Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 474
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(3): e1011249, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36961851

RESUMO

Pasteurella multocida can infect a multitude of wild and domesticated animals, with infections in cattle resulting in hemorrhagic septicemia (HS) or contributing to bovine respiratory disease (BRD) complex. Current cattle vaccines against P. multocida consist of inactivated bacteria, which only offer limited and serogroup specific protection. Here, we describe a newly identified surface lipoprotein, PmSLP, that is present in nearly all annotated P. multocida strains isolated from cattle. Bovine associated variants span three of the four identified phylogenetic clusters, with PmSLP-1 and PmSLP-2 being restricted to BRD associated isolates and PmSLP-3 being restricted to isolates associated with HS. Recombinantly expressed, soluble PmSLP-1 (BRD-PmSLP) and PmSLP-3 (HS-PmSLP) vaccines were both able to provide full protection in a mouse sepsis model against the matched P. multocida strain, however no cross-protection and minimal serum IgG cross-reactivity was identified. Full protection against both challenge strains was achieved with a bivalent vaccine containing both BRD-PmSLP and HS-PmSLP, with serum IgG from immunized mice being highly reactive to both variants. Year-long stability studies with lyophilized antigen stored under various temperatures show no appreciable difference in biophysical properties or loss of efficacy in the mouse challenge model. PmSLP-1 and PmSLP-3 vaccines were each evaluated for immunogenicity in two independent cattle trials involving animals of different age ranges and breeds. In all four trials, vaccination with PmSLP resulted in an increase in antigen specific serum IgG over baseline. In a blinded cattle challenge study with a recently isolated HS strain, the matched HS-PmSLP vaccine showed strong efficacy (75-87.5% survival compared to 0% in the control group). Together, these data suggest that cattle vaccines composed of PmSLP antigens can be a practical and effective solution for preventing HS and BRD related P. multocida infections.


Assuntos
Septicemia Hemorrágica , Infecções por Pasteurella , Pasteurella multocida , Bovinos , Animais , Camundongos , Filogenia , Vacinologia , Vacinas Bacterianas , Septicemia Hemorrágica/microbiologia , Septicemia Hemorrágica/prevenção & controle , Septicemia Hemorrágica/veterinária , Modelos Animais de Doenças , Imunoglobulina G , Infecções por Pasteurella/microbiologia , Infecções por Pasteurella/prevenção & controle , Infecções por Pasteurella/veterinária
2.
BMC Vet Res ; 20(1): 94, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461234

RESUMO

Pasteurella multocida type A (PmA) mainly causes respiratory diseases such as pneumonia in bovines, leading to great economic losses to the breeding industry. At present, there is still no effective commercial vaccine against PmA infection. In this study, a mutant strain (PmCQ2Δ4555-4580) with brand-new phenotypes was obtained after serially passaging at 42 °C. Whole genome resequencing and PCR analysis showed that PmCQ2Δ4555-4580 missed six genes, including PmCQ2_004555, PmCQ2_004560, PmCQ2_004565, PmCQ2_004570, PmCQ2_004575, and PmCQ2_004580. Importantly, the virulence of PmCQ2Δ4555-4580 was reduced by approximately 2.8 × 109 times in mice. Notably, live PmCQ2Δ4555-4580 could provide 100%, 100% and 40% protection against PmA, PmB and PmF, respectively; and inactivated PmCQ2Δ4555-4580 could provide 100% and 87.5% protection against PmA and PmB. Interestingly, immune protection-related proteins were significantly upregulated in PmCQ2Δ4555-4580 based on RNA-seq and bioinformatics analysis. Meaningfully, by in vitro expression, purification and in vivo immunization, 12 proteins had different degrees of immune protective effects. Among them, PmCQ2_008205, PmCQ2_010435, PmCQ2_008190, and PmCQ2_004170 had the best protective effect, the protection rates against PmA were 50%, 40%, 30%, and 30%, respectively, and the protective rates against PmB were 62.5%, 42.9%, 37.5%, and 28.6%, respectively. Collectively, PmCQ2Δ4555-4580 is a potential vaccine candidate for the prevention of Pasteurellosis involving in high expression of immune protective related proteins.


Assuntos
Doenças dos Bovinos , Infecções por Pasteurella , Pasteurella multocida , Doenças dos Roedores , Animais , Camundongos , Bovinos , Pasteurella multocida/genética , Vacinas Atenuadas , Infecções por Pasteurella/prevenção & controle , Infecções por Pasteurella/veterinária , Imunização/veterinária , Vacinação/veterinária , Vacinas Bacterianas
3.
Infect Immun ; 91(3): e0027222, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36815793

RESUMO

Pasteurella multocida is the causative agent of a wide range of diseases (pasteurellosis) and a zoonotic pathogen in humans. Recombinant subunit vaccines are hot spots in recent pasteurellosis vaccine development. A chimeric vaccine is also constructed for rabbit hemorrhagic disease virus (RHDV) protective antigen VP60 chimeric with fragments of Pasteurella multocida protective antigen PlpE. The protective efficacy of the chimeric vaccine against P. multocida is not as high as that of PlpE, and the reason is not well known. In this study, we analyzed the linear B-cell epitopes of PlpE and then assessed the protective efficacy of these epitopes and their combinations. It was found that the immunodominant region of PlpE was mainly located in the region between the 21st to the 185th amino acids from the N terminus. Overlapping peptide scanning results demonstrated that this region contained six nonoverlapping epitopes, and epitope E was the predominant epitope. Chimeric protein antigens were constructed of single nonoverlapping PlpE epitopes or their combinations chimeric with the RHDV VP60 P domain. Immunization with recombinant antigen chimeric with a single PlpE epitope exhibited poor immunoprotection, whereas immunization with recombinant antigen chimeric with PlpE epitope combinations (epitopes A and E; epitopes C and E; epitopes A, C, and E; and epitopes B, D, and F) exhibited significant immunoprotection. In a word, P. multocida protective antigen PlpE contained six nonoverlapping linear B-cell epitopes, and combinations but not a single epitope induced host protective immunity. Our work will give help for future chimeric vaccine design.


Assuntos
Infecções por Pasteurella , Pasteurella multocida , Humanos , Pasteurella multocida/genética , Epitopos de Linfócito B/genética , Infecções por Pasteurella/prevenção & controle , Proteínas Recombinantes , Vacinas Sintéticas
4.
Glycobiology ; 33(9): 745-754, 2023 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-37334939

RESUMO

Pasteurella multocida, an encapsulated gram-negative bacterium, is a significant veterinary pathogen. The P. multocida is classified into 5 serogroups (A, B, D, E, and F) based on the bacterial capsular polysaccharide (CPS), which is important for virulence. Serogroups B and E are the primary causative agents of bovine hemorrhagic septicemia that is associated with significant yearly losses of livestock worldwide, primarily in low- and middle-income countries. The P. multocida disease is currently managed by whole-cell vaccination, albeit with limited efficacy. CPS is an attractive antigen target for an improved vaccine: CPS-based vaccines have proven highly effective against human bacterial diseases and could provide longer-term protection against P. multocida. The recently elucidated CPS repeat units of serogroups B and E both comprise a N-acetyl-ß-D-mannosaminuronic acid/N-acetyl-ß-D-glucosamine disaccharide backbone with ß-D-fructofuranose (Fruf) side chain, but differ in their glycosidic linkages, and a glycine (Gly) side chain in serogroup B. Interestingly, the Haemophilus influenzae types e and d CPS have the same backbone residues. Here, comparative modeling of P. multocida serogroups B and E and H. influenzae types e and d CPS identifies a significant impact of small structural differences on both the chain conformation and the exposed potential antibody-binding epitopes (Ep). Further, Fruf and/or Gly side chains shield the immunogenic amino-sugar CPS backbone-a possible common strategy for immune evasion in both P. multocida and H. influenzae. As the lack of common epitopes suggests limited potential for cross-reactivity, a bivalent CPS-based vaccine may be necessary to provide adequate protection against P. multocida types B and E.


Assuntos
Infecções por Pasteurella , Pasteurella multocida , Vacinas , Animais , Bovinos , Humanos , Infecções por Pasteurella/microbiologia , Infecções por Pasteurella/prevenção & controle , Infecções por Pasteurella/veterinária , Polissacarídeos , Epitopos
5.
BMC Vet Res ; 19(1): 192, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803295

RESUMO

Pasteurella multocida is a pathogen that can infect humans and animals. A ghost is an empty bacterial body devoid of cytoplasm and nucleic acids that can be efficiently presented by antigen-presenting cells. To study a novel ghost vector vaccine with cross-immune protection, we used bacteriophage PhiX174 RF1 and Pasteurella multocida standard strain CVCC393 as templates to amplify the split genes E and OmpH to construct a bidirectional expression vector E'-OmpH-pET28a-ci857-E. This is proposed to prepare a ghost Escherichia coli (engineered bacteria) capable of attaching and producing Pasteurella multocida OmpH on the inner membrane of Escherichia coli (BL21). The aim is to assess the antibody levels and the effectiveness of immune protection by conducting a mouse immunoprotective test. The bidirectional expression vector E'-OmpH-pET28a-ci857-E was successfully constructed. After induction by IPTG, identification by SDS-PAGE, western blot, ghost culture and transmission electron microscope detection, it was proven that the Escherichia coli ghost anchored to Pasteurella multocida OmpH was successfully prepared. The immunoprotective test in mice showed that the antibody levels of Pasteurella multocida inactivated vaccine, OmpH, ghost (aluminum glue adjuvant) and ghost (Freund's adjuvant) on day 9 after immunization were significantly different from those of the PBS control group (P < 0.01). The immune protection rates were 100%, 80%, 75%, and 65%, respectively, and the PBS negative control was 0%, which proved that they all had specific immune protection effects. Therefore, this study lays the foundation for the further study of ghosts as carriers of novel vaccine-presenting proteins.


Assuntos
Infecções por Pasteurella , Pasteurella multocida , Vacinas , Humanos , Animais , Camundongos , Pasteurella multocida/genética , Pasteurella multocida/metabolismo , Infecções por Pasteurella/prevenção & controle , Infecções por Pasteurella/veterinária , Escherichia coli/genética , Proteínas da Membrana Bacteriana Externa/genética , Vacinas Bacterianas
6.
Vet Res ; 53(1): 17, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35236414

RESUMO

Pasteurella multocida infection frequently causes fowl cholera outbreaks, leading to huge economic losses to the poultry industry worldwide. This study developed a novel live attenuated P. multocida vaccine strain for ducks named PMZ2 with deletion of the gatA gene and first four bases of the hptE gene, both of which are required for the synthesis of the lipopolysaccharide (LPS) outer core. PMZ2 produced a truncated LPS phenotype and was highly attenuated in ducks with a > 105-fold higher LD50 than the wild-type strain. PMZ2 colonized the blood and organs, including the spleen, liver and lung, at remarkably reduced levels, and its high dose of oral infection did not cause adverse effects on body temperatures and body weights in ducks. To evaluate the vaccine efficacy of the mutant, ducklings were inoculated orally or intranasally with PMZ2 or PBS twice and subsequently subjected to a lethal challenge. Compared with the PBS control, PMZ2 immunization stimulated significantly elevated serum IgG, bile IgA and tracheal IgA responses, especially after the boost immunization in both the oral and intranasal groups, and the induced serum had significant bactericidal effects against the wild-type strain. Furthermore, the two PMZ2 immunization groups exhibited alleviated tissue lesions and significantly decreased bacterial loads in the blood and organs compared with the PBS group post-challenge. All the ducks in the PMZ2 oral and intranasal groups survived the challenge, while 70% of ducks in the PBS group succumbed to the challenge. Thus, the P. multocida mutant with mutation of the gatA gene and part of the hptE gene proved to be an effective live attenuated vaccine candidate for prevention of fowl cholera in ducks.


Assuntos
Infecções por Pasteurella , Pasteurella multocida , Doenças das Aves Domésticas , Animais , Vacinas Bacterianas , Patos , Lipopolissacarídeos , Infecções por Pasteurella/microbiologia , Infecções por Pasteurella/prevenção & controle , Infecções por Pasteurella/veterinária , Pasteurella multocida/genética , Doenças das Aves Domésticas/microbiologia
7.
Vet Res ; 52(1): 140, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34801081

RESUMO

QseC, a histidine sensor kinase of the QseBC two-component system, acts as a global regulator of bacterial stress resistance, biofilm formation, and virulence. The function of QseC in some bacteria is well understood, but not in Pasteurella multocida. We found that deleting qseC in P. multocida serotype A:L3 significantly down-regulated bacterial virulence. The mutant had significantly reduced capsule production but increased resistance to oxidative stress and osmotic pressure. Deleting qseC led to a significant increase in qseB expression. Transcriptome sequencing analysis showed that 1245 genes were regulated by qseC, primarily those genes involved in capsule and LPS biosynthesis and export, biofilm formation, and iron uptake/utilization, as well as several immuno-protection related genes including ompA, ptfA, plpB, vacJ, and sodA. In addition to presenting strong immune protection against P. multocida serotypes A:L1 and A:L3 infection, live ΔqseC also exhibited protection against P. multocida serotype B:L2 and serotype F:L3 infection in a mouse model. The results indicate that QseC regulates capsular production and virulence in P. multocida. Furthermore, the qseC mutant can be used as an attenuated vaccine against P. multocida strains of multiple serotypes.


Assuntos
Infecções por Pasteurella , Pasteurella multocida , Doenças dos Roedores , Virulência , Animais , Camundongos , Infecções por Pasteurella/prevenção & controle , Infecções por Pasteurella/veterinária , Pasteurella multocida/genética , Doenças dos Roedores/prevenção & controle , Virulência/genética
8.
An Acad Bras Cienc ; 93(2): e20190989, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34259794

RESUMO

Pasteurella multocida subsp. multocida is responsible for different diseases that generate great economic losses in farm animal. The effectiveness of immunization against those bacteria are variable and the use of antibiotics is questioned; for that reason, we investigated the potential inhibitory effect of different carbohydrates on the adherence in vivo of P. multocida to the rabbit respiratory epithelium as an alternative for the prevention of respiratory infections. Rabbits were intranasally and intratracheally inoculated with a solution containing 200 µl of 1x107 CFU of P. multocida that was previously mixed with 250 µg /200 µl of N-acetylglucosamine, alphamethylglucoside, alphamethylmannoside, N-acetylgalactosamine or sialic acid. The animals that received N-acetylglucosamine, alphamethylglucoside or alphamethylmannoside individually or a mixture of these three carbohydrates plus the bacterium, showed a significant decrease (P <0.05) of the clinical symptoms, microscopic and macroscopic lesions in the nasal septa and in the lungs; also, the number of adhered bacteria to the nasal epithelium were also significantly reduced. This research demonstrates for the first time that such an approach could convert into a method for prevention of P. multocida infection in rabbits that is ecologically and economically safe and effective.


Assuntos
Infecções por Pasteurella , Pasteurella multocida , Animais , Carboidratos , Mucosa Nasal , Pasteurella , Infecções por Pasteurella/prevenção & controle , Coelhos
9.
Pak J Pharm Sci ; 34(5(Supplementary)): 1861-1866, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34836851

RESUMO

Citrus limetta is well known for its anti-inflammatory, antimicrobial, antifungal, antidiabetic and antioxidant properties. Methanolic extract of Citrus limetta (MECL) was used to assess cellular and humoral immune responses in mice by carrying out cyclophosphamide-induced neutropenia, delayed-type hypersensitivity (DTH), carbon clearance assay, haemagglutination assay (HA) and mice lethality assay. Methanolic extract of Citrus limetta peel was administered orally to mice in two doses 200mg/kg and 400mg/kg.The extract treated groups showed improvement in neutropenia induced by cyclophosphamide and improvement in the WBC profile. Skin thickness was significantly (P<0.05) higher in 200mg/kg and 400mg/kg groups in comparison to control in DTH. The phagocytic index was significantly (P<0.05) more in 400mg/kg group in carbon clearance assay. Mice were vaccinated with hemorrhagic septicemia vaccine before challenge with Pasteurella multocida for mice lethality test. Percentage mortality was decreased in 400mg/kg treated group in comparison to negative control Antibody titre response to sheep red blood cells was significantly (P<0.05) higher with dose 400mg/kg in HA. Results suggested the effectiveness of the methanolic extract of Citrus limetta as an immunostimulating agent.


Assuntos
Citrus/química , Frutas/química , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Anticorpos Antibacterianos/análise , Carbono/metabolismo , Ciclofosfamida , Contagem de Leucócitos , Metanol , Camundongos , Neutropenia/induzido quimicamente , Neutropenia/tratamento farmacológico , Infecções por Pasteurella/imunologia , Infecções por Pasteurella/prevenção & controle , Pasteurella multocida/imunologia , Fagocitose/efeitos dos fármacos , Ovinos , Pele/efeitos dos fármacos , Solventes
10.
Microb Pathog ; 147: 104375, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32679244

RESUMO

To enhance the qualitative bacterial biomass per unit of media and to overcome the limitations of the existing haemorrhagic septicaemia (HS) vaccines, a comprehensive study was undertaken encompassing the role of iron on the bacterial biomass of Pasteurella multocida B: 2 to vaccine development. Trypsin digested hydrochloric acid-treated sheep blood (THSB) as a novel iron rich supplement had been devised for the first time for augmenting the qualitative bacterial biomass per unit of media which was evident with growth kinetic study. The higher recovery of iron from THSB became evident via atomic absorbance spectrophotometry. The critical level of iron in the media as well as mode of iron supplementation showed a major impact on the outer membrane protein profile of P. multocida B:2 and variation in droplet size and particle-size distribution of formulated vaccine. Immune response study against iron-regulated bacterin adjuvanted with aluminum hydroxide gel in mouse model showed that 3% THSB supplementation of casein sucrose yeast (CSY) not only augmented the growth of P. multocida B:2 significantly but conferred highest pre-challenged ELISA IgG titer and protection against pasteurellosis. Thus, THSB supplementation of CSY can resolve existing up-scaling and immunogenic potential problems of HS vaccine production.


Assuntos
Infecções por Pasteurella , Pasteurella multocida , Animais , Anticorpos Antibacterianos , Vacinas Bacterianas , Ferro , Camundongos , Tamanho da Partícula , Infecções por Pasteurella/prevenção & controle , Infecções por Pasteurella/veterinária , Ovinos
11.
Avian Pathol ; 49(3): 221-229, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31899951

RESUMO

Fowl cholera is a highly contagious disease within the global duck farming industry. This study aimed at formulating and evaluating the protective efficacy of a combination vaccine containing a recombinant outer membrane protein H (rOmpH) of Pasteurella multocida strain X-73 with a live attenuated duck plague vaccine into a single dose. Four groups of ducks received different treatments and the groups were labelled as non-vaccinated, combined vaccination, duck plague vaccination and rOmpH vaccination, respectively. The combined vaccination group was comprised of live attenuated duck plague commercial vaccine with 100 µg rOmpH to a total volume of 0.5 ml/duck/intramuscular administration. All groups were challenged with avian P. multocida strain X-73 via intranasal administration. In addition, blood samples were collected monthly over a period of 6 months to determine the appropriate antibody level by indirect ELISA. The indirect ELISA results in the combination vaccine group revealed that the average levels of the serum antibody against the duck enteritis virus (0.477 ± 0.155) and fowl cholera (0.383 ± 0.100) were significantly higher than those values in the non-vaccinated control group (0.080 ± 0.027 and 0.052 ± 0.017), respectively (P < 0.05). Moreover, all vaccinated ducks were effectively protected from fowl cholera. This preliminary study indicated that a combination vaccine did not affect the antibody response in the subjects while protecting the ducks against experimental P. multocida infection. This combination vaccine should be considered part of an alternative pre-treatment strategy that could replace the monovalent vaccine.


Assuntos
Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Bacterianas/imunologia , Patos , Mardivirus , Pasteurella multocida/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antivirais/sangue , Infecções por Pasteurella/prevenção & controle , Infecções por Pasteurella/veterinária , Pasteurella multocida/metabolismo , Proteínas Recombinantes , Vacinas Atenuadas , Vacinas Combinadas , Vacinas Sintéticas/imunologia
12.
Microb Pathog ; 132: 208-214, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30980881

RESUMO

Pasteurella multocida (PM) causes a varity of clinical manifestation in domestic animals, even acute death. Vaccination is among effective strategy to prevent and control PM-related diseases. Bacterial ghosts (BGs) are empty bacterial envelopes, which sustain subtle antigenic comformation in bacterial outer-membrane and exhibit higher efficacy compared to inactivated vaccines. Here, a BG vaccine generated from the porcine PM reference strain CVCC446 (serotype B:2) was prepared upon lysis by E protein of bacteriophage PhiX174, and the safety and immunogenicity were evaluated its in a mouse model. Lysis rate was in 99.99% and the BG vaccine was completely inactivated by addition of freeze-dry procedure. Mice were immunized subcutaneously twice in 2-week intervals with BGs, or BGs plus adjuvant, or formalin-inactivated PM or an adjuvant control. Mice inoculated twice with BGs vaccines generated higher titer of antibodies, interleukin 4 and gamma interferon than those in the inactivated vaccine group or adjuvant placebo group (P < 0.05). CD4+ and CD8+ T lymphocyte levels in spleen were higher in both BG groups than inactivated vaccine group or adjuvant group. Mice administered with the BGs plus adjuvant were completely protected against intraperitoneal challenge with 10 × LD50 dose of virulent isolate and exhibited decreased tissue lesion and lower bacterial loads, which was superior to the inactivated vaccine. The results demonstrated safety of the BG vaccine and primary immunogenicity in a mouse model, suggesting a potential of further evaluation in a pig model and vaccine candidate.


Assuntos
Vacinas Bacterianas/imunologia , Imunogenicidade da Vacina/imunologia , Infecções por Pasteurella/imunologia , Infecções por Pasteurella/prevenção & controle , Pasteurella multocida/imunologia , Adjuvantes Imunológicos , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Carga Bacteriana , Vacinas Bacterianas/administração & dosagem , Modelos Animais de Doenças , Imunização , Interferon gama/metabolismo , Interleucina-4/metabolismo , Dose Letal Mediana , Camundongos , Baço/imunologia , Suínos , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia
13.
Fish Shellfish Immunol ; 95: 650-658, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31706007

RESUMO

Two monovalent vaccines against pasteurellosis were developed and tested for efficacy using a previously established bath challenge model. High levels of specific antibodies were detected following vaccination. While the vaccine efficacy trial indicated that some level of protection was obtained, high mortality was still observed. qPCR analysis of head kidney tissues from surviving fish post challenge showed no difference in bacterial numbers in vaccinated and non-vaccinated fish. Clinical symptoms observed in moribund and diseased fish included white spots on the skin and around the eyes, frayed fins and redness around the mouth and fin bases. Despite production of specific antibodies, the protection against experimental challenge was relatively weak. A reason for this could potentially be that the specific antibodies produced are not alone enough to provide complete protection against pasteurellosis in lumpsuckers. Confocal and scanning electron microscopy of head kidney leucocytes exposed to Pasteurella sp. in vitro gave indications of the interactions between the pathogen and leucocytes. The results indicate that parts of the immune system other than humoral antibodies could be important for protection against pasteurellosis. Our combined results highlight the need for further work on host-pathogen interaction between Pasteurella sp. and lumpsuckers.


Assuntos
Anticorpos Antibacterianos/sangue , Vacinas Bacterianas/imunologia , Doenças dos Peixes/imunologia , Infecções por Pasteurella/veterinária , Perciformes/imunologia , Imunidade Adaptativa , Animais , Anticorpos Antibacterianos/imunologia , Vacinas Bacterianas/administração & dosagem , Doenças dos Peixes/microbiologia , Doenças dos Peixes/prevenção & controle , Rim Cefálico/imunologia , Rim Cefálico/microbiologia , Pasteurella , Infecções por Pasteurella/prevenção & controle , Perciformes/microbiologia , Vacinação
14.
Avian Pathol ; 48(1): 4-11, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30295061

RESUMO

A capsule-defective mutant strain PBA129 of Pasteurella multocida was constructed by electroporation of phagemid containing the coding region of the antisense RNA of the ompH gene into the wild type strain X-73 (serovar A:1) of P. multocida. The pathogenicity and protective potency of the mutant against homologous and heterologous challenge in mice and chickens were characterized. Greyish colonies of the mutant, indicating lower capsule thickness, on selective dextrose starch agar were observed under an obliquely transmitted light stereomicroscope and compared to iridescent colonies of the wild type strain X-73. Strain PBA129 had lower capsule thickness than the wild type strain as observed with an electron microscope. Strain PBA129 was apparently attenuated, as mice and chickens inoculated with the bacteria at 108 CFU survived. Protection was observed in both mice and chickens inoculated with strain PBA129 upon challenge exposure to avian P. multocida strains X-73 and P-1059 (serovar A:3), respectively. In conclusion, the mutant strain PBA129 of P. multocida strain X-73 was completely attenuated, and it was possible to induce sufficient protection against avian P. multocida strains.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Infecções por Pasteurella/veterinária , Pasteurella multocida/patogenicidade , Animais , Galinhas , DNA Antissenso/genética , Feminino , Camundongos , Mutação , Infecções por Pasteurella/microbiologia , Infecções por Pasteurella/prevenção & controle , Pasteurella multocida/genética , Doenças das Aves Domésticas/microbiologia
15.
Microb Pathog ; 111: 269-273, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28888883

RESUMO

Hemorrhagic septicemia is a highly infectious and contagious disease caused by Pasteurella multocida serogroup B:2 in tropical Asian and African countries. The acute inflammatory responses induced by Pasteurella multocida are the main cause of death in hemorrhagic septicemia. Therefore, present study was undertaken to examine the blood cytokine expression profiles (TNF-α, IL-1ß, and IL-6), bacterial colonization and histopathological changes of intraperitoneally and subcutaneously challenged vaccinated and unvaccinated mice with 102 CFU of P. multocida P52. The observations were made at 6, 12, 18, 24 h and 48 h intervals. Real-time PCR based blood cytokine profiles (TNF-α, IL-1ß, and IL-6) measurement revealed a significantly higher amount of pro-inflammatory cytokines expression in the unvaccinated challenged group of mice than the vaccinated challenged group. There was heavy bacterial load in all organs of mice viz. trachea, lung, spleen, within 6 h of challenge in both vaccinated and unvaccinated group of mice, but bacterial load increased in the unvaccinated challenged group of mice with respect to time whereas the load were constant in the vaccinated challenged group. Histopathological changes were mild in the vaccinated challenged group of mice in comparison to the unvaccinated challenged group. There was no significant difference in the bacterial load, histopathological changes and cytokines expression when challenged through different routes.


Assuntos
Hidróxido de Alumínio/imunologia , Vacinas Bacterianas/imunologia , Septicemia Hemorrágica/imunologia , Interações Hospedeiro-Patógeno/imunologia , Pasteurella multocida/imunologia , Vacinação , Animais , Contagem de Colônia Microbiana , Citocinas/sangue , Modelos Animais de Doenças , Septicemia Hemorrágica/patologia , Septicemia Hemorrágica/prevenção & controle , Interleucina-1beta/sangue , Interleucina-6/sangue , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Infecções por Pasteurella/imunologia , Infecções por Pasteurella/prevenção & controle , Pasteurella multocida/patogenicidade , Fragmentos de Peptídeos/sangue , RNA Mensageiro/biossíntese , Baço/microbiologia , Baço/patologia , Fatores de Tempo , Traqueia/microbiologia , Traqueia/patologia , Fator de Necrose Tumoral alfa/sangue
16.
Amino Acids ; 46(10): 2365-75, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24993936

RESUMO

Little is known about effects of dietary glutamine supplementation on specific and general defense responses in a vaccine-immunized animal model. Thus, this study determined roles for dietary glutamine supplementation in specific and general defense responses in mice immunized with inactivated Pasteurella multocida vaccine. The measured variables included: (1) the production of pathogen-specific antibodies; (2) mRNA levels for pro-inflammatory cytokines, toll-like receptors and anti-oxidative factors; and (3) the distribution of P. multocida in tissues and the expression of its major virulence factors in vivo. Dietary supplementation with 0.5 % glutamine had a better protective role than 1 or 2 % glutamine against P. multocida infection in vaccine-immunized mice, at least partly resulting from its effects in modulation of general defense responses. Dietary glutamine supplementation had little effects on the production of P. multocida-specific antibodies. Compared to the non-supplemented group, dietary supplementation with 0.5 % glutamine had no effect on bacterial burden in vivo but decreased the expression of major virulence factors in the spleen. Collectively, supplementing 0.5 % glutamine to a conventional diet provides benefits in vaccine-immunized mice by enhancing general defense responses and decreasing expression of specific virulence factors.


Assuntos
Vacinas Bacterianas/uso terapêutico , Suplementos Nutricionais , Glutamina/uso terapêutico , Imunidade Ativa , Imunidade Inata , Infecções por Pasteurella/prevenção & controle , Pasteurella multocida/imunologia , Animais , Contagem de Colônia Microbiana , Citocinas/sangue , Citocinas/genética , Citocinas/metabolismo , Feminino , Regulação Bacteriana da Expressão Gênica , Glutamina/administração & dosagem , Camundongos Endogâmicos , Viabilidade Microbiana , Oxirredutases/genética , Oxirredutases/metabolismo , Infecções por Pasteurella/imunologia , Infecções por Pasteurella/microbiologia , Pasteurella multocida/crescimento & desenvolvimento , Pasteurella multocida/isolamento & purificação , Distribuição Aleatória , Baço/imunologia , Baço/metabolismo , Baço/microbiologia , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Vacinas de Produtos Inativados/uso terapêutico , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
17.
Infection ; 42(1): 175-7, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23526308

RESUMO

Spontaneous bacterial peritonitis (SBP) is a life-threatening complication of liver cirrhosis. Recently, rifaximin, a non-absorbable antibiotic which is used to prevent recurrent hepatic encephalopathy, has been proposed as effective prophylaxis for SBP. Here, we present an unusual case of SBP under treatment with rifaximin. A 50-year-old woman with liver cirrhosis was admitted because of tense ascites and abdominal pain. She was under long-term oral prophylaxis with rifaximin due to hepatic encephalopathy. Paracentesis revealed SBP caused by Pasteurella multocida, which was sensitive to multiple antibiotics, including rifaximin. Treatment with ceftriaxone resulted in rapid resolution of the peritonitis and restoration of the patient. Since P. multocida is usually transmitted from pets, the patient's cat was tested and could be identified as the most likely source of infection. This case should elicit our awareness that uncommon pathogens and unusual routes of transmission may lead to SBP, despite antibacterial prophylaxis with non-absorbable antibiotics. Nevertheless, such infections may still remain sensitive to systemic therapy with conventional antibiotics.


Assuntos
Anti-Infecciosos/uso terapêutico , Antibioticoprofilaxia/métodos , Cirrose Hepática/complicações , Infecções por Pasteurella/diagnóstico , Pasteurella multocida/isolamento & purificação , Peritonite/diagnóstico , Rifamicinas/uso terapêutico , Ceftriaxona/uso terapêutico , Feminino , Humanos , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Infecções por Pasteurella/microbiologia , Infecções por Pasteurella/patologia , Infecções por Pasteurella/prevenção & controle , Pasteurella multocida/efeitos dos fármacos , Peritonite/microbiologia , Peritonite/patologia , Peritonite/prevenção & controle , Rifaximina , Resultado do Tratamento
18.
BMC Vet Res ; 10: 276, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25420780

RESUMO

BACKGROUND: Pasteurella multocida causes numerous economically relevant diseases in livestock including rabbits. Immunisation is only variably effective. Prophylactic antibiotics are used in some species but are contra-indicated in rabbits, due to their adverse effects on the rabbit microbiota. There is therefore a substantial need for alternative forms of infection control in rabbits; we investigated the effect of oral ß-glucan on P. multocida infection in this species. RESULTS: Thirthy-five New Zealand White rabbits were randomly divided into five groups of seven animals. Three groups were inoculated with Pasteurella multocida intranasally (in.), a physiologically appropriate challenge which reproduces naturally acquired infection, and received either (1-3), (1-6) ß-glucans or placebo. Four other groups were inoculated both in. and intramuscularly (im.), representing a supra-physiological challenge, and received either (1-3), (1-6) ß-glucans, antibiotic or placebo. ß-glucans given prophylactically were highly effective in protecting against physiological (in.) bacterial challenge. They were less effective in protecting against supra-physiological bacterial challenge (in. and im.), although they extended survival times. This latter finding has practical relevance to breeders as it extends the window in which heavily infected and symptomatic animals can be salvaged with antibiotics. CONCLUSIONS: In our study, (1-3), (1-6) ß-glucans were highly effective in protecting against a model of naturally acquired P. multocida infection and extended survival times in the supra-physiological model. Enrofloxacin was effective in protecting against supra-physiological infection. We are currently reviewing the use of combined prophylaxis.


Assuntos
Glucanos/uso terapêutico , Infecções por Pasteurella/veterinária , Pasteurella multocida , Coelhos/microbiologia , beta-Glucanas/uso terapêutico , Animais , Antibacterianos/uso terapêutico , Suplementos Nutricionais , Enrofloxacina , Feminino , Fluoroquinolonas/uso terapêutico , Masculino , Infecções por Pasteurella/tratamento farmacológico , Infecções por Pasteurella/prevenção & controle , Pasteurella multocida/efeitos dos fármacos
19.
Vaccine ; 42(12): 3075-3083, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38584060

RESUMO

As the major outer membrane protein (OMP) presents in the Pasteurella multocida envelope, OmpH was frequently expressed for laboratory assessments of its immunogenicity against P. multocida infections, but the results are not good. In this study, we modified OmpH with dendritic cell targeting peptide (Depeps) and/or Salmonella FliCd flagellin, and expressed three types of recombinant proteins with the MBP tag (rDepeps-FliC-OmpH-MBP, rDepeps-OmpH-MBP, rFliC-OmpH-MBP). Assessments in mouse models revealed that vaccination with rDepeps-FliC-OmpH-MBP, rDepeps-OmpH-MBP, or rFliC-OmpH-MBP induced significant higher level of antibodies as well as IFN-γ and IL-4 in murine sera than vaccination with rOmpH-MBP (P < 0.5). Vaccination with the three modified proteins also provided increased protection (rDepeps-FliC-OmpH-MBP, 70 %; rDepeps-OmpH-MBP, 50 %; rFliC-OmpH-MBP, 60 %) against P. multocida serotype D compared to vaccination with rOmpH-MBP (30 %). In mice vaccinated with different types of modified OmpHs, a significantly decreased bacterial strains were recovered from bloods, lungs, and spleens compared to rOmpH-MBP-vaccinated mice (P < 0.5). Notably, our assessments also demonstrated that vaccination with rDepeps-FliC-OmpH-MBP provided good protection against infections caused by a heterogeneous group of P. multocida serotypes (A, B, D). Our above findings indicate that modification with DCpep and Salmonella flagellin could be used as a promising strategy to improve vaccine effectiveness.


Assuntos
Infecções por Pasteurella , Pasteurella multocida , Animais , Camundongos , Sorogrupo , Infecções por Pasteurella/prevenção & controle , Flagelina/metabolismo , Proteínas da Membrana Bacteriana Externa , Peptídeos/metabolismo , Células Dendríticas , Vacinas Bacterianas
20.
PLoS One ; 19(5): e0301688, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38768145

RESUMO

Swine atrophic rhinitis is a disease caused by Pasteurella multocida and Bordetella bronchiseptica that affects pigs. Inactivated vaccines containing the toxins produced by Pasteurella multocida and Bordetella bronchiseptica have been widely used for the prevention of swine atrophic rhinitis. The efficacy of a vaccine is correlated with the amount of antigen present; however, the protective toxin of P. multocida bound to aluminum hydroxide, which is used as an adjuvant, can hinder the monitoring of the antigen concentration in the vaccine. This study assessed the applicability of a dot immunoassay as an antigen quantification method using monoclonal antibodies. This quantification method was able to detect the antigen with high specificity and sensitivity even when the antigen was bound to the adjuvant, and its application to vaccine products revealed a correlation between the amount of antigen present in the vaccine and the neutralizing antibody titers induced in pigs. The antigen quantification method presented in this study is a simple and sensitive assay capable of quantifying the amount of antigen present in a vaccine that can be used as an alternative quality control measure.


Assuntos
Adjuvantes Imunológicos , Hidróxido de Alumínio , Antígenos de Bactérias , Vacinas Bacterianas , Pasteurella multocida , Rinite Atrófica , Doenças dos Suínos , Animais , Pasteurella multocida/imunologia , Suínos , Rinite Atrófica/imunologia , Rinite Atrófica/prevenção & controle , Rinite Atrófica/microbiologia , Vacinas Bacterianas/imunologia , Antígenos de Bactérias/imunologia , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/microbiologia , Doenças dos Suínos/imunologia , Bordetella bronchiseptica/imunologia , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Infecções por Pasteurella/prevenção & controle , Infecções por Pasteurella/veterinária , Infecções por Pasteurella/imunologia , Anticorpos Neutralizantes/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA