Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 734
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(5): e1012125, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38696536

RESUMO

Major 5'-terminally deleted (5'TD) RNA forms of group-B coxsackievirus (CVB-5'TD) has been associated with myocarditis in both mice and humans. Although it is known that interferon-ß (IFN-ß) signaling is critical for an efficient innate immune response against CVB-induced myocarditis, the link between CVB-5'TD RNA forms and type I IFN signaling in cardiomyocytes remains to be explored. In a mouse model of CVB3/28-induced myocarditis, major early-emerging forms of CVB-5'TD RNA have been characterized as replicative viral populations that impair IFN-ß production in the heart. Synthetic CVB3/28 RNA forms mimicking each of these major 5'TD virus populations were transfected in mice and have been shown to modulate innate immune responses in the heart and to induce myocarditis in mice. Remarkably, transfection of synthetic viral RNA with deletions in the secondary structures of the 5'-terminal CVB3 RNA domain I, modifying stem-loops "b", "c" or "d", were found to impair IFN-ß production in human cardiomyocytes. In addition, the activation of innate immune response by Poly(I:C), was found to restore IFN-ß production and to reduce the burden of CVB-5'TD RNA-forms in cardiac tissues, thereby reducing the mortality rate of infected mice. Overall, our results indicate that major early-emerging CVB3 populations deleted in the domain I of genomic RNA, in the 5' noncoding region, modulate the activation of the type I IFN pathway in cardiomyocytes and induce myocarditis in mice. These findings shed new light on the role of replicative CVB-5'TD RNA forms as key pathophysiological factors in CVB-induced human myocarditis.


Assuntos
Infecções por Coxsackievirus , Enterovirus Humano B , Interferon Tipo I , Miocardite , Miócitos Cardíacos , RNA Viral , Miocardite/virologia , Miocardite/imunologia , Miocardite/genética , Animais , Miócitos Cardíacos/virologia , Miócitos Cardíacos/metabolismo , Camundongos , Enterovirus Humano B/imunologia , Infecções por Coxsackievirus/imunologia , Infecções por Coxsackievirus/virologia , Infecções por Coxsackievirus/genética , Interferon Tipo I/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Humanos , Imunidade Inata , Transdução de Sinais , Interferon beta/metabolismo , Interferon beta/genética , Interferon beta/imunologia , Masculino , Regiões 5' não Traduzidas
2.
J Virol ; 98(2): e0150423, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38289119

RESUMO

Coxsackievirus B3 (CVB3) is known to cause acute myocarditis and pancreatitis in humans. We investigated the microRNAs (miRNAs) that can potentially govern the viral life cycle by binding to the untranslated regions (UTRs) of CVB3 RNA. MicroRNA-22-3p was short-listed, as its potential binding site overlapped with the region crucial for recruiting internal ribosome entry site trans-acting factors (ITAFs) and ribosomes. We demonstrate that miR-22-3p binds CVB3 5' UTR, hinders recruitment of key ITAFs on viral mRNA, disrupts the spatial structure required for ribosome recruitment, and ultimately blocks translation. Likewise, cells lacking miR-22-3p exhibited heightened CVB3 infection compared to wild type, confirming its role in controlling infection. Interestingly, miR-22-3p level was found to be increased at 4 hours post-infection, potentially due to the accumulation of viral 2A protease in the early phase of infection. 2Apro enhances the miR-22-3p level to dislodge the ITAFs from the SD-like sequence, rendering the viral RNA accessible for binding of replication factors to switch to replication. Furthermore, one of the cellular targets of miR-22-3p, protocadherin-1 (PCDH1), was significantly downregulated during CVB3 infection. Partial silencing of PCDH1 reduced viral replication, demonstrating its proviral role. Interestingly, upon CVB3 infection in mice, miR-22-3p level was found to be downregulated only in the small intestine, the primary target organ, indicating its possible role in influencing tissue tropism. It appears miR-22-3p plays a dual role during infection by binding viral RNA to aid its life cycle as a viral strategy and by targeting a proviral protein to restrict viral replication as a host response.IMPORTANCECVB3 infection is associated with the development of end-stage heart diseases. Lack of effective anti-viral treatments and vaccines for CVB3 necessitates comprehensive understanding of the molecular players during CVB3 infection. miRNAs have emerged as promising targets for anti-viral strategies. Here, we demonstrate that miR-22-3p binds to 5' UTR and inhibits viral RNA translation at the later stage of infection to promote viral RNA replication. Conversely, as host response, it targets PCDH1, a proviral factor, to discourage viral propagation. miR-22-3p also influences CVB3 tissue tropism. Deciphering the multifaced role of miR-22-3p during CVB3 infection unravels the necessary molecular insights, which can be exploited for novel intervening strategies to curb infection and restrict viral pathogenesis.


Assuntos
Regiões 5' não Traduzidas , Infecções por Coxsackievirus , Enterovirus Humano B , Interações entre Hospedeiro e Microrganismos , MicroRNAs , Biossíntese de Proteínas , RNA Viral , Animais , Humanos , Camundongos , Regiões 5' não Traduzidas/genética , Antivirais/metabolismo , Infecções por Coxsackievirus/genética , Infecções por Coxsackievirus/virologia , Enterovirus Humano B/genética , Enterovirus Humano B/patogenicidade , Enterovirus Humano B/fisiologia , Células HeLa , Intestino Delgado/metabolismo , Intestino Delgado/virologia , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Tropismo Viral/genética , Replicação Viral/genética , Cisteína Endopeptidases/metabolismo , Protocaderinas/deficiência , Protocaderinas/genética , Miocardite , Interações entre Hospedeiro e Microrganismos/genética
3.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35046043

RESUMO

Receptor usage defines cell tropism and contributes to cell entry and infection. Coxsackievirus B (CVB) engages coxsackievirus and adenovirus receptor (CAR), and selectively utilizes the decay-accelerating factor (DAF; CD55) to infect cells. However, the differential receptor usage mechanism for CVB remains elusive. This study identified VP3-234 residues (234Q/N/V/D/E) as critical population selection determinants during CVB3 virus evolution, contributing to diverse binding affinities to CD55. Cryoelectron microscopy (cryo-EM) structures of CD55-binding/nonbinding isolates and their complexes with CD55 or CAR were obtained under both neutral and acidic conditions, and the molecular mechanism of VP3-234 residues determining CD55 affinity/specificity for naturally occurring CVB3 strains was elucidated. Structural and biochemical studies in vitro revealed the dynamic entry process of CVB3 and the function of the uncoating receptor CAR with different pH preferences. This work provides detailed insight into the molecular mechanism of CVB infection and contributes to an in-depth understanding of enterovirus attachment receptor usage.


Assuntos
Antígenos CD55/metabolismo , Infecções por Coxsackievirus/metabolismo , Infecções por Coxsackievirus/virologia , Enterovirus Humano B/fisiologia , Interações Hospedeiro-Patógeno , Receptores Virais/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Enterovirus Humano B/ultraestrutura , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Receptores Virais/química , Relação Estrutura-Atividade , Ligação Viral
4.
J Virol ; 97(11): e0107523, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37847581

RESUMO

IMPORTANCE: Coxsackievirus A6 (CV-A6) is a major emerging pathogen associated with atypical hand, foot, and mouth disease and can cause serious complications such as encephalitis, acute flaccid paralysis, and neurorespiratory syndrome. Therefore, revealing the associated pathogenic mechanisms could benefit the control of CV-A6 infections. In this study, we demonstrate that the nonstructural 2CCV-A6 suppresses IFN-ß production, which supports CV-A6 infection. This is achieved by depleting RNA sensors such as melanoma differentiation-associated gene 5 and retinoic acid-inducible gene I (RIG-I) through the lysosomal pathway. Such a function is shared by 2CEV-A71 and 2CCV-B3 but not 2CCV-A16, suggesting the latter might have an alternative way to promote viral replication. This study broadens our understanding of enterovirus 2C protein regulation of the RIG-I-like receptor signaling pathway and reveals a novel mechanism by which CV-A6 and other enteroviruses evade the host innate immune response. These findings on 2C may provide new therapeutic targets for the development of effective inhibitors against CV-A6 and other enterovirus infections.


Assuntos
Infecções por Coxsackievirus , Humanos , Enterovirus Humano A/genética , Infecções por Enterovirus/metabolismo , Infecções por Enterovirus/virologia , Doença de Mão, Pé e Boca/virologia , Imunidade Inata , Infecções por Coxsackievirus/metabolismo , Infecções por Coxsackievirus/virologia , Interferon beta/metabolismo
5.
J Virol ; 96(17): e0123222, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36037480

RESUMO

Enteroviruses initiate infection in the gastrointestinal tract, and sex is often a biological variable that impacts pathogenesis. Previous data suggest that sex hormones can influence the intestinal replication of Coxsackievirus B3 (CVB3), an enterovirus in the Picornaviridae family. However, the specific sex hormone(s) that regulates intestinal CVB3 replication is poorly understood. To determine if testosterone promotes intestinal CVB3 replication, we orally inoculated male and female Ifnar-/- mice that were treated with either placebo or testosterone-filled capsules. Following oral inoculation, we found that the testosterone-treated male and female mice shed significantly more CVB3 in their feces than did the placebo-treated mice, indicating that testosterone enhances intestinal replication. Similarly, testosterone enhanced viral dissemination in both sexes, as we observed higher viral loads in peripheral tissues following infection. Further, the testosterone-treated male mice also had a higher mortality rate than did the testosterone-depleted male mice. Finally, we observed that testosterone significantly affected the immune response to CVB3. We found that testosterone broadly increased proinflammatory cytokines and chemokines while decreasing the number of splenic B cells and dendritic cells following CVB3 infection. Moreover, while testosterone did not affect the early CD4 T cell response to CVB3, testosterone reduced the activation of CD8 T cells. These data indicate that testosterone can promote intestinal CVB3 replication and dissemination while also impacting the subsequent viral immune response. IMPORTANCE Biological sex plays a significant role in the outcomes of various infections and diseases. The impact of sex hormones on the intestinal replication and dissemination of Coxsackievirus B3 remains poorly understood. Using an oral inoculation model, we found that testosterone enhances CVB3 shedding and dissemination in male and female mice. Further, testosterone can alter the immune response to CVB3. This work highlights the role of testosterone in CVB3 pathogenesis and suggests that sex hormones can impact the replication and dissemination of enteric viruses.


Assuntos
Infecções por Coxsackievirus/imunologia , Testosterona/metabolismo , Animais , Infecções por Coxsackievirus/metabolismo , Infecções por Coxsackievirus/virologia , Modelos Animais de Doenças , Feminino , Interações Hospedeiro-Patógeno , Masculino , Camundongos , Replicação Viral
6.
J Virol ; 96(9): e0010522, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35442060

RESUMO

Coxsackie virus B5 (CVB5), a main serotype in human Enterovirus B (EVB), can cause severe viral encephalitis and aseptic meningitis among infants and children. Currently, there is no approved vaccine or antiviral therapy available against CVB5 infection. Here, we determined the atomic structures of CVB5 in three forms: mature full (F) particle (2.73 Å), intermediate altered (A) particle (2.81 Å), and procapsid empty (E) particle (2.95 Å). Structural analysis of F particle of CVB5 unveiled similar structures of "canyon," "puff," and "knob" as those other EV-Bs. We observed structural rearrangements that are alike during the transition from F to A particle, indicative of similar antigenicity, cell entry, and uncoating mechanisms shared by all EV-Bs. Further comparison of structures and sequences among all structure-known EV-Bs revealed that while the residues targeted by neutralizing MAbs are diversified and drive the evolution of EV-Bs, the relative conserved residues recognized by uncoating receptors could serve as the basis for the development of antiviral vaccines and therapeutics. IMPORTANCE As one of the main serotypes in Enterovirus B, CVB5 has been commonly reported in recent years. The atomic structures of CVB5 shown here revealed classical features found in EV-Bs and the structural rearrangement occurring during particle expansion and uncoating. Also, structure- and sequence-based comparison between CVB5 and other structure-known EV-Bs screened out key domains important for viral evolution and survival. All these provide insights into the development of vaccine and therapeutics for EV-Bs.


Assuntos
Enterovirus Humano B , Evolução Biológica , Capsídeo/química , Infecções por Coxsackievirus/virologia , Enterovirus Humano B/química , Enterovirus Humano B/genética , Enterovirus Humano B/ultraestrutura , Humanos , Domínios Proteicos
7.
PLoS Pathog ; 17(2): e1008992, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33556114

RESUMO

Coxsackievirus B3 (CVB3) belongs to the genus Enterovirus of the family Picornaviridae and can cause acute acinar pancreatitis in adults. However, the molecular mechanisms of pathogenesis underlying CVB3-induced acute pancreatitis have remained unclear. In this study, we discovered that CVB3 capsid protein VP1 inhibited pancreatic cell proliferation and exerted strong cytopathic effects on HPAC cells. Through yeast two-hybrid, co-immunoprecipitation, and confocal microscopy, we show that Menage a trois 1 (MAT1), a subunit of the Cdk-Activating Kinase (CAK) complex involved in cell proliferation and transcription, is a novel interaction protein with CVB3 VP1. Moreover, CVB3 VP1 inhibited MAT1 accumulation and localization, thus interfering with its interaction with CDK7. Furthermore, CVB3 VP1 could suppress CAK complex enzymic phosphorylation activity towards RNA Pol II and CDK4/6, direct substrates of CAK. VP1 also suppresses phosphorylation of retinoblastoma protein (pRb), an indirect CAK substrate, especially at phospho-pRb Ser780 and phospho-pRb Ser807/811 residues, which are associated with cell proliferation. Finally, we present evidence using deletion mutants that the C-terminal domain (VP1-D8, 768-859aa) is the minimal VP1 region required for its interaction with MAT1, and furthermore, VP1-D8 alone was sufficient to arrest cells in G1/S phase as observed during CVB3 infection. Taken together, we demonstrate that CVB3 VP1 can inhibit CAK complex assembly and activity through direct interaction with MAT1, to block MAT1-mediated CAK-CDK4/6-Rb signaling, and ultimately suppress cell proliferation in pancreatic cells. These findings substantially extend our basic understanding of CVB3-mediated pancreatitis, providing strong candidates for strategic therapeutic targeting.


Assuntos
Proteínas do Capsídeo/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Infecções por Coxsackievirus/complicações , Quinases Ciclina-Dependentes/metabolismo , Enterovirus Humano B/patogenicidade , Pancreatite/patologia , Fatores de Transcrição/metabolismo , Proteínas do Capsídeo/genética , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/genética , Diferenciação Celular , Infecções por Coxsackievirus/virologia , Quinases Ciclina-Dependentes/genética , Humanos , Pancreatite/metabolismo , Pancreatite/virologia , Fosforilação , Fatores de Transcrição/genética , Quinase Ativadora de Quinase Dependente de Ciclina
8.
RNA ; 26(1): 91-100, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31676570

RESUMO

Coxsackievirus B (CVB) is the major cause of human myocarditis and dilated cardiomyopathy. Toll-like receptor 3 (TLR3) is an intracellular sensor to detect pathogen's dsRNA. TLR3, along with TRAF6, triggers an inflammatory response through NF-κB signaling pathway. In the cells infected with CVB type 3 (CVB3), the abundance of miR-146a was significantly increased. The role of miR-146a in CVB infection is unclear. In this study, TLR3 and TRAF6 were identified as the targets of miR-146a. The elevated miR-146a inhibited NF-κB translocation and subsequently down-regulated proinflammatory cytokine expression in the CVB3-infected cells. Therefore, the NF-κB pathway can be doubly blocked by miR-146a through targeting of TLR3 and TRAF6. MiR-146a may be a negative regulator on inflammatory response and an intrinsic protective factor in CVB infection.


Assuntos
Infecções por Coxsackievirus/imunologia , Enterovirus Humano B/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , MicroRNAs/metabolismo , Transdução de Sinais , Receptor 3 Toll-Like/metabolismo , Animais , Infecções por Coxsackievirus/virologia , Citocinas/metabolismo , Regulação para Baixo , Enterovirus Humano B/genética , Fibroblastos/imunologia , Células HeLa , Humanos , Inflamação/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Receptor 3 Toll-Like/genética
9.
J Virol ; 95(21): e0091521, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34406862

RESUMO

Coxsackievirus B3 (CVB3) is an enterovirus belonging to the family Picornaviridae. Its 5' untranslated region (UTR) contains a cloverleaf structure followed by an internal ribosome entry site (IRES). The cloverleaf forms an RNA-protein complex known to regulate virus replication, translation, and stability of the genome, and the IRES regulates virus RNA translation. For positive-strand RNA-containing viruses, such as members of the flaviviruses or enteroviruses, the genomic RNA is used for translation, replication, and encapsidation. Only a few regulatory mechanisms which govern the accessibility of genomic RNA templates for translation or replication have been reported. Here, we report the role of human antigen R (HuR) in regulating the fate of CVB3 positive-strand RNA into the replication cycle or translation cycle. We have observed that synthesis of HuR is induced during CVB3 infection, and it suppresses viral replication by displacing PCBP-2 (a positive regulator of virus replication) at the cloverleaf RNA. Silencing of HuR increases viral RNA replication and consequently reduces viral RNA translation in a replication-dependent manner. Furthermore, we have shown that HuR level is upregulated upon CVB3 infection. Moreover, HuR limits virus replication and can coordinate the availability of genomic RNA templates for translation, replication, or encapsidation. Our study highlights the fact that the relative abundance of translation factors and replication factors in the cell decides the outcome of viral infection. IMPORTANCE A positive-strand RNA virus must balance the availability of its genomic template for different viral processes at different stages of its life cycle. A few host proteins are shown to be important to help the virus in switching the usage of a template between these processes. These proteins inhibit translation either by displacing a stimulator of translation or by binding to an alternative site. Both mechanisms lead to ribosome clearance and availability of the genomic strand for replication. We have shown that HuR also helps in maintaining this balance by inhibiting replication and subsequently promoting translation and packaging.


Assuntos
Infecções por Coxsackievirus/metabolismo , Infecções por Coxsackievirus/virologia , Proteína Semelhante a ELAV 1/fisiologia , Enterovirus Humano B/fisiologia , RNA Viral/metabolismo , Regiões 5' não Traduzidas , Animais , Regulação Viral da Expressão Gênica , Inativação Gênica , Células HeLa , Interações entre Hospedeiro e Microrganismos , Humanos , Sítios Internos de Entrada Ribossomal , Estágios do Ciclo de Vida , Proteínas de Ligação a RNA/metabolismo , Ribossomos/metabolismo , Replicação Viral
10.
J Virol ; 95(22): e0142421, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34431699

RESUMO

Enteric viruses infect the mammalian gastrointestinal tract and lead to significant morbidity and mortality worldwide. Data indicate that enteric viruses can utilize intestinal bacteria to promote viral replication and pathogenesis. However, the precise interactions between enteric viruses and bacteria are unknown. Here, we examined the interaction between bacteria and coxsackievirus B3, an enteric virus from the picornavirus family. We found that bacteria enhance the infectivity of coxsackievirus B3 (CVB3) in vitro. Notably, specific bacteria are required, as Gram-negative Salmonella enterica, but not Escherichia coli, enhanced CVB3 infectivity and stability. Investigating the cell wall components of both S. enterica and E. coli revealed that structures in the O-antigen or core of lipopolysaccharide, a major component of the Gram-negative bacterial cell wall, were required for S. enterica to enhance CVB3. To determine if these requirements were necessary for similar enteric viruses, we investigated if S. enterica and E. coli enhanced infectivity of poliovirus, another enteric virus in the picornavirus family. We found that while E. coli did not enhance the infectivity of CVB3, E. coli enhanced poliovirus infectivity. Overall, these data indicate that distinct bacteria enhance CVB3 infectivity and stability, and specific enteric viruses may have differing requirements for their interactions with specific bacterial species. IMPORTANCE Previous data indicate that several enteric viruses utilize bacteria to promote intestinal infection and viral stability. Here, we show that specific bacteria and bacterial cell wall components are required to enhance infectivity and stability of coxsackievirus B3 in vitro. These requirements are likely enteric virus specific, as the bacteria for CVB3 differ from poliovirus, a closely related virus. Therefore, these data indicate that specific bacteria and their cell wall components dictate the interaction with various enteric viruses in distinct mechanisms.


Assuntos
Infecções por Coxsackievirus , Enterovirus Humano B/fisiologia , Infecções por Escherichia coli , Escherichia coli/fisiologia , Infecções por Salmonella , Salmonella enterica/fisiologia , Animais , Coinfecção , Infecções por Coxsackievirus/microbiologia , Infecções por Coxsackievirus/virologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/virologia , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Salmonella/microbiologia , Infecções por Salmonella/virologia , Replicação Viral
11.
Proteins ; 89(10): 1365-1375, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34085313

RESUMO

The coxsackievirus A16 (CVA16) is a highly contagious virus that causes the hand, foot, and mouth disease, which seriously threatens the health of children. At present, there are still no available antiviral drugs or effective treatments against the infection of CVA16, and thus it is of great significance to develop anti-CVA16 vaccines. However, the intrinsic uncoating property of the capsid may destroy the neutralizing epitopes and influence its immunogenicity, which hinders the vaccine developments. In the present work, the functional-quantity-based elastic network model analysis method developed by our group was extended to combine with group theory to investigate the uncoating motions of the CVA16 capsid, and then the functionally key residues controlling the uncoating motions were identified by our functional-quantity-based perturbation method. Several motion modes encoded in the topological structure of the capsid were revealed to be responsible for the uncoating of CVA16 particle. These modes predominantly contribute to the fluctuation of the gyration radius of the capsid. Then, by using the perturbation method, four clusters of key sites involved in the uncoating motions were identified, whose perturbations induce significant changes in the fluctuation of the gyration radius. These key residues are mainly located at the 2-fold channels, the quasi 3-fold channels, the bottom of the canyons, and the inter-subunit interfaces around the 3-fold axes. Our studies are helpful for better understanding the uncoating mechanism of the CVA16 capsid and provide potential target sites to prevent the uncoating motions, which is valuable for the vaccine design against CVA16.


Assuntos
Proteínas do Capsídeo/química , Capsídeo/química , Infecções por Coxsackievirus/virologia , Enterovirus/metabolismo , Humanos
12.
Am J Physiol Heart Circ Physiol ; 320(4): H1348-H1360, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33416455

RESUMO

Viral myocarditis (VMC) is a life-threatening disease characterized by severe cardiac inflammation generally caused by coxsackievirus B3 (CVB3) infection. Several microRNAs (miRNAs or miRs) are known to play crucial roles in the pathogenesis of VMC. The study aimed to decipher the role of miR-30a-5p in the underlying mechanisms of VMC pathogenesis. We first quantified miR-30a-5p expression in a CVB3-induced mouse VMC model. The physiological characteristics of mouse cardiac tissues were then detected by hematoxylin and eosin (HE) and Picrosirius red staining. We established the correlation between miR-30a-5p and SOCS1, using dual-luciferase gene assay and Pearson's correlation coefficient. The expression of inflammatory factors (IFN-γ, IL-6, IL-10, and IL-13), M1 polarization markers [TNF-α, inducible nitric oxide synthase (iNOS)], M2 polarization markers (Arg-1, IL-10), and myocardial hypertrophy markers [atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP)] was detected by RT-qPCR and Western blot analysis. miR-30a-5p was found to be highly expressed in VMC mice. Silencing of miR-30a-5p improved the cardiac function index and reduced heart weight-to-body weight ratio, myocardial tissue pathological changes and fibrosis degree, serological indexes, as well as proinflammatory factor levels, while enhancing anti-inflammatory factor levels in VMC mice. Furthermore, silencing of miR-30a-5p inhibited M1 polarization of macrophages while promoting M2 polarization in vivo and in vitro. SOCS1 was a target gene of miR-30a-5p, and the aforementioned cardioprotective effects of miR-30a-5p silencing were reversed upon silencing of SOCS1. Overall, this study shows that silencing of miR-30a-5p may promote M2 polarization of macrophages and improve cardiac injury following VMC via SOCS1 upregulation, constituting a potential therapeutic target for VMC treatment.NEW & NOTEWORTHY We found in this study that microRNA (miR)-30a-5p inhibition might improve cardiac injury following viral myocarditis (VMC) by accelerating M2 polarization of macrophages via SOCS1 upregulation. Furthermore, the anti-inflammatory mechanisms of miR-30a-5p inhibition may contribute to the development of new therapeutic strategies for VMC.


Assuntos
Infecções por Coxsackievirus/terapia , Inativação Gênica , Terapia Genética , Macrófagos/metabolismo , MicroRNAs/genética , Miocardite/terapia , Miócitos Cardíacos/metabolismo , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Animais , Antagomirs/genética , Antagomirs/metabolismo , Células Cultivadas , Infecções por Coxsackievirus/genética , Infecções por Coxsackievirus/metabolismo , Infecções por Coxsackievirus/virologia , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Enterovirus Humano B/patogenicidade , Mediadores da Inflamação/metabolismo , Macrófagos/virologia , Masculino , Camundongos Endogâmicos BALB C , MicroRNAs/metabolismo , Miocardite/genética , Miocardite/metabolismo , Miocardite/virologia , Miócitos Cardíacos/patologia , Miócitos Cardíacos/virologia , Fenótipo , Transdução de Sinais , Proteína 1 Supressora da Sinalização de Citocina/genética
13.
Genome Res ; 28(6): 859-868, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29712754

RESUMO

Pooled CRISPR screens based on lentiviral systems have been widely applied to identify the effect of gene knockout on cellular phenotype. Although many screens were successful, they also have the limitation that genes conferring mild phenotypes or those essential for growth can be overlooked, as every genetic perturbation is incorporated in the same population. Arrayed screens, on the other hand, incorporate a single genetic perturbation in each well and could overcome these limitations. However, arrayed screens based on siRNA-mediated knockdown were recently criticized for low reproducibility caused by incomplete inhibition of gene expression. To overcome these limitations, we developed a novel arrayed CRISPR screen based on a plasmid library expressing a single guide RNA (sgRNA) and disrupted 1514 genes, encoding kinases, proteins related to endocytosis, and Golgi-localized proteins, individually using 4542 sgRNAs (three sgRNAs per gene). This screen revealed host factors required for infection by coxsackievirus B3 (CVB3) from Picornaviridae, which includes human pathogens causing diverse diseases. Many host factors that had been overlooked in a conventional pooled screen were identified for CVB3 infection, including entry-related factors, translational initiation factors, and several replication factors with different functions, demonstrating the advantage of the arrayed screen. This screen was quite reliable and reproducible, as most genes identified in the primary screen were confirmed in secondary screens. Moreover, ACBD3, whose phenotype was not affected by siRNA-mediated knockdown, was reliably identified. We propose that arrayed CRISPR screens based on sgRNA plasmid libraries are powerful tools for arrayed genetic screening and applicable to larger-scale screens.


Assuntos
Infecções por Coxsackievirus/genética , Enterovirus/genética , Regulação da Expressão Gênica/genética , Interações Hospedeiro-Patógeno/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Infecções por Coxsackievirus/virologia , Enterovirus/patogenicidade , Técnicas de Inativação de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , RNA Interferente Pequeno/genética
14.
PLoS Pathog ; 15(4): e1007674, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30958867

RESUMO

Viral myocarditis is a serious disease, commonly caused by type B coxsackieviruses (CVB). Here we show that innate immune protection against CVB3 myocarditis requires the IFIT (IFN-induced with tetratricopeptide) locus, which acts in a biphasic manner. Using IFIT locus knockout (IFITKO) cardiomyocytes we show that, in the absence of the IFIT locus, viral replication is dramatically increased, indicating that constitutive IFIT expression suppresses CVB replication in this cell type. IFNß pre-treatment strongly suppresses CVB3 replication in wild type (wt) cardiomyocytes, but not in IFITKO cardiomyocytes, indicating that other interferon-stimulated genes (ISGs) cannot compensate for the loss of IFITs in this cell type. Thus, in isolated wt cardiomyocytes, the anti-CVB3 activity of IFITs is biphasic, being required for protection both before and after T1IFN signaling. These in vitro findings are replicated in vivo. Using novel IFITKO mice we demonstrate accelerated CVB3 replication in pancreas, liver and heart in the hours following infection. This early increase in virus load in IFITKO animals accelerates the induction of other ISGs in several tissues, enhancing virus clearance from some tissues, indicating that-in contrast to cardiomyocytes-other ISGs can offset the loss of IFITs from those cell types. In contrast, CVB3 persists in IFITKO hearts, and myocarditis occurs. Thus, cardiomyocytes have a specific, biphasic, and near-absolute requirement for IFITs to control CVB infection.


Assuntos
Proteínas de Transporte/fisiologia , Infecções por Coxsackievirus/prevenção & controle , Enterovirus Humano B/patogenicidade , Miocardite/prevenção & controle , Miócitos Cardíacos/enzimologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Células Cultivadas , Infecções por Coxsackievirus/metabolismo , Infecções por Coxsackievirus/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocardite/metabolismo , Miocardite/virologia , Proteínas de Ligação a RNA , Replicação Viral
15.
Cell Microbiol ; 22(7): e13198, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32083795

RESUMO

Our previous study of coxsackievirus B3 (CVB3)-induced unfolded protein responses (UPR) found that overexpression of ATF6a enhances CVB3 VP1 capsid protein production and increases viral particle formation. These findings implicate that ATF6a signalling benefits CVB3 replication. However, the mechanism by which ATF6a signalling is transduced to promote virus replication is unclear. In this study, using a Tet-On inducible ATF6a HeLa cell line, we found that ATF6a signalling downregulated the protein expression of the endoplasmic reticulum (ER) degradation-enhancing α-mannosidase-like protein 1 (EDEM1), resulting in accumulation of CVB3 VP1 protein; in contrast, expression of a dominant negative ATF6a had the opposite effect. Furthermore, we found that EDEM1 was cleaved by both CVB3 protease 3C and virus-activated caspase and subsequently degraded via the ubiquitin-proteasome pathway. However, overexpression of EDEM1 caused VP1 degradation, likely via a glycosylation-independent and ubiquitin-lysosome pathway. Finally, we demonstrated that CRISPR/Cas9-mediated knockout of EDEM1 increased VP1 accumulation and thus CVB3 replication. This is the first study to report the ER protein quality control of non-enveloped RNA virus and reveals a novel mechanism by which CVB3 evades host ER quality control pathways through cleavage and degradation of the UPR target gene EDEM1, to ultimately benefit its own replication.


Assuntos
Fator 6 Ativador da Transcrição/metabolismo , Infecções por Coxsackievirus/virologia , Proteínas de Membrana/metabolismo , Transdução de Sinais/fisiologia , Resposta a Proteínas não Dobradas/fisiologia , Replicação Viral/fisiologia , Animais , Regulação para Baixo , Chaperona BiP do Retículo Endoplasmático , Enterovirus , Técnicas de Inativação de Genes , Glicosilação , Células HeLa , Humanos , Proteínas de Membrana/genética , Camundongos , Proteólise , alfa-Manosidase/metabolismo
16.
BMC Infect Dis ; 21(1): 446, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001016

RESUMO

BACKGROUND: Coxsackievirus A21 (CVA21), a member of Enterovirus C from the Picornaviridae family, has been associated with respiratory illnesses in humans. METHODS: A molecular epidemiological investigation of CVA21 was conducted among patients presenting with acute upper respiratory illnesses in the ambulatory settings between 2012 and 2014 in Kuala Lumpur, Malaysia. RESULTS: Epidemiological surveillance of acute respiratory infections (n = 3935) showed low-level detection of CVA21 (0.08%, 1.4 cases/year) in Kuala Lumpur, with no clear seasonal distribution. Phylogenetic analysis of the new complete genomes showed close relationship with CVA21 strains from China and the United States. Spatio-temporal mapping of the VP1 gene determined 2 major clusters circulating worldwide, with inter-country lineage migration and strain replacement occurring over time. CONCLUSIONS: The study highlights the emerging role of CVA21 in causing sporadic acute respiratory outbreaks.


Assuntos
Infecções por Coxsackievirus/diagnóstico , Enterovirus/genética , Variação Genética , Infecções Respiratórias/diagnóstico , Adolescente , Adulto , Proteínas do Capsídeo/classificação , Proteínas do Capsídeo/genética , Infecções por Coxsackievirus/epidemiologia , Infecções por Coxsackievirus/virologia , Surtos de Doenças , Enterovirus/classificação , Enterovirus/isolamento & purificação , Feminino , Humanos , Malásia/epidemiologia , Masculino , Pessoa de Meia-Idade , Filogenia , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/virologia
17.
Cell Mol Life Sci ; 77(1): 179-194, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31172216

RESUMO

It has been suggested that the persistence of coxsackieviruses-B (CV-B) in pancreatic beta cells plays a role in the pathogenesis of type 1 diabetes (T1D). Yet, immunological effectors, especially natural killer (NK) cells, are supposed to clear virus-infected cells. Therefore, an evaluation of the response of NK cells to pancreatic beta cells persistently infected with CV-B4 was conducted. A persistent CV-B4 infection was established in 1.1B4 pancreatic beta cells. Infectious particles were found in supernatants throughout the culture period. The proportion of cells containing viral protein VP1 was low (< 5%), although a large proportion of cells harbored viral RNA (around 50%), whilst cell viability was preserved. HLA class I cell surface expression was downregulated in persistently infected cultures, but HLA class I mRNA levels were unchanged in comparison with mock-infected cells. The cytolytic activities of IL-2-activated non-adherent peripheral blood mononuclear cells (PBMCs) and of NK cells were higher towards persistently infected cells than towards mock-infected cells, as assessed by an LDH release assay. Impaired cytolytic activity of IL-2-activated non-adherent PBMCs from patients with T1D towards infected beta cells was observed. In conclusion, pancreatic beta cells persistently infected with CV-B4 can be lysed by NK cells, implying that impaired cytolytic activity of these effector cells may play a role in the persistence of CV-B in the host and thus in the viral pathogenesis of T1D.


Assuntos
Infecções por Coxsackievirus/complicações , Diabetes Mellitus Tipo 1/virologia , Enterovirus Humano B/imunologia , Células Secretoras de Insulina/virologia , Células Matadoras Naturais/imunologia , Adulto , Linhagem Celular , Infecções por Coxsackievirus/imunologia , Infecções por Coxsackievirus/virologia , Diabetes Mellitus Tipo 1/etiologia , Diabetes Mellitus Tipo 1/imunologia , Humanos , Imunidade Celular , Células Secretoras de Insulina/imunologia , Pessoa de Meia-Idade
18.
Mediators Inflamm ; 2021: 5551578, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093086

RESUMO

BACKGROUND: The functional characteristics of NLRP3 in the pathogenesis of coxsackievirus B3- (CVB3-) induced viral myocarditis (VMC) have not been fully elucidated, and the targeted therapeutic effect of NLRP3 or its related pathway in VMC has not been reported. METHOD: In this work, the change patterns of NLRP3- and Th17-related factors were detected during the pathological process of CVB3-induced VMC in Balb/c mice. The correlation between NLRP3 and Th17 cells during the VMC process was analyzed by Spearman test. The coculture system of spleen CD4+ T and bone marrow CD11c+ DC cells was set to explore the orchestration of NLRP3 and Th17 in the pathological development of VMC in vitro. Anti-IL-1ß antibody or NLRP3-/- Balb/c were used to block the NLRP3 pathway indirectly and directly to analyze the NLRP3-targeting therapeutic value. RESULTS: The change patterns of NLRP3- and Th17-related molecules in the whole pathological process of mouse CVB3-induced VMC were described. Through Spearman correlation analysis, it was confirmed that there was a close correlation between NLRP3 and Th17 cells in the whole pathological process of VMC. And the interaction mode between NLRP3 and Th17 was preliminarily explored in the cell experiment in vitro. Under the intervention of an anti-IL-1ß antibody or NLRP3 knockout, the survival rate of the intervention group was significantly improved, the degree of myocardial inflammation and fibrosis was significantly alleviated, and the content of myocardial IL-17 and spleen Th17 was also significantly decreased. CONCLUSION: Our findings demonstrated a key role of the NLRP3 inflammasome and its close relationship with Th17 in the pathological progression of CVB3-induced VMC and suggested a possible positive feedback-like mutual regulation mechanism between the NLRP3 inflammasome and Th17 in vitro and in the early stage of CVB3 infection. Taking NLRP3 as a new starting point, it provides a new target and idea for the prevention and treatment of CVB3-induced VMC.


Assuntos
Infecções por Coxsackievirus/tratamento farmacológico , Infecções por Coxsackievirus/virologia , Enterovirus Humano B , Miocardite/tratamento farmacológico , Miocardite/terapia , Miocardite/virologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/biossíntese , Células Th17/citologia , Animais , Antígeno CD11c/biossíntese , Linfócitos T CD4-Positivos/citologia , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Cocultura , Genótipo , Humanos , Imuno-Histoquímica , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Neoplasias Laríngeas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Miocardite/imunologia , Baço/metabolismo
19.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34445539

RESUMO

BACKGROUND: Myocarditis is an inflammatory heart disease caused by viral infections that can lead to heart failure, and occurs more often in men than women. Since animal studies have shown that myocarditis is influenced by sex hormones, we hypothesized that endocrine disruptors, which interfere with natural hormones, may play a role in the progression of the disease. The human population is exposed to the endocrine disruptor bisphenol A (BPA) from plastics, such as water bottles and plastic food containers. METHODS: Male and female adult BALB/c mice were housed in plastic versus glass caging, or exposed to BPA in drinking water versus control water. Myocarditis was induced with coxsackievirus B3 on day 0, and the endpoints were assessed on day 10 post infection. RESULTS: We found that male BALB/c mice that were exposed to plastic caging had increased myocarditis due to complement activation and elevated numbers of macrophages and neutrophils, whereas females had elevated mast cell activation and fibrosis. CONCLUSIONS: These findings show that housing mice in traditional plastic caging increases viral myocarditis in males and females, but using sex-specific immune mechanisms.


Assuntos
Infecções por Coxsackievirus/complicações , Enterovirus Humano B/patogenicidade , Abrigo para Animais/estatística & dados numéricos , Miocardite/patologia , Plásticos/efeitos adversos , Animais , Infecções por Coxsackievirus/virologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Miocardite/etiologia , Miocardite/virologia , Fatores Sexuais
20.
Int J Mol Sci ; 22(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34445134

RESUMO

Coxsackievirus A24 variant (CVA24v) is the primary causative agent of the highly contagious eye infection designated acute hemorrhagic conjunctivitis (AHC). It is solely responsible for two pandemics and several recurring outbreaks of the disease over the last decades, thus affecting millions of individuals throughout the world. To date, no antiviral agents or vaccines are available for combating this disease, and treatment is mainly supportive. CVA24v utilizes Neu5Ac-containing glycans as attachment receptors facilitating entry into host cells. We have previously reported that pentavalent Neu5Ac conjugates based on a glucose-scaffold inhibit CVA24v infection of human corneal epithelial cells. In this study, we report on the design and synthesis of scaffold-replaced pentavalent Neu5Ac conjugates and their effect on CVA24v cell transduction and the use of cryogenic electron microscopy (cryo-EM) to study the binding of these multivalent conjugates to CVA24v. The results presented here provide insights into the development of Neu5Ac-based inhibitors of CVA24v and, most significantly, the first application of cryo-EM to study the binding of a multivalent ligand to a lectin.


Assuntos
Antivirais/farmacologia , Infecções por Coxsackievirus/dietoterapia , Enterovirus Humano C/efeitos dos fármacos , Ácido N-Acetilneuramínico/farmacologia , Conjuntivite Hemorrágica Aguda/tratamento farmacológico , Conjuntivite Hemorrágica Aguda/metabolismo , Conjuntivite Hemorrágica Aguda/virologia , Infecções por Coxsackievirus/metabolismo , Infecções por Coxsackievirus/virologia , Glucose/metabolismo , Humanos , Lectinas/metabolismo , Ligantes , Polissacarídeos/metabolismo , Receptores Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA