Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 305
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
PLoS Pathog ; 20(8): e1012436, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39196893

RESUMO

Viruses capable of causing persistent infection have developed sophisticated mechanisms for evading host immunity, and understanding these processes can reveal novel features of the host immune system. One such virus, human pegivirus (HPgV), infects ~15% of the global human population, but little is known about its biology beyond the fact that it does not cause overt disease. We passaged a pegivirus isolate of feral brown rats (RPgV) in immunodeficient laboratory mice to develop a mouse-adapted virus (maPgV) that established persistent high-titer infection in a majority of wild-type laboratory mice. maRPgV viremia was detected in the blood of mice for >300 days without apparent disease, closely recapitulating the hallmarks of HPgV infection in humans. We found a pro-viral role for type-I interferon in chronic infection; a lack of PD-1-mediated tolerance to PgV infection; and multiple mechanisms by which PgV immunity can be achieved by an immunocompetent host. These data indicate that the PgV immune evasion strategy has aspects that are both common and unique among persistent viral infections. The creation of maPgV represents the first PgV infection model in wild-type mice, thus opening the entire toolkit of the mouse host to enable further investigation of this persistent RNA virus infections.


Assuntos
Infecções por Flaviviridae , Flaviviridae , Animais , Camundongos , Infecções por Flaviviridae/virologia , Infecções por Flaviviridae/imunologia , Flaviviridae/genética , Flaviviridae/imunologia , Infecção Persistente/imunologia , Infecção Persistente/virologia , Ratos , Evasão da Resposta Imune , Camundongos Endogâmicos C57BL , Humanos
2.
Rev Med Virol ; 34(4): e2571, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39039630

RESUMO

Vector-borne viruses pose a significant health problem worldwide, as they are transmitted to humans through the bite of infected arthropods such as mosquitoes and ticks. In recent years, emerging and re-emerging vector-borne diseases have gained attention as they can cause a wide spectrum of neurological manifestations. The neurological manifestations of vector-borne viruses encompass a board spectrum of clinical manifestations, ranging from mild and self-limiting symptoms to severe and life-threatening conditions. Common neurological complications include viral encephalitis, acute flaccid paralysis, aseptic meningitis, and various neuromuscular disorders. The specific viruses responsible for these neurological sequelae vary by geographic region and include Orthoflavivirus nilense, Zika virus, dengue virus, chikungunya virus, Japanese encephalitis virus, and tick-borne encephalitis virus. This review focuses on the pathogenesis of these neurologic complications and highlights the mechanisms by which vector-borne viruses invade the central nervous system and trigger neuroinflammatory responses. Diagnostic challenges and strategies for early detection of neurological manifestations are discussed, emphasising the importance of clinical suspicion and advanced laboratory testing.


Assuntos
Flaviviridae , Doenças Transmitidas por Vetores , Humanos , Animais , Doenças Transmitidas por Vetores/virologia , Flaviviridae/fisiologia , Flaviviridae/genética , Togaviridae/patogenicidade , Infecções por Flaviviridae/virologia , Infecções por Flaviviridae/transmissão , Doenças do Sistema Nervoso/virologia , Doenças do Sistema Nervoso/etiologia
3.
J Virol ; 95(23): e0107421, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34524914

RESUMO

Human pegivirus (HPgV) infects peripheral leukocytes but was recently shown to be a neurotropic virus associated with leukoencephalitis in humans. In the present study, we investigated the neural cell tropism of HPgV as well as its effects on host immune responses. HPgV wild type (WT) and a mutant virus with a deletion in the HPgV NS2 gene (ΔNS2) were able to productively infect human astrocytes and microglia but not neurons or an oligodendrocyte-derived cell line. Of note, the ΔNS2 virus replicated better than WT pegivirus in astrocytes, with both viruses being able to subsequently infect and spread in fresh human astrocyte cultures. Infection of human glia by HPgV WT and ΔNS2 viruses resulted in suppression of peroxisome-associated genes, including PEX11B, ABCD1, PEX7, ABCD3, PEX3, and PEX5L, during peak viral production, which was accompanied by reduced expression of IFNB, IRF3, IRF1, and MAVS, particularly in ΔNS2-infected cells. These data were consistent with analyses of brain tissue from patients infected with HPgV in which we observed suppression of peroxisome and type I interferon gene transcripts, including PEX11B, ABCD3, IRF1, and IRF3, with concurrent loss of PMP70 immunoreactivity in glia. Our data indicate that human astrocytes and microglia are permissive to HPgV infection, resulting in peroxisome injury and suppressed antiviral signaling that is influenced by viral diversity. IMPORTANCE Human pegiviruses are detected in 1 to 5% of the general population, principally infecting leukocytes, although their effects on human health remain uncertain. Here, we show that human pegivirus infects specific neural cell types in culture and human brain and, like other neurotropic flaviviruses, causes suppression of peroxisome and antiviral signaling pathways, which could favor ongoing viral infection and perhaps confer susceptibility to the development of neurological disease.


Assuntos
Antivirais/farmacologia , Infecções por Flaviviridae/metabolismo , Neuroglia/metabolismo , Pegivirus/metabolismo , Transdução de Sinais/efeitos dos fármacos , Astrócitos , Encéfalo/metabolismo , Encéfalo/patologia , Infecções por Flaviviridae/genética , Infecções por Flaviviridae/virologia , Expressão Gênica , Humanos , Microglia/metabolismo , Microglia/virologia , Neuroglia/patologia , Neuroglia/virologia , Pegivirus/efeitos dos fármacos , Pegivirus/genética , Filogenia , RNA Viral/genética , Proteínas não Estruturais Virais/genética
4.
Arch Virol ; 166(5): 1345-1353, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33689039

RESUMO

Human pegivirus 1 (HPgV-1) belongs to the genus Pegivirus, family Flaviviridae, and until now has been considered a non-pathogenic agent, despite being considered a risk factor for non-Hodgkin lymphoma. However, a beneficial impact of HPgV-1 on HIV disease progression has been extensively reported. Given the high prevalence of HIV in sub-Saharan Africa and the scarcity of epidemiological data for many countries of West Africa, we conducted the first study of HPgV-1 in HIV-infected individuals from Cabo Verde. To obtain new data regarding prevalence and genetic diversity of HPgV-1 in Africa, serum samples from 102 HIV-infected Cabo Verdeans were tested for the presence of viral RNA, and the circulating genotypes were identified by sequencing of the 5' untranslated region. HPgV-1 RNA was detected in 19.6% (20/102) of the samples. In 72.2% (13/18) of the samples, the virus was identified as genotype 2 (11/13 subtype 2a and 2/13 subtype 2b), and in 27.8% (5/18), it was identified as genotype 1. The estimated substitution rate of HPgV-1 genotype 2 was 5.76 × 10-4, and Bayesian analysis indicated the existence of inner clusters within subtypes 2a and 2b. The prevalence of HPgV-1 viremia in Cabo Verde agrees with that reported previously in Africa. Genotypes 1 and 2 cocirculate, with genotype 2 being more common, and HIV/HPgV-1 coinfection was not associated with higher CD4 T cell counts in the studied population. This finding contributes for the expansion of the pegivirus research agenda in African countries.


Assuntos
Infecções por Flaviviridae/epidemiologia , Vírus GB C/genética , Infecções por HIV/epidemiologia , Hepatite Viral Humana/epidemiologia , Regiões 5' não Traduzidas/genética , Cabo Verde/epidemiologia , Coinfecção/epidemiologia , Coinfecção/virologia , Infecções por Flaviviridae/virologia , Vírus GB C/classificação , Vírus GB C/isolamento & purificação , Variação Genética , Genótipo , Hepatite Viral Humana/virologia , Humanos , Filogenia , Prevalência , RNA Viral/sangue , RNA Viral/genética , Viremia/epidemiologia , Viremia/virologia
5.
RNA Biol ; 18(12): 2321-2329, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33858294

RESUMO

After infection by flaviviruses like Zika and West Nile virus, eukaryotic hosts employ the well-conserved endoribonuclease Xrn1 to degrade the viral genomic RNA. Within the 3' untranslated regions, this enzyme encounters intricate Xrn1-resistant structures. This results in the accumulation of subgenomic flaviviral RNAs, an event that improves viral growth and aggravates viral pathogenicity. Xrn1-resistant RNAs have been established throughout the flaviviral genus, but not yet throughout the entire Flaviviridae family. In this work, we use previously determined characteristics of these structures to identify homologous sequences in many members of the genera pegivirus, hepacivirus and pestivirus. We used structural alignment and mutational analyses to establish that these sequences indeed represent Xrn1-resistant RNA and that they employ the general features of the flaviviral xrRNAs, consisting of a double pseudoknot formed by five base-paired regions stitched together by a crucial triple base interaction. Furthermore, we demonstrate that the pestivirus Bungowannah virus produces subgenomic RNA in vivo. Altogether, these results indicate that viruses make use of a universal Xrn1-resistant RNA throughout the Flaviviridae family.


Assuntos
Regiões 3' não Traduzidas/genética , Exorribonucleases/genética , Infecções por Flaviviridae/genética , Flaviviridae/genética , Motivos de Nucleotídeos , RNA Viral/genética , Animais , Exorribonucleases/metabolismo , Flaviviridae/classificação , Infecções por Flaviviridae/metabolismo , Infecções por Flaviviridae/virologia , Genoma Viral , Conformação de Ácido Nucleico , Estabilidade de RNA , RNA Viral/química , Suínos
6.
Emerg Infect Dis ; 26(2): 265-272, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31961294

RESUMO

Most human pegivirus 2 (HPgV-2) infections are associated with past or current hepatitis C virus (HCV) infection. HPgV-2 is thought to be a bloodborne virus: higher prevalence of active infection has been found in populations with a history of parenteral exposure to viruses. We evaluated longitudinally collected blood samples obtained from injection drug users (IDUs) for active and resolved HPgV-2 infections using a combination of HPgV-2-specific molecular and serologic tests. We found evidence of HPgV-2 infection in 11.2% (22/197) of past or current HCV-infected IDUs, compared with 1.9% (4/205) of an HCV-negative IDU population. Testing of available longitudinal blood samples from HPgV-2-positive participants identified 5 with chronic infection (>6 months viremia in >3 timepoints); 2 were identified among the HCV-positive IDUs and 3 among the HCV-negative IDUs. Our findings indicate that HPgV-2 can establish chronic infection and replicate in the absence of HCV.


Assuntos
Usuários de Drogas , Infecções por Flaviviridae/epidemiologia , Hepatite C , Pegivirus/isolamento & purificação , Adolescente , Adulto , California/epidemiologia , Coinfecção , Feminino , Infecções por Flaviviridae/sangue , Infecções por Flaviviridae/virologia , Humanos , Estudos Longitudinais , Masculino , Prevalência , Assunção de Riscos , Inquéritos e Questionários , Adulto Jovem
7.
Virol J ; 17(1): 153, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33054824

RESUMO

BACKGROUND: Human pegivirus (HPgV)-formerly known as GBV-C-is a member of the Flaviviridae family and belongs to the species Pegivirus C. It is a non-pathogenic virus and is transmitted among humans mainly through the exposure to contaminated blood and is often associated with human immunodeficiency virus (HIV) infection, among other viruses. This study aimed to determine the prevalence of HPgV viremia, its association with HIV and clinical epidemiological factors, as well as the full-length sequencing and genome characterization of HPgV recovered from blood donors of the HEMOPA Foundation in Belém-PA-Brazil. METHODS: Plasma samples were obtained from 459 donors, tested for the presence of HPgV RNA by the RT-qPCR. From these, a total of 26 RT-qPCR positive samples were submitted to the NGS sequencing approach in order to obtain the full genome. Genome characterization and phylogenetic analysis were conducted. RESULTS: The prevalence of HPgV was 12.42%. We observed the highest prevalences among donors aged between 18 and 30 years old (16.5%), with brown skin color (13.2%) and men (15.8%). The newly diagnosed HIV-1 prevalence was 26.67%. The HPgV genotype 2 (2a and 2b) was identified. No data on viral load value was found to corroborate the protective effect of HPgV on HIV evolution. CONCLUSIONS: This study provided information regarding the HPgV infection among blood donors from HEMOPA Foundation. Furthermore, we genetically characterized the HPgV circulating strains and described by the first time nearly complete genomes of genotype 2 in Brazilian Amazon.


Assuntos
Doadores de Sangue , Infecções por Flaviviridae/epidemiologia , Vírus GB C/genética , Pegivirus/genética , RNA Viral/sangue , Viremia/epidemiologia , Adolescente , Adulto , Doadores de Sangue/estatística & dados numéricos , Brasil/epidemiologia , Estudos Transversais , Feminino , Infecções por Flaviviridae/virologia , Vírus GB C/classificação , Vírus GB C/isolamento & purificação , Genoma Viral , Genótipo , Infecções por HIV/complicações , Infecções por HIV/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Pegivirus/classificação , Pegivirus/isolamento & purificação , Filogenia , Prevalência , RNA Viral/genética , Carga Viral , Sequenciamento Completo do Genoma , Adulto Jovem
8.
J Virol ; 92(18)2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29976666

RESUMO

Hepacivirus A (also known as nonprimate hepacivirus and equine hepacivirus) is a hepatotropic virus that can cause both transient and persistent infections in horses. The evolution of intrahost viral populations (quasispecies) has not been studied in detail for hepacivirus A, and its roles in immune evasion and persistence are unknown. To address these knowledge gaps, we first evaluated the envelope gene (E1 and E2) diversity of two different hepacivirus A strains (WSU and CU) in longitudinal blood samples from experimentally infected adult horses, juvenile horses (foals), and foals with severe combined immunodeficiency (SCID). Persistent infection with the WSU strain was associated with significantly greater quasispecies diversity than that observed in horses who spontaneously cleared infection (P = 0.0002) or in SCID foals (P < 0.0001). In contrast, the CU strain was able to persist despite significantly lower (P < 0.0001) and relatively static envelope diversity. These findings indicate that envelope diversity is a poor predictor of hepacivirus A infection outcomes and could be dependent on strain-specific factors. Next, entropy analysis was performed on all E1/E2 genes entered into GenBank. This analysis defined three novel hypervariable regions (HVRs) in E2, at residues 391 to 402 (HVR1), 450 to 461 (HVR2), and 550 to 562 (HVR3). For the experimentally infected horses, entropy analysis focusing on the HVRs demonstrated that these regions were under increased selective pressure during persistent infection. Increased diversity in the HVRs was also temporally associated with seroconversion in some horses, suggesting that these regions may be targets of neutralizing antibody and may play a role in immune evasion.IMPORTANCE Hepacivirus C (hepatitis C virus) is estimated to infect 150 million people worldwide and is a leading cause of cirrhosis and hepatocellular carcinoma. In contrast, its closest relative, hepacivirus A, causes relatively mild disease in horses and is frequently cleared. The relationship between quasispecies evolution and infection outcome has not been explored for hepacivirus A. To address this knowledge gap, we examined envelope gene diversity in horses with resolving and persistent infections. Interestingly, two strain-specific patterns of quasispecies diversity emerged. Persistence of the WSU strain was associated with increased quasispecies diversity and the accumulation of amino acid changes within three novel hypervariable regions following seroconversion. These findings provided evidence that envelope gene mutation is influenced by adaptive immune pressure and may contribute to hepacivirus persistence. However, the CU strain persisted despite relative evolutionary stasis, suggesting that some hepacivirus strains may use alternative mechanisms to persist in the host.


Assuntos
Imunidade Adaptativa , Infecções por Flaviviridae/veterinária , Hepacivirus/genética , Hepacivirus/imunologia , Doenças dos Cavalos/virologia , Proteínas do Envelope Viral , Animais , Infecções por Flaviviridae/imunologia , Infecções por Flaviviridae/virologia , Variação Genética , Hepacivirus/fisiologia , Doenças dos Cavalos/imunologia , Cavalos , Evasão da Resposta Imune , Quase-Espécies/genética , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia
9.
PLoS Pathog ; 13(10): e1006692, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29073258

RESUMO

Human pegivirus (HPgV) protects HIV+ people from HIV-associated disease, but the mechanism of this protective effect remains poorly understood. We sequentially infected cynomolgus macaques with simian pegivirus (SPgV) and simian immunodeficiency virus (SIV) to model HIV+HPgV co-infection. SPgV had no effect on acute-phase SIV pathogenesis-as measured by SIV viral load, CD4+ T cell destruction, immune activation, or adaptive immune responses-suggesting that HPgV's protective effect is exerted primarily during the chronic phase of HIV infection. We also examined the immune response to SPgV in unprecedented detail, and found that this virus elicits virtually no activation of the immune system despite persistently high titers in the blood over long periods of time. Overall, this study expands our understanding of the pegiviruses-an understudied group of viruses with a high prevalence in the global human population-and suggests that the protective effect observed in HIV+HPgV co-infected people occurs primarily during the chronic phase of HIV infection.


Assuntos
Coinfecção/virologia , Infecções por Flaviviridae/imunologia , Infecções por Flaviviridae/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Animais , Coinfecção/imunologia , Modelos Animais de Doenças , Vírus GB C , Macaca fascicularis , Vírus da Imunodeficiência Símia
10.
J Med Virol ; 91(1): 38-44, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30133782

RESUMO

Human pegivirus (HPgV, formerly GBV-C) is a member of the genus Pegivirus, family Flaviviridae. Despite its identification more than 20 years ago, both natural history and distribution of this viral group in human hosts remain under exploration. Analysis of HPgV genomes characterized up to now points out the scarcity of French pegivirus sequences in databases. To bring new data regarding HPgV genomic diversity, we investigated 16 French isolates obtained from hepatitis C virus-RNA and human immunodeficiency virus-RNA-positive blood donations following deep sequencing and coupled molecular protocols. Initial phylogenetic analysis of 5'-untranslated region (5'-UTR)/E2 partial sequences permitted to assign HPgV isolates to genotypes 2 (n = 15) and 1 (n = 1), with up to 16% genetic diversity observed for both regions considered. Seven nearly full-length representative genomes were characterized subsequently, with complete polyprotein coding sequences exhibiting up to 13% genetic diversity; closest nucleotide (nt) divergence with available HPgV sequences was in the range 7% to 11%. A 36 nts deletion located on the NS4B coding region (N-terminal part, 12 amino acids) of the genotype 1 HPgV genome characterized was identified, along with single nucleotide deletions in two genotype 2, 5'-UTR sequences.


Assuntos
Doadores de Sangue , Infecções por Flaviviridae/virologia , Flavivirus/genética , Infecções por HIV/complicações , Hepatite C/complicações , Sequenciamento de Nucleotídeos em Larga Escala , Flavivirus/classificação , Flavivirus/isolamento & purificação , França , Variação Genética , Genótipo , Humanos , RNA Viral/genética
11.
Virol J ; 16(1): 132, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31711510

RESUMO

BACKGROUND: Human pegivirus (HPgV) is structurally similar to hepatitis C virus (HCV) and was discovered 20 years ago. Its distribution, natural history and exact rule of this viral group in human hosts remain unclear. Our aim was to determine, by deep next-generation sequencing (NGS), the entire genome sequence of HPgV that was discovered in an Egyptian patient while analyzing HCV sequence from the same patient. We also inspected whether the co-infection of HCV and HPgV will affect the patient response to HCV viral treatment. To the best of our knowledge, this is the first report for a newly isolated HPgV in an Egyptian patient who is co-infected with HCV. CASE PRESENTATION: The deep Next Generation Sequencing (NGS) technique was used to detect HCV sequence in hepatitis C patient's plasma. The results revealed the presence of HPgV with HCV. This co-infection was confirmed using conventional PCR of the HPgV 5' untranslated region. The patient was then subjected to direct-acting-antiviral treatment (DAA). At the end of the treatment, the patient showed a good response to the HCV treatment (i.e., no HCV-RNA was detected in the plasma), while the HPgV-RNA was still detected. Sequence alignment and phylogenetic analyses demonstrated that the detected HPgV was a novel isolate and was not previously published. CONCLUSION: We report a new variant of HPgV in a patient suffering from hepatitis C viral infection.


Assuntos
Coinfecção/virologia , Infecções por Flaviviridae/virologia , Flaviviridae/genética , Flaviviridae/isolamento & purificação , Genoma Viral/genética , Hepacivirus/isolamento & purificação , Hepatite C/virologia , Adulto , Antivirais/uso terapêutico , Coinfecção/diagnóstico , Coinfecção/tratamento farmacológico , Egito , Infecções por Flaviviridae/diagnóstico , Infecções por Flaviviridae/tratamento farmacológico , Variação Genética , Hepacivirus/efeitos dos fármacos , Hepacivirus/genética , Hepatite C/diagnóstico , Hepatite C/tratamento farmacológico , Humanos , Masculino , Filogenia , RNA Viral/sangue , RNA Viral/genética , Resultado do Tratamento
12.
Arch Virol ; 164(2): 509-522, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30460488

RESUMO

Lemurs are highly endangered mammals inhabiting the forests of Madagascar. In this study, we performed virus discovery on serum samples collected from 84 wild lemurs and identified viral sequence fragments from 4 novel viruses within the family Flaviviridae, including members of the genera Hepacivirus and Pegivirus. The sifaka hepacivirus (SifHV, two genotypes) and pegivirus (SifPgV, two genotypes) were discovered in the diademed sifaka (Propithecus diadema), while other pegiviral fragments were detected in samples from the indri (Indri indri, IndPgV) and the weasel sportive lemur (Lepilemur mustelinus, LepPgV). Although data are preliminary, each viral species appeared host species-specific and frequent infection was detected (18 of 84 individuals were positive for at least one virus). The complete coding sequence and partial 5' and 3' untranslated regions (UTRs) were obtained for SifHV and its genomic organization was consistent with that of other hepaciviruses, with one unique polyprotein and highly structured UTRs. Phylogenetic analyses showed the SifHV belonged to a clade that includes several viral species identified in rodents from Asia and North America, while SifPgV and IndPgV were more closely related to pegiviral species A and C, that include viruses found in humans as well as New- and Old-World monkeys. Our results support the current proposed model of virus-host co-divergence with frequent occurrence of cross-species transmission for these genera and highlight how the discovery of more members of the Flaviviridae can help clarify the ecology and evolutionary history of these viruses. Furthermore, this knowledge is important for conservation and captive management of lemurs.


Assuntos
Infecções por Flaviviridae/veterinária , Flaviviridae/isolamento & purificação , Lemur/virologia , Doenças dos Primatas/virologia , Animais , Flaviviridae/classificação , Flaviviridae/genética , Flaviviridae/fisiologia , Infecções por Flaviviridae/virologia , Variação Genética , Madagáscar , Filogenia
13.
Microbiol Immunol ; 63(10): 401-406, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31342548

RESUMO

The family Flaviviridae comprises four genera, namely, Flavivirus, Pestivirus, Pegivirus, and Hepacivirus. These viruses have similar genome structures, but the genomes of Pestivirus and Flavivirus encode the secretory glycoproteins Erns and NS1, respectively. Erns plays an important role in virus particle formation and cell entry, whereas NS1 participates in the formation of replication complexes and virus particles. Conversely, apolipoproteins are known to participate in the formation of infectious particles of hepatitis C virus (HCV) and various secretory glycoproteins play a similar role in HCV particles formation, suggesting that there is no strong specificity for the function of secretory glycoproteins in infectious-particle formation. In addition, recent studies have shown that host-derived apolipoproteins and virus-derived Erns and NS1 play comparable roles in infectious-particle formation of both HCV and pestiviruses. In this review, we summarize the roles of secretory glycoproteins in the formation of Flaviviridae virus particles.


Assuntos
Apolipoproteínas/fisiologia , Infecções por Flaviviridae/virologia , Flaviviridae , Glicoproteínas/fisiologia , Vírion/fisiologia , Flaviviridae/patogenicidade , Flaviviridae/fisiologia , Interações entre Hospedeiro e Microrganismos , Humanos , Montagem de Vírus
14.
Virus Genes ; 55(2): 248-252, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30600430

RESUMO

Porcine pegiviruses (PPgV) have been first discovered in serum samples from domestic pigs in Germany in 2016 and then in the USA in 2018. To date, there is no documentation with respect to the presence of PPgVs in domestic pigs in China. Herein, we attempted to determine the presence and prevalence of PPgV in China and its genetic characterization. In this study, 469 sera were tested and 34 (7.25%) were positive for PPgV. An ascending trend of the positive rate for PPgV was observed from suckling piglets (1.61%) to nursing piglets (1.85%), finishing pigs (6.56%), and sows (11.34%). The complete genome sequence of a representative strain of PPgV, PPgV_GDCH2017, and the complete E2 gene of 17 PPgV isolates discovered in this study was determined. Sequence analysis indicated that PPgV_GDCH2017 was highly related to other PPgVs with nucleotide and amino acid identities ranging from 87.3 to 97.4% and 94.6-99.3%, respectively, in the complete coding region. Phylogenetic analyses demonstrated that the PPgV_GDCH2017 discovered in this study was closely related to the PPgVs from the USA and clustered in the same genus with pegiviruses from other hosts. The topology of the phylogenetic tree based on the complete E2 gene was consistent with that based on the complete genome of PPgV. Further studies on pathogenicity and pathogenesis of PPgVs are needed.


Assuntos
Infecções por Flaviviridae/virologia , Flaviviridae/genética , Genoma Viral/genética , Doenças dos Suínos/genética , Animais , China , Flaviviridae/isolamento & purificação , Flaviviridae/patogenicidade , Infecções por Flaviviridae/genética , Alemanha , Filogenia , Suínos/virologia , Doenças dos Suínos/virologia , Estados Unidos , Sequenciamento Completo do Genoma
15.
Emerg Infect Dis ; 24(10): 1785-1794, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30226156

RESUMO

Human pegivirus (HPgV), previously called hepatitis G virus or GB virus C, is a lymphotropic virus with undefined pathology. Because many viruses from the family Flaviviridae, to which HPgV belongs, are neurotropic, we studied whether HPgV could infect the central nervous system. We tested serum and cerebrospinal fluid samples from 96 patients with a diagnosis of encephalitis for a variety of pathogens by molecular methods and serology; we also tested for autoantibodies against neuronal antigens. We found HPgV in serum and cerebrospinal fluid from 3 patients who had encephalitis of unclear origin; that is, all the markers that had been tested were negative. Single-strand confirmation polymorphism and next-generation sequencing analysis revealed differences between the serum and cerebrospinal fluid-derived viral sequences, which is compatible with the presence of a separate HPgV compartment in the central nervous system. It is unclear whether HPgV was directly responsible for encephalitis in these patients.


Assuntos
Encefalite/epidemiologia , Encefalite/etiologia , Infecções por Flaviviridae/epidemiologia , Infecções por Flaviviridae/virologia , Flaviviridae/classificação , Flaviviridae/genética , Regiões 5' não Traduzidas , Sequência de Aminoácidos , Encefalite/diagnóstico , Infecções por Flaviviridae/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Filogenia , Polônia/epidemiologia , Polimorfismo Conformacional de Fita Simples , Vigilância da População , RNA Viral , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética
17.
Emerg Infect Dis ; 24(11): 2063-2067, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30334714
18.
Artigo em Inglês | MEDLINE | ID: mdl-30181371

RESUMO

The virus family Flaviviridae encompasses several viruses, including (re)emerging viruses which cause widespread morbidity and mortality throughout the world. Members of this virus family are positive-strand RNA viruses and replicate their genome in close association with reorganized intracellular host cell membrane compartments. This evolutionarily conserved strategy facilitates efficient viral genome replication and contributes to evasion from host cell cytosolic defense mechanisms. We have previously described the identification of a small-compound inhibitor, K22, which exerts a potent antiviral activity against a broad range of coronaviruses by targeting membrane-bound viral RNA replication. To analyze the antiviral spectrum of this inhibitor, we assessed the inhibitory potential of K22 against several members of the Flaviviridae family, including the reemerging Zika virus (ZIKV). We show that ZIKV is strongly affected by K22. Time-of-addition experiments revealed that K22 acts during a postentry phase of the ZIKV life cycle, and combination regimens of K22 together with ribavirin (RBV) or interferon alpha (IFN-α) further increased the extent of viral inhibition. Ultrastructural electron microscopy studies revealed severe alterations of ZIKV-induced intracellular replication compartments upon infection of K22-treated cells. Importantly, the antiviral activity of K22 was demonstrated against several other members of the Flaviviridae family. It is tempting to speculate that K22 exerts its broad antiviral activity against several positive-strand RNA viruses via a similar mechanism and thereby represents an attractive candidate for development as a panviral inhibitor.


Assuntos
Antivirais/farmacologia , Membrana Celular/efeitos dos fármacos , Infecções por Flaviviridae/tratamento farmacológico , Flaviviridae/efeitos dos fármacos , Aedes , Animais , Linhagem Celular , Membrana Celular/virologia , Chlorocebus aethiops , Infecções por Flaviviridae/virologia , Humanos , Interferon-alfa/farmacologia , RNA Viral/genética , Ribavirina/farmacologia , Células Vero , Replicação Viral/efeitos dos fármacos
19.
J Gen Virol ; 99(9): 1221-1226, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30041711

RESUMO

Theiler's disease-associated virus (TDAV) could be the aetiological agent of Theiler's disease. Horses experimentally inoculated with equine plasma containing TDAV develop acute and chronic infections with viraemia. Since its first identification in 2013, TDAV has not been detected in equines in the epidemiological studies that have been conducted. Until now, only one genome sequence of TDAV (HorseA1_serum) had been obtained. In this study, we sequenced the genome of four TDAV strains (A/China, F/China, H/USA and I/USA) in commercial equine sera used for cell culture propagation in China using three rounds of RT-PCR. The PCR primers were designed based on the HorseA1_serum genome sequence. All four TDAV strains had a polyprotein gene that was 9567 nt long, the same nucleotide length as the polyprotein gene of HorseA1_serum. Sequence analysis demonstrated the genetic diversity of TDAV. The nucleotide similarity of the polyprotein genes of the TDAV strains ranged between 90.3 and 93.6 %, with a high amino acid similarity that ranged from 98.2 to 98.8 %. Phylogenetic analysis using the polyprotein gene showed that A/China, F/China, H/USA and I/USA were clustered together with HorseA1_serum in the genus Pegivirus D. This study enriches our knowledge of the genetic diversity of TDAV.


Assuntos
Infecções por Flaviviridae/veterinária , Flaviviridae/genética , Genoma Viral , Doenças dos Cavalos/virologia , Animais , China/epidemiologia , Infecções por Flaviviridae/epidemiologia , Infecções por Flaviviridae/virologia , Genômica , Doenças dos Cavalos/epidemiologia , Cavalos , Filogenia
20.
Biochem Soc Trans ; 46(3): 609-617, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29678952

RESUMO

Viruses exploit host metabolic and defence machinery for their own replication. The flaviviruses, which include Dengue (DENV), Yellow Fever (YFV), Japanese Encephalitis (JEV), West Nile (WNV) and Zika (ZIKV) viruses, infect a broad range of hosts, cells and tissues. Flaviviruses are largely transmitted by mosquito bites and humans are usually incidental, dead-end hosts, with the notable exceptions of YFV, DENV and ZIKV. Infection by flaviviruses elicits cellular responses including cell death via necrosis, pyroptosis (involving inflammation) or apoptosis (which avoids inflammation). Flaviviruses exploit these mechanisms and subvert them to prolong viral replication. The different effects induced by DENV, WNV, JEV and ZIKV are reviewed. Host cell surface proteoglycans (PGs) bearing glycosaminoglycan (GAG) polysaccharides - heparan/chondroitin sulfate (HS/CS) - are involved in initial flavivirus attachment and during the expression of non-structural viral proteins play a role in disease aetiology. Recent work has shown that ZIKV-infected cells are protected from cell death by exogenous heparin (a GAG structurally similar to host cell surface HS), raising the possibility of further subtle involvement of HS PGs in flavivirus disease processes. The aim of this review is to synthesize information regarding DENV, WNV, JEV and ZIKV from two areas that are usually treated separately: the response of host cells to infection by flaviviruses and the involvement of cell surface GAGs in response to those infections.


Assuntos
Morte Celular , Infecções por Flaviviridae/fisiopatologia , Flaviviridae/fisiologia , Interações Hospedeiro-Patógeno , Animais , Infecções por Flaviviridae/imunologia , Infecções por Flaviviridae/transmissão , Infecções por Flaviviridae/virologia , Humanos , Mosquitos Vetores , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA