Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Vet Res ; 18(1): 279, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842618

RESUMO

BACKGROUND: Flagellin elicits potent immune response and may serve as a vaccine adjuvant. We previously reported that the N-terminus of flagellin (residues 1-99, nFliC) is sufficient for vaccine efficacy enhancement against Pasteurella multocida challenge in chickens. In this study, we futher tested the adjuvancy of nFliC in a subunit vaccine against the pig pathogen Actinobacillus pleuropneumoniae in a mice model. For vaccine formulation, the antigen ApxIIPF (the pore-forming region of the exotoxin ApxII) was combined with nFliC, either through genetic fusion or simple admixture. RESULTS: Immune analysis showed that nFliC, introduced through genetic fusion or admixture, enhanced both humoral (antibody levels) and cellular (T cell response and cytokine production) immunity. In a challenge test, nFliC increased vaccine protective efficacy to 60-80%, vs. 20% for the antigen-only group. Further analysis showed that, even without a supplemental adjuvant such as mineral salt or oil emulsion, genetically linked nFliC still provided significant immune enhancement. CONCLUSIONS: We conclude that nFliC is a versatile and potent adjuvant for vaccine formulation.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Doenças dos Roedores , Doenças dos Suínos , Infecções por Actinobacillus/prevenção & controle , Infecções por Actinobacillus/veterinária , Animais , Anticorpos Antibacterianos , Vacinas Bacterianas , Galinhas , Flagelina , Camundongos , Suínos , Doenças dos Suínos/prevenção & controle , Eficácia de Vacinas
2.
BMC Vet Res ; 15(1): 6, 2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-30606265

RESUMO

BACKGROUND: Actinobacillus pleuropneumoniae is the causative agent of porcine pleuropneumonia and represents a major burden to the livestock industry. Virulence can largely be attributed to the secretion of a series of haemolytic toxins, which are highly immunogenic. A. pleuropneumoniae also encodes a cytoplasmic N-glycosylation system, which involves the modification of high molecular weight adhesins with glucose residues. Central to this process is the soluble N-glycosyl transferase, ngt, which is encoded in an operon with a subsequent glycosyl transferase, agt. Plasmid-borne recombinant expression of these genes in E. coli results in the production of a glucose polymer on peptides containing the appropriate acceptor sequon, NX(S/T). However to date, there is little evidence to suggest that such a glucose polymer is formed on its target peptides in A. pleuropneumoniae. Both the toxins and glycosylation system represent potential targets for the basis of a vaccine against A. pleuropneumoniae infection. RESULTS: In this study, we developed cytoplasmic glycoengineering to construct glycoconjugate vaccine candidates composed of soluble toxin fragments modified by glucose. We transferred ngt and agt to the chromosome of Escherichia coli in order to generate a native-like operon for glycoengineering. A single chromosomal copy of ngt and agt resulted in the glucosylation of toxin fragments by a short glycan, rather than a polymer. CONCLUSIONS: A vaccine candidate that combines toxin fragment with a conserved glycan offers a novel approach to generating epitopes important for both colonisation and disease progression.


Assuntos
Infecções por Actinobacillus/veterinária , Actinobacillus pleuropneumoniae/imunologia , Toxinas Bacterianas/imunologia , Vacinas Bacterianas/imunologia , Infecções por Actinobacillus/imunologia , Infecções por Actinobacillus/prevenção & controle , Animais , Escherichia coli/genética , Engenharia Genética/métodos , Engenharia Genética/veterinária , Glicoconjugados/genética , Glicoconjugados/imunologia , Microrganismos Geneticamente Modificados/genética , Pleuropneumonia/imunologia , Pleuropneumonia/prevenção & controle , Pleuropneumonia/veterinária , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/microbiologia , Doenças dos Suínos/prevenção & controle , Vacinas Conjugadas/imunologia
3.
Vet Res ; 49(1): 4, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29316978

RESUMO

Actinobacillus pleuropneumoniae (A. pleuropneumoniae) is a Gram-negative bacterium that represents the main cause of porcine pleuropneumonia in pigs, causing significant economic losses to the livestock industry worldwide. A. pleuropneumoniae, as the majority of Gram-negative bacteria, excrete vesicles from its outer membrane (OM), accordingly defined as outer membrane vesicles (OMVs). Thanks to their antigenic similarity to the OM, OMVs have emerged as a promising tool in vaccinology. In this study we describe the in vivo testing of several vaccine prototypes for the prevention of infection by all known A. pleuropneumoniae serotypes. Previously identified vaccine candidates, the recombinant proteins ApfA and VacJ, administered individually or in various combinations with the OMVs, were employed as vaccination strategies. Our data show that the addition of the OMVs in the vaccine formulations significantly increased the specific IgG titer against both ApfA and VacJ in the immunized animals, confirming the previously postulated potential of the OMVs as adjuvant. Unfortunately, the antibody response raised did not translate into an effective protection against A. pleuropneumoniae infection, as none of the immunized groups following challenge showed a significantly lower degree of lesions than the controls. Interestingly, quite the opposite was true, as the animals with the highest IgG titers were also the ones bearing the most extensive lesions in their lungs. These results shed new light on A. pleuropneumoniae pathogenicity, suggesting that antibody-mediated cytotoxicity from the host immune response may play a central role in the development of the lesions typically associated with A. pleuropneumoniae infections.


Assuntos
Infecções por Actinobacillus/veterinária , Actinobacillus pleuropneumoniae/imunologia , Vacinas Bacterianas/imunologia , Pleuropneumonia/veterinária , Doenças dos Suínos/prevenção & controle , Infecções por Actinobacillus/microbiologia , Infecções por Actinobacillus/prevenção & controle , Actinobacillus pleuropneumoniae/genética , Animais , Pleuropneumonia/microbiologia , Pleuropneumonia/prevenção & controle , Proteínas Recombinantes/imunologia , Sorogrupo , Suínos , Doenças dos Suínos/microbiologia , Vacinação/veterinária
4.
J Appl Microbiol ; 124(6): 1366-1376, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29431246

RESUMO

AIMS: Available bacterins, commercial or autogenous, for Actinobacillus pleuropneumoniae disease control have, thus far, shown debatable protective efficacy and only in homologous challenges. Our study sought to determine whether the addition of reombinant protein ApxIV to the multicomponent vaccine could enhance protection against homologous and heterologous challenge of A. pleuropneumoniae. METHODS AND RESULTS: The virulence of ApxI, ApxII, ApxIV and OMP were cloned and expressed using a prokaryotic system; these recombinant proteins were combined with inactivated A. pleuropneumoniae serovar 1 to formulate different multicomponent vaccines. Immune response and protective efficacy of the vaccines were evaluated in mice and pigs. A protection rate of 67% was observed against heterologous challenge in mice vaccinated with the rApxIV formulation. Piglets vaccinated with vaccine containing ApxIV produced significantly higher antibody titre and provided complete protection and reduced gross lesions by 67% when compared with the nonimmunized group after homologous challenge. Additionally, flow cytometry analysis showed significant cellular immune response. CONCLUSIONS: The results of our vaccination experiments revealed that a combination of inactivated bacteria and the recombinant antigens rApxI, rApxII, rApxIV and rOMP can provide effective protection against heterologous A. pleuropneumoniae challenge. SIGNIFICANCE AND IMPACT OF THE STUDY: The addition of ApxIV to the multicomponent vaccine could enhance homologous and heterologous protection in mice and pigs, respectively, against challenge by A. pleuropneumoniae.


Assuntos
Infecções por Actinobacillus/veterinária , Actinobacillus pleuropneumoniae/imunologia , Proteínas de Bactérias/imunologia , Doenças dos Suínos/prevenção & controle , Infecções por Actinobacillus/imunologia , Infecções por Actinobacillus/microbiologia , Infecções por Actinobacillus/prevenção & controle , Actinobacillus pleuropneumoniae/genética , Animais , Anticorpos Antibacterianos/imunologia , Proteínas de Bactérias/administração & dosagem , Proteínas de Bactérias/genética , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/genética , Vacinas Bacterianas/imunologia , Feminino , Camundongos , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/microbiologia , Vacinação
5.
Vet Res ; 48(1): 74, 2017 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-29122004

RESUMO

Despite numerous actions to prevent disease, Actinobacillus pleuropneumoniae (A. pleuropneumoniae) remains a major cause of porcine pleuropneumonia, resulting in economic losses to the swine industry worldwide. In this paper, we describe the utilization of a reverse vaccinology approach for the selection and in vitro testing of serovar-independent A. pleuropneumoniae immunogens. Potential immunogens were identified in the complete genomes of three A. pleuropneumoniae strains belonging to different serovars using the following parameters: predicted outer-membrane subcellular localization; ≤ 1 trans-membrane helices; presence of a signal peptide in the protein sequence; presence in all known A. pleuropneumoniae genomes; homology with other well characterized factors with relevant data regarding immunogenicity/protective potential. Using this approach, we selected the proteins ApfA and VacJ to be expressed and further characterized, both in silico and in vitro. Additionally, we analysed outer membrane vesicles (OMVs) of A. pleuropneumoniae MIDG2331 as potential immunogens, and compared deletions in degS and nlpI for increasing yields of OMVs compared to the parental strain. Our results indicated that ApfA and VacJ are highly conserved proteins, naturally expressed during infection by all A. pleuropneumoniae serovars tested. Furthermore, OMVs, ApfA and VacJ were shown to possess a high immunogenic potential in vitro. These findings favour the immunogen selection protocol used, and suggest that OMVs, along with ApfA and VacJ, could represent effective immunogens for the prevention of A. pleuropneumoniae infections in a serovar-independent manner. This hypothesis is nonetheless predictive in nature, and in vivo testing in a relevant animal model will be necessary to verify its validity.


Assuntos
Infecções por Actinobacillus/veterinária , Actinobacillus pleuropneumoniae/imunologia , Vacinas Bacterianas/imunologia , Pleuropneumonia/veterinária , Doenças dos Suínos/prevenção & controle , Infecções por Actinobacillus/microbiologia , Infecções por Actinobacillus/prevenção & controle , Animais , Pleuropneumonia/microbiologia , Pleuropneumonia/prevenção & controle , Suínos , Doenças dos Suínos/microbiologia , Vacinas Sintéticas/imunologia
6.
BMC Vet Res ; 13(1): 14, 2017 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-28061786

RESUMO

BACKGROUND: Actinobacillus pleuropneumoniae is the etiological agent of porcine pleuropneumonia, which leads to large economic losses to the swine industry worldwide. In this study, S-8△clpP△apxIIC, a double-deletion mutant of A. pleuropneumoniae was constructed, and its safety and protective efficacy were evaluated in pigs. RESULTS: The S-8△clpP△apxIIC mutant exhibited attenuated virulence in a murine (BALB/c) model, and caused no detrimental effects on pigs even at a dose of up to 1.0 × 109 CFU. Furthermore, the S-8△clpP△apxIIC mutant was able to induce a strong immune response in pigs, which included high levels of IgG1 and IgG2, stimulated gamma interferon (IFN-γ), interleukin 12 (IL-12), and interleukin 4 (IL-4) production, and conferred effective protection against the lethal challenge with A. pleuropneumoniae serovars 7 or 5a. The pigs in the S-8△clpP△apxIIC immunized groups have no lesions and reduced bacterial loads in the lung tissue after challenge. CONCLUSIONS: The data obtained in this study suggest that the S-8△clpP△apxIIC mutant can serve as a highly immunogenic and potential live attenuated vaccine candidate against A. pleuropneumoniae infection.


Assuntos
Infecções por Actinobacillus/veterinária , Actinobacillus pleuropneumoniae/genética , Actinobacillus pleuropneumoniae/imunologia , Vacinas Bacterianas/imunologia , Doenças dos Suínos/prevenção & controle , Infecções por Actinobacillus/microbiologia , Infecções por Actinobacillus/prevenção & controle , Actinobacillus pleuropneumoniae/metabolismo , Actinobacillus pleuropneumoniae/patogenicidade , Animais , Deleção de Genes , Camundongos , Camundongos Endogâmicos BALB C , Suínos , Virulência
7.
Microbiol Immunol ; 60(7): 447-58, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27211905

RESUMO

Apx toxins produced by Actinobacillus pleuropneumoniae are essential components of new generation vaccines. In this study, apxIIA and apxIIIA genes of serovars 2, 3, 4, 6, 8 and 15 were cloned and sequenced. Amino acid sequences of ApxIIA proteins of serovars 2, 3, 4, 6, 8 and 15 were almost identical to those of serovars 1, 5, 7, 9 and 11-13. Immunoblot analysis showed that rApxIIA from serovars 2 and 15 reacts strongly with sera from animals infected with various serovars. Sequence analysis revealed that ApxIIIA proteins has two variants, one in strains of serovar 2 and the other in strains of serovars 3, 4, 6, 8 and 15. A mouse cross-protection study showed that mice actively immunized with rApxIIIA/2 or rApxIIIA/15 are protected against challenge with A. pleuropneumoniae strains of serovars 3, 4, 6, 8, 15, and 2 expressing ApxIII/15 and ApxIII/2, respectively. Similarly, mice passively immunized with rabbit anti-rApxIIIA/2 or anti-rApxIIIA/15 sera were found to be protected against challenge with strains of serovars 2 and 15. Our study revealed antigenic and sequence similarities within ApxIIA and ApxIIIA proteins, which may help in the development of effective vaccines against disease caused by A. pleuropneumoniae.


Assuntos
Actinobacillus pleuropneumoniae/genética , Actinobacillus pleuropneumoniae/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/imunologia , Sorogrupo , Infecções por Actinobacillus/imunologia , Infecções por Actinobacillus/prevenção & controle , Actinobacillus pleuropneumoniae/classificação , Sequência de Aminoácidos , Animais , Anticorpos Antibacterianos/imunologia , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Expressão Gênica , Proteínas Hemolisinas/química , Proteínas Hemolisinas/isolamento & purificação , Imunização , Camundongos , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Coelhos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/isolamento & purificação , Suínos
8.
Infect Immun ; 83(7): 2836-43, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25916992

RESUMO

To reduce the need for antibiotics in animal production, alternative approaches are needed to control infection. We hypothesized that overexpression of native defensin genes will provide food animals with enhanced resistance to bacterial infections. In this study, recombinant porcine beta-defensin 2 (PBD-2) was overexpressed in stably transfected PK-15 porcine kidney cells. PBD-2 antibacterial activities against Actinobacillus pleuropneumoniae, an important respiratory pathogen causing porcine contagious pleuropneumonia, were evaluated on agar plates. Transgenic pigs constitutively overexpressing PBD-2 were produced by a somatic cell cloning method, and their resistance to bacterial infection was evaluated by direct or cohabitation infection with A. pleuropneumoniae. Recombinant PBD-2 peptide that was overexpressed in the PK-15 cells showed antibacterial activity against A. pleuropneumoniae. PBD-2 was overexpressed in the heart, liver, spleen, lungs, kidneys, and jejunum of the transgenic pigs, which showed significantly lower bacterial loads in the lungs and reduced lung lesions after direct or cohabitation infection with A. pleuropneumoniae. The results demonstrate that transgenic overexpression of PBD-2 in pigs confers enhanced resistance against A. pleuropneumoniae infection.


Assuntos
Infecções por Actinobacillus/prevenção & controle , Actinobacillus pleuropneumoniae/imunologia , Resistência à Doença , Expressão Gênica , Doenças dos Suínos/prevenção & controle , beta-Defensinas/biossíntese , Infecções por Actinobacillus/imunologia , Animais , Animais Geneticamente Modificados , Carga Bacteriana , Linhagem Celular , Pulmão/microbiologia , Masculino , Suínos , Doenças dos Suínos/imunologia
9.
J Immunol ; 189(2): 1043-52, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22706081

RESUMO

The 15-deoxy-(Δ12,14)-PG J(2) (15d-PGJ(2)) has demonstrated excellent anti-inflammatory results in different experimental models. It can be used with a polymeric nanostructure system for modified drug release, which can change the therapeutic properties of the active principle, leading to increased stability and slower/prolonged release. The aim of the current study was to test a nanotechnological formulation as a carrier for 15d-PGJ(2), and to investigate the immunomodulatory effects of this formulation in a mouse periodontitis model. Poly (D,L-lactide-coglycolide) nanocapsules (NC) were used to encapsulate 15d-PGJ(2). BALB/c mice were infected on days 0, 2, and 4 with Aggregatibacter actinomycetemcomitans and divided into groups (n = 5) that were treated daily during 15 d with 1, 3, or 10 µg/kg 15d-PGJ(2)-NC. The animals were sacrificed, the submandibular lymph nodes were removed for FACS analysis, and the jaws were analyzed for bone resorption by morphometry. Immunoinflammatory markers in the gingival tissue were analyzed by reverse transcriptase-quantitative PCR, Western blotting, or ELISA. Infected animals treated with the 15d-PGJ(2)-NC presented lower bone resorption than infected animals without treatment (p < 0.05). Furthermore, infected animals treated with 10 µg/kg 15d-PGJ(2)-NC had a reduction of CD4(+)CD25(+)FOXP3(+) cells and CD4/CD8 ratio in the submandibular lymph node (p < 0.05). Moreover, CD55 was upregulated, whereas RANKL was downregulated in the gingival tissue of the 10 µg/kg treated group (p < 0.05). Several proinflammatory cytokines were decreased in the group treated with 10 µg/kg 15d-PGJ(2)-NC, and high amounts of 15d-PGJ(2) were observed in the gingiva. In conclusion, the 15d-PGJ(2)-NC formulation presented immunomodulatory effects, decreasing bone resorption and inflammatory responses in a periodontitis mouse model.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Reabsorção Óssea/prevenção & controle , Nanocápsulas/administração & dosagem , Periodontite/tratamento farmacológico , Periodontite/imunologia , Prostaglandina D2/análogos & derivados , Infecções por Actinobacillus/imunologia , Infecções por Actinobacillus/patologia , Infecções por Actinobacillus/prevenção & controle , Aggregatibacter actinomycetemcomitans/imunologia , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Reabsorção Óssea/imunologia , Reabsorção Óssea/microbiologia , Modelos Animais de Doenças , Gengiva/efeitos dos fármacos , Gengiva/imunologia , Gengiva/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos DBA , Nanocápsulas/uso terapêutico , Periodontite/patologia , Prostaglandina D2/administração & dosagem , Prostaglandina D2/uso terapêutico
10.
BMC Vet Res ; 10: 43, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24533486

RESUMO

BACKGROUND: Infection by Mycoplasma hyopneumoniae and Actinobacillus pleuropneumoniae, either alone or together, causes serious respiratory diseases in pigs. RESULTS: To develop an efficient multi-disease subunit vaccine against these pathogens, we produced a chimeric protein called Ap97, which comprises a deletion derivative of the N-terminal region of the A. pleuropneumoniae ApxIII toxin (ApxN) and the R1 and R2 repeats of M. hyopneumoniae P97 adhesin (P97C), using an E. coli expression system.The levels of both IgG1 and IgG2a isotypes specific for ApxN and P97C in the sera of Ap97-immunized mice increased, and Ap97 induced the secretion of IL-4 and IFN-γ by mouse splenocytes. Antisera from mice and pigs immunized with Ap97 readily reacted with both native ApxIII and P97 proteins. In addition, immunization with the Ap97 vaccine effectively protected pigs against challenge with both pathogens. CONCLUSIONS: These findings suggest that Ap97 confers immunogenicity, and is an effective vaccine that protects pigs against infection by M. hyopneumoniae and A. pleuropneumoniae.


Assuntos
Infecções por Actinobacillus/veterinária , Actinobacillus pleuropneumoniae/metabolismo , Mycoplasma hyopneumoniae/metabolismo , Pneumonia Suína Micoplasmática/prevenção & controle , Proteínas Recombinantes/imunologia , Infecções por Actinobacillus/prevenção & controle , Animais , Vacinas Bacterianas/imunologia , Sequência de Bases , Citocinas , Escherichia coli/metabolismo , Feminino , Regulação Bacteriana da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Anotação de Sequência Molecular , Organismos Livres de Patógenos Específicos , Suínos
11.
Biotechnol J ; 19(1): e2300187, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38178735

RESUMO

The ApxII toxin and the outer membrane lipoprotein (Oml) of Actinobacillus pleuropneumoniae are important vaccine antigens against porcine contagious pleuropneumonia (PCP), a prevalent infectious disease affecting the swine industry worldwide. Previous studies have reported the recombinant expression of ApxII and Oml in Escherichia coli; however, their yields were not satisfactory. Here, we aimed to enhance the production of ApxII and Oml by constructing a bicistronic expression system based on the widely used T7 promoter. To create efficient T7 bicistronic expression cassettes, 16 different fore-cistron sequences were introduced downstream of the T7 promoter. The expression of three vaccine antigens Oml1, Oml7, and ApxII in the four strongest bicistronic vectors were enhanced compared to the monocistronic control. Further optimization of the fermentation conditions in micro-well plates (MWP) led to improved production. Finally, the production yields reached unprecedented levels of 2.43 g L-1 of Oml1, 2.59 g L-1 of Oml7, and 1.21 g L-1 of ApxII, in a 5 L bioreactor. These three antigens also demonstrated well-protective immunity against A. pleuropneumoniae infection. In conclusion, this study establishes an efficient bicistronic T7 expression system that can be used to express recombinant proteins in E. coli and achieves the hyper-production of PCP vaccine proteins.


Assuntos
Infecções por Actinobacillus , Pleuropneumonia Contagiosa , Suínos , Animais , Proteínas de Bactérias , Escherichia coli/genética , Pleuropneumonia Contagiosa/prevenção & controle , Proteínas Recombinantes/genética , Infecções por Actinobacillus/prevenção & controle , Vacinas de Subunidades Antigênicas/genética
12.
Microbiol Immunol ; 57(6): 417-25, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23773020

RESUMO

An oral delivery system based on ApxIIA#5-expressed on Saccharomyces cerevisiae was studied for its potential to induce immune responses in mice. Murine bone marrow-derived dendritic cells (DCs) stimulated in vitro with ApxIIA#5-expressed on S. cerevisiae upregulated the expression of maturation and activation markers, leading to production of tumor necrosis factor-α, interleukin (IL)-1ß, IL-12p70 and IL-10. Presentation of these activated DCs to cluster of differentiation CD4+ T cells collected from mice that had been orally immunized with the ApxIIA#5-expressed on S. cerevisiae elicited specific T-cell proliferation. In addition, the orally immunized mice had stronger antigen-specific serum IgG and IgA antibody responses and larger numbers of antigen-specific IgG and IgA antibody-secreting cells in their spleens, Peyer's patches and lamina propria than did those immunized with vector-only S. cerevisiae or those not immunized. Furthermore, oral immunization induced T helper 1-type immune responses mediated via increased serum concentrations of IgG2a and an increase predominantly of IFN-γ-producing cells in their spleens and lamina propria. Our findings suggest that surface-displayed ApxIIA#5-expressed on S. cerevisiae may be a promising candidate for an oral vaccine delivery system for eliciting systemic and mucosal immunity.


Assuntos
Infecções por Actinobacillus/prevenção & controle , Actinobacillus pleuropneumoniae/imunologia , Proteínas de Bactérias/imunologia , Vacinas Bacterianas/imunologia , Proteínas Hemolisinas/imunologia , Saccharomyces cerevisiae/imunologia , Infecções por Actinobacillus/imunologia , Actinobacillus pleuropneumoniae/genética , Administração Oral , Animais , Anticorpos Antibacterianos/sangue , Proteínas de Bactérias/genética , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/genética , Linfócitos T CD4-Positivos/imunologia , Proliferação de Células , Citocinas/metabolismo , Células Dendríticas/imunologia , Proteínas Hemolisinas/genética , Imunidade nas Mucosas , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Camundongos , Saccharomyces cerevisiae/genética
13.
Vet Microbiol ; 276: 109607, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36481482

RESUMO

Route of vaccine delivery can greatly impact the immunogenicity, efficacy and safety of the vaccine. Four groups of piglets were immunised transdermally (t.d.), intradermally (i.d.) or intramuscularly (i.m.) with the same doses of antigen in combination with a water-in-oil-in-water emulsion adjuvant Montanide™ ISA 201 VG or with a microemulsion adjuvant Montanide™ IMS 1313 VG N ST (Seppic, France). The last group was left without vaccination as a control group. All animals were subsequently exposed to the infection induced by Actinobacillus pleuropneumoniae (App). The immune response was evaluated with respect to the intensity of systemic and mucosal antibody formation, their isotype characterisation and rate of cell-mediated immunity. These findings were compared with the intensity of adverse local reactions and level of protection in experimental challenge. Monitoring of the local reaction at the injection site after each administration showed that microemulsion adjuvant IMS 1313 was less reactogenic than the water-in-oil-in-water emulsion ISA 201. In terms of efficacy, both dermal administrations were less immunogenic than the i.m route. The i.m. injection induced higher anti-App9 IgG and IgM titres. Nevertheless, IgG1 and IgG2 isotypes analysis revealed a close immunological profile between i.m. and i.d. routes. The concentration of IFN-γ from peripheral blood after in vitro restimulation with the specific antigen was only increased in the i.m. group at the day of challenge (D35) and two weeks after (D49). Interestingly, the smallest gross pulmonary lesions were observed in the i.d. vaccinated group (3.4%) compared to the control group (39.4%) and to groups with other routes of administration. Taken together, these results suggest that i.d. administration of vaccines is a promising approach. Even the i.d. vaccine was more reactogenic and slightly less immunogenic than the i.m. vaccine, its protection effectiveness seemed to be superior.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Doenças dos Suínos , Suínos , Animais , Administração Cutânea , Emulsões , Imunização/veterinária , Imunização/métodos , Vacinação/métodos , Vacinação/veterinária , Adjuvantes Imunológicos , Imunoglobulina G , Imunidade , Infecções por Actinobacillus/prevenção & controle , Infecções por Actinobacillus/veterinária , Vacinas Bacterianas , Anticorpos Antibacterianos , Doenças dos Suínos/prevenção & controle
14.
Vet Res ; 43: 2, 2012 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-22240397

RESUMO

Porcine pleuropneumonia caused by Actinobacillus pleuropneumoniae accounts for serious economic losses in the pig farming industry worldwide. We examined here the immunogenicity and protective efficacy of the recombinant type IV fimbrial subunit protein ApfA as a single antigen vaccine against pleuropneumonia, or as a component of a multi-antigen preparation comprising five other recombinant antigens derived from key virulence factors of A. pleuropneumoniae (ApxIA, ApxIIA, ApxIIIA, ApxIVA and TbpB). Immunization of pigs with recombinant ApfA alone induced high levels of specific serum antibodies and provided partial protection against challenge with the heterologous A. pleuropneumoniae serotype 9 strain. This protection was higher than that engendered by vaccination with rApxIVA or rTbpB alone and similar to that observed after immunization with the tri-antigen combination of rApxIA, rApxIIA and rApxIIIA. In addition, rApfA improved the vaccination potential of the penta-antigen mixture of rApxIA, rApxIIA, rApxIIIA, rApxIVA and rTbpB proteins, where the hexa-antigen vaccine containing rApfA conferred a high level of protection on pigs against the disease. Moreover, when rApfA was used for vaccination alone or in combination with other antigens, such immunization reduced the number of pigs colonized with the challenge strain. These results indicate that ApfA could be a valuable component of an efficient subunit vaccine for the prevention of porcine pleuropneumonia.


Assuntos
Infecções por Actinobacillus/veterinária , Adesinas Bacterianas/imunologia , Vacinas Bacterianas/imunologia , Fímbrias Bacterianas/imunologia , Pleuropneumonia/veterinária , Doenças dos Suínos/imunologia , Infecções por Actinobacillus/imunologia , Infecções por Actinobacillus/prevenção & controle , Actinobacillus pleuropneumoniae/genética , Actinobacillus pleuropneumoniae/imunologia , Actinobacillus pleuropneumoniae/patogenicidade , Adesinas Bacterianas/genética , Animais , Vacinas Bacterianas/genética , Escherichia coli/genética , Exotoxinas/genética , Exotoxinas/metabolismo , Feminino , Fímbrias Bacterianas/genética , Masculino , Dados de Sequência Molecular , Pleuropneumonia/imunologia , Pleuropneumonia/prevenção & controle , Reação em Cadeia da Polimerase/veterinária , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Análise de Sequência de DNA/veterinária , Suínos , Doenças dos Suínos/prevenção & controle , Vacinação/veterinária , Fatores de Virulência/genética , Fatores de Virulência/imunologia
15.
J Comp Pathol ; 195: 12-18, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35817536

RESUMO

In-vivo models of Actinobacillus pleuropneumoniae (App) infection in pigs are required for the development of vaccines and investigations of pathogenicity. Existing models cause severe respiratory disease with pulmonary oedema, dyspnoea and severe thoracic pain, and careful monitoring and early intervention with euthanasia is, therefore, needed to avoid unnecessary suffering in experimental animals. As a potential replacement for the existing respiratory infection model, an in-vivo protocol was evaluated using intradermal or subcutaneous injection of different App strains and Apx toxins into the abdominal skin of pigs. High concentrations of serovar 1 and serovar 10 App induced diffuse visible dermal oedema and inflammation. Injection of Apx toxins alone did not adequately produce macroscopic lesions, although an influx of inflammatory cells was seen on histopathology. ApxI-producing strains of App induced more inflammation than ApxII- and ApxIII-producing strains. Induction of skin lesions by injection of App or Apx toxins was not sufficiently repeatable or discrete for a robust experimental model that could be used for assessment of novel interventions.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Toxinas Bacterianas , Doenças dos Suínos , Infecções por Actinobacillus/prevenção & controle , Infecções por Actinobacillus/veterinária , Animais , Proteínas de Bactérias , Edema/veterinária , Proteínas Hemolisinas , Inflamação/veterinária , Modelos Teóricos , Suínos
16.
J Med Microbiol ; 71(3)2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35262474

RESUMO

The Gram-negative bacterium Actinobacillus pleuropneumoniae is the causative agent of pleuropneumonia in pigs, its only known natural host. Typical symptoms of peracute disease include fever, apathy and anorexia, and time from infection to death may only be 6 h. Severe lung lesions result from presence of one or two of the ApxI-III toxins. Control is through good husbandry practice, vaccines and antibiotic use. Culture and presence of the species-specific apxIV gene by PCR confirms diagnosis, and identification of serovar, of which 19 are known, informs on appropriate vaccine use and epidemiology.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Pleuropneumonia , Doenças dos Suínos , Infecções por Actinobacillus/diagnóstico , Infecções por Actinobacillus/prevenção & controle , Infecções por Actinobacillus/veterinária , Actinobacillus pleuropneumoniae/genética , Animais , Proteínas de Bactérias/genética , Vacinas Bacterianas/imunologia , Pleuropneumonia/microbiologia , Pleuropneumonia/prevenção & controle , Pleuropneumonia/veterinária , Suínos , Doenças dos Suínos/microbiologia
17.
Immunol Invest ; 40(5): 465-80, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21425909

RESUMO

Actinobacillus pleuropneumoniae is the causative agent of porcine pleuropneumonia. Among the virulence factors of the pathogen, ApxIIA, a bacterial exotoxin, is expressed by many serotypes and presents a plausible target for vaccine development. We characterized the region within ApxIIA that induces a protective immune response against bacterial infection using mouse challenge model. Recombinant proteins spanning the length of ApxIIA were produced and antiserum to the full-length ApxIIA was induced in mice. This antiserum recognized fragments #2, #3 and #5 with high binding specificity, but showed poor recognition for fragments #1 and #4. Of the antisera induced in mice by injection of each fragments, only the antiserum to fragment #4 failed to efficiently recognize the full-length antigen, although the individual antisera recognized their cognate antigens with almost equal efficiency. The protective potency of the immunogenic proteins against a challenge injection of bacteria in vivo correlated well with the antibody titer. Fragment #5 induced the highest level of protective activity, comparable to that by the full-length protein. These results support the use of fragment #5 to produce a vaccine against A. pleuropneumoniae challenge, since the small antigen peptide is easier to handle than is the full-length protein and can be expressed efficiently in heterologous expression systems.


Assuntos
Infecções por Actinobacillus/imunologia , Actinobacillus pleuropneumoniae/imunologia , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Exotoxinas/imunologia , Proteínas Hemolisinas/imunologia , Infecções por Actinobacillus/sangue , Infecções por Actinobacillus/mortalidade , Infecções por Actinobacillus/prevenção & controle , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/genética , Antígenos de Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Exotoxinas/genética , Exotoxinas/isolamento & purificação , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/isolamento & purificação , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação
18.
Adv Microb Physiol ; 78: 179-216, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34147185

RESUMO

Actinobacillus pleuropneumoniae, the causative agent of porcine pleuropneumonia, is responsible for high economic losses in swine herds across the globe. Pleuropneumonia is characterized by severe respiratory distress and high mortality. The knowledge about the interaction between bacterium and host within the porcine respiratory tract has improved significantly in recent years. A. pleuropneumoniae expresses multiple virulence factors, which are required for colonization, immune clearance, and tissue damage. Although vaccines are used to protect swine herds against A. pleuropneumoniae infection, they do not offer complete coverage, and often only protect against the serovar, or serovars, used to prepare the vaccine. This review will summarize the role of individual A. pleuropneumoniae virulence factors that are required during key stages of pathogenesis and disease progression, and highlight progress made toward developing effective and broadly protective vaccines against an organism of great importance to global agriculture and food production.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Doenças dos Suínos , Infecções por Actinobacillus/prevenção & controle , Animais , Vacinas Bacterianas , Suínos , Doenças dos Suínos/prevenção & controle , Virulência
19.
J Microbiol Biotechnol ; 30(7): 1037-1043, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32238774

RESUMO

Actinobacillus pleuropneumoniae (APP) is a causative agent of porcine pleuropneumonia. Therefore, the development of an effective vaccine for APP is necessary. Here, we optimized the culture medium and conditions to enhance the production yields of Apx toxins in APP serotype 1, 2, and 5 cultures. The use of Mycoplasma Broth Base (PPLO) medium improved both the quantity and quality of the harvested Apx toxins compared with Columbia Broth medium. Calcium chloride (CaCl2) was first demonstrated as a stimulation factor for the production of Apx toxins in APP serotype 2 cultures. Cultivation of APP serotype 2 in PPLO medium supplemented with 10 µg/ml of nicotinamide adenine dinucleotide (NAD) and 20 mM CaCl2 yielded the highest levels of Apx toxins. These findings suggest that the optimization of the culture medium and conditions increases the concentration of Apx toxins in the supernatants of APP serotype 1, 2, and 5 cultures and may be applied for the development of vaccines against APP infection.


Assuntos
Actinobacillus pleuropneumoniae/metabolismo , Toxinas Bacterianas/biossíntese , Meios de Cultura/química , Infecções por Actinobacillus/prevenção & controle , Actinobacillus pleuropneumoniae/crescimento & desenvolvimento , Actinobacillus pleuropneumoniae/imunologia , Animais , Vacinas Bacterianas/imunologia , Cloreto de Cálcio/metabolismo , Sorogrupo , Suínos , Doenças dos Suínos/prevenção & controle
20.
Sci Rep ; 10(1): 2343, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32047221

RESUMO

Actinobacillus pleuropneumoniae is an important veterinary pathogen that causes porcine pleuropneumonia. Lipoproteins of bacterial pathogens play pleiotropic roles in the infection process. In addition, many bacterial lipoproteins are antigenic and immunoprotective. Therefore, characterization of lipoproteins is a promising strategy for identification of novel vaccine candidates or diagnostic markers. We cloned 58 lipoproteins from A. pleuropneumoniae JL03 (serovar 3) and expressed them in Escherichia coli. Five proteins with strong positive signals in western blotting analysis were used to immunize mice. These proteins elicited significant antibody responses, and three of them (APJL_0922, APJL_1380 and APJL_1976) generated efficient immunoprotection in mice against lethal heterologous challenge with A. pleuropneumoniae 4074 (serovar 1), both in the active and passive immunization assays. Then immunogenicity of these three lipoproteins (APJL_0922, APJL_1380 and APJL_1976) were further tested in pigs. Results showed that these proteins elicited considerable humoral immune responses and effective protective immunity against virulent A. pleuropneumoniae challenge. Our findings suggest that these three novel lipoproteins could be potential subunit vaccine candidates.


Assuntos
Infecções por Actinobacillus/prevenção & controle , Actinobacillus pleuropneumoniae/imunologia , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Vacinas Bacterianas/administração & dosagem , Lipoproteínas/imunologia , Doenças dos Suínos/prevenção & controle , Infecções por Actinobacillus/imunologia , Infecções por Actinobacillus/metabolismo , Infecções por Actinobacillus/microbiologia , Actinobacillus pleuropneumoniae/isolamento & purificação , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vacinas Bacterianas/imunologia , Genoma Bacteriano , Imunidade Humoral/imunologia , Imunização/métodos , Lipoproteínas/genética , Lipoproteínas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/metabolismo , Doenças dos Suínos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA