receptores Nicotínicos/química , Receptores Nicotínicos/efeitos dos fármacos , Torpedo
14.
Drug Metab Dispos ; 41(7): 1295-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23571428

RESUMO

Hydroxylated metabolites often retain the pharmacological activity of parent compound, and the position of hydroxylation determines the formation of chemically reactive intermediates, such as quinones and analogs, from para- and/or ortho-hydroxylation of phenols or arylamines. Therefore, the identification of exact position of hydroxylation is often required at the early development stage of new drug candidates. In many cases, liquid chromatography-tandem mass spectrometry (LC-MS/MS) provides identical MS/MS spectra among isomeric hydroxylated metabolites, and therefore, it alone cannot unequivocally identify the exact position(s) of hydroxylation. Ion mobility spectrometry (IMS), integrated with LC-MS/MS, recently showed the capability of separating isomeric species based on differences in their drift times from IMS, which are linearly proportional to the collision cross-section (CCS) reflecting physical size and shape. In the present study, a chemical derivatization of isomeric hydroxylated metabolites with 2-fluoro-N-methyl pyridinium p-toluenesulfonate was found to confer distinct theoretical CCS value on each isomer by forming corresponding N-methyl pyridine (NMP) derivative. The regression lines established by the comparison between theoretical CCS values and observed drift times from IMS for each set of parent compound (labetalol, ezetimibe, atorvastatin, and warfarin) and its MS/MS product ions accurately and selectively projected the actual drift times of NMP derivatives of corresponding aromatic or isomeric hydroxylated metabolites. The established method was used for the accurate assignment of predominant formation of 2-hydroxylated metabolite from imipramine in NADPH- fortified human liver microsomes. The present application expands the versatility of LC-IMS-MS technique to the structure identification of isomeric hydroxylated metabolites at the early stage for drug development.


Assuntos
Cromatografia Líquida/métodos , Imipramina/metabolismo , Espectrometria de Massas em Tandem/métodos , Descoberta de Drogas , Humanos , Hidroxilação , Microssomos Hepáticos/metabolismo
15.
Drug Metab Dispos ; 41(7): 1389-97, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23611809

RESUMO

Recent observations revealed that human UDP-glucuronosyltransferase (UGT) 2B10 catalyzes N-glucuronidation of amine-containing compounds. Knowledge of the substrate specificity and clinical significance of UGT2B10 is still limited. The purpose of this study was to expand the knowledge of UGT2B10 substrates and to evaluate its significance in drug clearance. Using recombinant UGT2B10, we found that it catalyzes the N-glucuronidation of amitriptyline, imipramine, ketotifen, pizotifen, olanzapine, diphenhydramine, tamoxifen, ketoconazole, and midazolam. These are drugs that were previously reported to be substrates for UGT1A4 or UGT1A3, and that contain in their structure either tertiary aliphatic amines, cyclic amines, or an imidazole group. UGT2B10 was inactive in the glucuronidation of desipramine, nortriptyline, carbamazepine, and afloqualone. This group of drugs contains secondary or primary amines, and these results suggest that UGT2B10 preferably conjugates tertiary amines. This preference is partial because UGT2B10 did not conjugate the tertiary cyclic amine in trifluoperazine. Kinetic analyses revealed that the affinity and clearance of UGT2B10 for amitriptyline, imipramine, and diphenhydramine are significantly higher than the corresponding values of UGT1A4 and UGT1A3, although the Vmax values of UGT1A4 toward these drugs are considerably higher. These findings suggest that UGT2B10 plays a major role in the N-glucuronidation of these drugs at therapeutic concentrations. These results are also supported by inhibition studies with nicotine and hecogenin. In conclusion, this study expands the understanding of the substrate specificity of UGT2B10, highlighting its preference for tertiary amines with higher affinities and clearance values than those of UGT1A4 and UGT1A3.


Assuntos
Glucuronídeos/metabolismo , Glucuronosiltransferase/fisiologia , Amitriptilina/metabolismo , Animais , Difenidramina/metabolismo , Humanos , Imipramina/metabolismo , Cinética , Spodoptera , Especificidade por Substrato
16.
Int J Neuropsychopharmacol ; 16(10): 2259-72, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23931269

RESUMO

The pharmacological concept that inhibition of the drug efflux pump P-glycoprotein (P-gp) enhances brain distribution of the antidepressant imipramine in the rat has recently been demonstrated. To determine if these findings are relevant to humans, the present study investigated if imipramine is a transported substrate of human P-gp. Furthermore, additional experiments were carried out to determine if findings in relation to imipramine and human P-gp would apply to other antidepressants from a range of different classes. To this end, bidirectional transport experiments were carried out in the ABCB1-transfected MDCKII-MDR1 cell line. Transported substrates of human P-gp are subjected to net efflux in this system, exhibiting a transport ratio (TR) ≥ 1.5, and directional efflux is attenuated by co-incubation of a P-gp inhibitor. Imipramine was identified as a transported substrate of human P-gp (TR = 1.68, attenuated by P-gp inhibition). However, the antidepressants amitriptyline, duloxetine, fluoxetine and mirtazapine were not transported substrates of human P-gp (TR ≤ 1.16 in all cases). These results offer insight into the role of P-gp in the distribution of antidepressants, revealing that rodent findings pertaining to imipramine may translate to humans. Moreover, the present results highlight that other antidepressants may not be transported substrates of human P-gp.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antidepressivos/metabolismo , Barreira Hematoencefálica/metabolismo , Permeabilidade Capilar , Imipramina/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Amitriptilina/metabolismo , Animais , Transporte Biológico , Cães , Cloridrato de Duloxetina , Fluoxetina/metabolismo , Humanos , Células Madin Darby de Rim Canino , Mianserina/análogos & derivados , Mianserina/metabolismo , Mirtazapina , Tiofenos/metabolismo , Transfecção
17.
Pharmazie ; 67(5): 440-7, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22764579

RESUMO

Polymorphisms of the cytochrome P450 2D6 (CYP2D6) gene play a major role in pharmacokinetic variability in human, while CYP2D6*10 is an important subtype in Asian people. In this study, the co-expression enzyme of human recombinant CYPOR, CYPb5 and CYP2D6.1 or CYP2D6.10 with the Bac-to-Bac system in baculovirus-infected insect cells was used to study the catalytical activity to imipramine metabolism and stereoselective metabolism of propranolol. The metabolites of imipramine were identified of hydroxyl imipramine and desipramine by LC-MS/MS. There are some differences between CYP2D6.1 and CYP2D6.10 activity. The kinetics parameters K(m), V(max), and CL(int) are 11.77 +/- 0.91 micromol/L, 0.4235 +/- 0.05 nmol/nmol CYP2D6.1/min and 3.60 x 10(-5) ml/min/nmol CYP2D6.1 (n = 3) for CYP2D6.1, respectively, and 9.05 +/- 0.87 micromol/L, 0.42 +/- 0.03 nmol/nmol CYP2D6.10/min, and 4.60 x 10(-5) ml/min/nmol CYP2D6.10 (n = 3) for CYP2D6.10. For propranolol, two metabolites were identified to be hydroxyl and N-desisopropylation propranolol by LC-MS/MS. When the substrate concentration was 0.20 micromol/L, CYP2D6.1 and CYP2D6.10 exhibited significant stereoseletivity. Furthermore, enantioselective formation has been detected. Both of CYP2D6.1 and CYP2D6.10 produced more hydroxyl propranolol from the R-(+)-isomer than from the S-(-)-isomer while there was no obvious difference for N-desisopropylation propranolol production between R-(+)- and S-(-)- isomer. In summary, there is a somewhat different catalytical activity and stereoselectivity between the human recombinant CYP2D6.1 and CYP2D6.10. The data we got will be helpful in preclinical research and clinical use of CYP2D6 substrates.


Assuntos
Citocromo P-450 CYP2D6/metabolismo , Antagonistas Adrenérgicos beta/metabolismo , Algoritmos , Alelos , Antidepressivos Tricíclicos/metabolismo , Baculoviridae/enzimologia , Baculoviridae/genética , Catálise , Cromatografia Líquida de Alta Pressão , Interpretação Estatística de Dados , Humanos , Hidroxilação , Imipramina/metabolismo , Isoenzimas/metabolismo , Cinética , NADP/metabolismo , Propranolol/metabolismo , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Estereoisomerismo , Especificidade por Substrato
18.
Cancer Cell ; 40(10): 1111-1127.e9, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36113478

RESUMO

Glioblastoma (GBM) is poorly responsive to therapy and invariably lethal. One conceivable strategy to circumvent this intractability is to co-target distinctive mechanistic components of the disease, aiming to concomitantly disrupt multiple capabilities required for tumor progression and therapeutic resistance. We assessed this concept by combining vascular endothelial growth factor (VEGF) pathway inhibitors that remodel the tumor vasculature with the tricyclic antidepressant imipramine, which enhances autophagy in GBM cancer cells and unexpectedly reprograms immunosuppressive tumor-associated macrophages via inhibition of histamine receptor signaling to become immunostimulatory. While neither drug is efficacious as monotherapy, the combination of imipramine with VEGF pathway inhibitors orchestrates the infiltration and activation of CD8 and CD4 T cells, producing significant therapeutic benefit in several GBM mouse models. Inclusion up front of immune-checkpoint blockade with anti-programmed death-ligand 1 (PD-L1) in eventually relapsing tumors markedly extends survival benefit. The results illustrate the potential of mechanism-guided therapeutic co-targeting of disparate biological vulnerabilities in the tumor microenvironment.


Assuntos
Glioblastoma , Animais , Antidepressivos Tricíclicos/metabolismo , Antidepressivos Tricíclicos/uso terapêutico , Autofagia , Antígeno B7-H1/metabolismo , Glioblastoma/patologia , Imipramina/metabolismo , Imipramina/uso terapêutico , Inibidores de Checkpoint Imunológico , Imunoterapia , Macrófagos/metabolismo , Camundongos , Recidiva Local de Neoplasia/tratamento farmacológico , Receptor de Morte Celular Programada 1 , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular/metabolismo
19.
Drug Des Devel Ther ; 16: 4179-4204, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36514526

RESUMO

Aim: Depression is a chronic recurrent neuropsychiatric disorder associated with inflammation. This study explored the pharmacological activities of Aerva javanica leaves crude extract (Aj.Cr) on lipopolysaccharide (LPS)-induced depressive-like behavior in experimental mice. Methods: Aj.Cr was evaluated for its phenolic and flavonoid contents, bioactive potential, amino acid profiling and enzyme inhibition assays using different analytical techniques followed by in-silico molecular docking was performed. In addition, three ligands identified in HPLC analysis and standard galantamine were docked to acetyl cholinesterase (AchE) enzyme to assess the ligand interaction along with their binding affinities. In in-vivo analysis, mice were given normal saline (10 mL/kg), imipramine (10 mg/kg) and Aj.Cr (100, 300, and 500 mg/kg) orally for 14-consecutive days. On the 14th day, respective treatment was given 30-minutes before intra-peritoneal administration of (0.83 mg/kg) LPS. Open field, forced swim and tail suspension tests were performed 24-hours after LPS injection, followed by a sucrose preference test 48-hours later. Serum corticosterone levels, as well as levels of nitric oxide (NO), malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), tumor necrosis factor-alpha (TNF-), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), brain-derived neurotrophic factor (BDNF) and catecholamines were determined in brain tissues. Results: In-vitro results revealed that crude extract of Aj.Cr possesses anti-depressant agents with solid antioxidant potential. In-vivo analysis showed that LPS significantly increased depressive-like behavior followed by alteration in serum and tissue biomarkers as compared to normal control (p < 0.001). While imipramine and Aj.Cr (100, 300, and 500 mg/kg) treated groups significantly (p<0.05) improved the depressive-like behavior and biomarkers when compared to the LPS group. Conclusion: The mitigation of LPS-induced depressive-like behavior by Aj.Cr may be linked to the modulation of oxidative stress, neuro-inflammation and catecholamines due to the presence of potent bioactive compounds exerting anti-depressant effects.


Assuntos
Amaranthaceae , Lipopolissacarídeos , Animais , Camundongos , Antidepressivos/metabolismo , Comportamento Animal , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Catecolaminas/metabolismo , Catecolaminas/farmacologia , Misturas Complexas/farmacologia , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Glutationa/metabolismo , Imipramina/metabolismo , Imipramina/farmacologia , Inflamação/tratamento farmacológico , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Metanol/farmacologia , Simulação de Acoplamento Molecular , Fator de Necrose Tumoral alfa/metabolismo
20.
J Biol Chem ; 285(11): 8363-74, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-19948720

RESUMO

Tricyclic antidepressants (TCAs) have been used for decades, but their orientation within and molecular interactions with their primary target is yet unsettled. The recent finding of a TCA binding site in the extracellular vestibule of the bacterial leucine transporter 11 A above the central site has prompted debate about whether this vestibular site in the bacterial transporter is applicable to binding of antidepressants to their relevant physiological target, the human serotonin transporter (hSERT). We present an experimentally validated structural model of imipramine and analogous TCAs in the central substrate binding site of hSERT. Two possible binding modes were observed from induced fit docking calculations. We experimentally validated a single binding mode by combining mutagenesis of hSERT with uptake inhibition studies of different TCA analogs according to the paired mutation ligand analog complementation paradigm. Using this experimental method, we identify a salt bridge between the tertiary aliphatic amine and Asp(98). Furthermore, the 7-position of the imipramine ring is found vicinal to Phe(335), and the pocket lined by Ala(173) and Thr(439) is utilized by 3-substituents. These protein-ligand contact points unambiguously orient the TCA within the central binding site and reveal differences between substrate binding and inhibitor binding, giving important clues to the inhibition mechanism. Consonant with the well established competitive inhibition of uptake by TCAs, the resulting binding site for TCAs in hSERT is fully overlapping with the serotonin binding site in hSERT and dissimilar to the low affinity noncompetitive TCA site reported in the leucine transporter (LeuT).


Assuntos
Antidepressivos Tricíclicos/química , Antidepressivos Tricíclicos/metabolismo , Imipramina/química , Imipramina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Alanina/genética , Ácido Aspártico/genética , Sítios de Ligação , Ligação Competitiva , Células Cultivadas , Humanos , Imipramina/análogos & derivados , Rim/citologia , Leucina/genética , Modelos Químicos , Mutagênese Sítio-Dirigida , Fenilalanina/genética , Serotonina/farmacocinética , Proteínas da Membrana Plasmática de Transporte de Serotonina/química , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Relação Estrutura-Atividade , Transfecção , Trítio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA