Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 94(1)2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31619552

RESUMO

Refolding of the HIV-1 gp41 N- and C-terminal heptad repeats (NHR and CHR, respectively) into a six-helix bundle (6-HB) juxtaposes viral and cellular membranes for fusion. The CHR-derived peptide T20 is the only clinically approved viral fusion inhibitor and has potent anti-HIV activity; however, its mechanism of action is not fully understood. In this study, we surprisingly found that T20 disrupted the α-helical conformation of the NHR-derived peptide N54 through its C-terminal tryptophan-rich motif (TRM) and that synthetic short peptides containing the TRM sequence, TRM8 and TRM12, disrupted the N54 helix in a dose-dependent manner. Interestingly, TRM8 efficiently interfered with the secondary structures of three overlapping NHR peptides (N44, N38, and N28) and interacted with N28, which contains mainly the deep NHR pocket-forming sequence, with high affinity, suggesting that TRM targeted the NHR pocket site to mediate the disruption. Unlike TRM8, the short peptide corresponding to the pocket-binding domain (PBD) of the CHR helix had no such disruptive effect, and the CHR peptide C34 could form a stable 6-HB with the NHR helix; however, addition of the TRM to the C terminus of C34 resulted in a peptide (C46) that destroyed the NHR helix. Although the TRM peptides alone had no anti-HIV activity and could not block the formation of 6-HB conformation, substitution of the TRM for the PBD in C34 resulted in a mutant inhibitor (C34TRM) with high binding and inhibitory capacities. Combined, the present data inform a new mode of action of T20 and the structure-function relationship of gp41.IMPORTANCE The HIV-1 Env glycoprotein mediates membrane fusion and is conformationally labile. Despite extensive efforts, the structural property of the native fusion protein gp41 is largely unknown, and the mechanism of action of the gp41-derived fusion inhibitor T20 remains elusive. Here, we report that T20 and its C-terminal tryptophan-rich motif (TRM) can efficiently impair the conformation of the gp41 N-terminal heptad repeat (NHR) coiled coil by interacting with the deep NHR pocket site. The TRM sequence has been verified to possess the ability to replace the pocket-binding domain of C34, a fusion inhibitor peptide with high anti-HIV potency. Therefore, our studies have not only facilitated understanding of the mechanism of action of T20 and developed novel HIV-1 fusion inhibitors but also provided new insights into the structural property of the prefusion state of gp41.


Assuntos
Enfuvirtida/metabolismo , Proteína gp41 do Envelope de HIV/química , Inibidores da Fusão de HIV/metabolismo , HIV-1/química , Triptofano/química , Motivos de Aminoácidos , Sítios de Ligação , Dicroísmo Circular , Enfuvirtida/síntese química , Células HEK293 , Proteína gp41 do Envelope de HIV/antagonistas & inibidores , Proteína gp41 do Envelope de HIV/metabolismo , Inibidores da Fusão de HIV/síntese química , HIV-1/metabolismo , Humanos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Relação Estrutura-Atividade , Triptofano/metabolismo
2.
Bioorg Med Chem ; 28(24): 115812, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33157478

RESUMO

Membrane fusion is a valid target for inhibition of HIV-1 replication. A 34-mer fragment peptide (C34), which is contained in the HIV-1 envelope protein gp41, has significant anti-HIV activity. Previously, a dimeric derivative of C34 linked by a disulfide bridge at its C-terminus was found to have more potent anti-HIV activity than the C34 peptide monomer. To date, several peptidomimetic small inhibitors have been reported, but most have lower potency than peptide derivatives related to C34. In the present study we applied this dimerization concept to these peptidomimetic small inhibitors and designed several bivalent peptidomimetic HIV-1 fusion inhibitors. The importance of the length of linkers crosslinking two peptidomimetic compounds was demonstrated and several potent bivalent inhibitors containing tethered peptidomimetics were produced.


Assuntos
Proteína gp41 do Envelope de HIV/química , Inibidores da Fusão de HIV/química , Peptidomiméticos , Dimerização , Dissulfetos/química , Desenho de Fármacos , Proteína gp41 do Envelope de HIV/metabolismo , Inibidores da Fusão de HIV/metabolismo , Inibidores da Fusão de HIV/farmacologia , HIV-1/efeitos dos fármacos , HIV-1/metabolismo , Humanos , Peptídeos/química , Polietilenoglicóis/química
3.
Molecules ; 25(6)2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32245167

RESUMO

Fostemsavir/temsavir is an investigational HIV-1 entry inhibitor currently in late-stage clinical trials. Although it holds promise to be a first-in-class Env-targeted entry inhibitor for the clinic, issues with bioavailability relegate its use to salvage therapies only. As such, the development of a small molecule HIV-1 entry inhibitor that can be used in standard combination antiretroviral therapy (cART) remains a longstanding goal for the field. We previously demonstrated the ability of extending the chemotypes available to this class of inhibitor as the first step towards this overarching goal. In addition to poor solubility, metabolic stability is a crucial determinant of bioavailability. Therefore, in this short communication, we assess the metabolic stabilities of five of our novel chemotype entry inhibitors. We found that changing the piperazine core region of temsavir alters the stability of the compound in human liver microsome assays. Moreover, we identified an entry inhibitor with more than twice the metabolic stability of temsavir and demonstrated that the orientation of the core replacement is critical for this increase. This work further demonstrates the feasibility of our long-term goal-to design an entry inhibitor with improved drug-like qualities-and warrants expanded studies to achieve this.


Assuntos
Fármacos Anti-HIV/farmacologia , Inibidores da Fusão de HIV/farmacologia , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Organofosfatos/química , Piperazinas/química , Triazóis/metabolismo , Compostos Azabicíclicos/síntese química , Compostos Azabicíclicos/química , Compostos Azabicíclicos/farmacologia , Azetidinas/síntese química , Azetidinas/química , Azetidinas/farmacologia , Cromatografia Líquida , Células HEK293 , Proteína do Núcleo p24 do HIV/química , Proteína do Núcleo p24 do HIV/metabolismo , Inibidores da Fusão de HIV/metabolismo , Infecções por HIV/virologia , Humanos , Microssomos Hepáticos/virologia , Organofosfatos/farmacologia , Piperazinas/farmacologia , Ligação Proteica , Pirrolidinas/síntese química , Pirrolidinas/química , Pirrolidinas/farmacologia , Espectrometria de Massas em Tandem , Triazóis/síntese química , Triazóis/farmacologia , Triazóis/toxicidade
4.
Biochemistry ; 57(1): 136-148, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29202246

RESUMO

Many human proteins have the potential to be developed as therapeutic agents. However, side effects caused by direct administration of natural proteins have significantly slowed expansion of protein therapeutics into the clinic. Post-translational modifications (PTMs) can improve protein properties, but because of significant knowledge gaps, we are considerably limited in our ability to apply PTMs to generate better protein therapeutics. Here, we seek to fill the gaps by studying the PTMs of a small representative chemotactic cytokine, RANTES. RANTES can inhibit HIV-1 infection by competing with it for binding to receptor CCR5 and stimulating CCR5 endocytosis. Unfortunately, RANTES can induce strong signaling, leading to severe inflammatory side effects. We apply a chemical biology approach to explore the potential of post-translationally modified RANTES as safe inhibitors of HIV-1 infection. We synthesized and systematically tested a library of RANTES isoforms for their ability to inhibit inflammatory signaling and prevent HIV-1 infection of primary human cells. Through this research, we revealed that most of the glycosylated variants have decreased inflammation-associated properties and identified one particular glyco variant, a truncated RANTES containing a Galß1-3GalNAc disaccharide α-linked to Ser4, which stands out as having the best overall properties: relatively high HIV-1 inhibition potency but also weak inflammatory properties. Moreover, our results provided a structural basis for the observed changes in the properties of RANTES. Taken together, this work highlights the potential importance of glycosylation as an alternative strategy for developing CCR5 inhibitors to treat HIV-1 infection and, more generally, for reducing or eliminating unwanted properties of therapeutic proteins.


Assuntos
Quimiocina CCL5/química , Quimiocina CCL5/farmacologia , Inibidores da Fusão de HIV/química , Inibidores da Fusão de HIV/farmacologia , HIV-1/efeitos dos fármacos , Processamento de Proteína Pós-Traducional , Acilação , Biopolímeros , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Quimiocina CCL5/efeitos adversos , Quimiocina CCL5/metabolismo , Quimiotaxia de Leucócito/efeitos dos fármacos , Glicosaminoglicanos/metabolismo , Glicosilação , Inibidores da Fusão de HIV/efeitos adversos , Inibidores da Fusão de HIV/metabolismo , Infecções por HIV/tratamento farmacológico , HIV-1/fisiologia , Humanos , Espectroscopia de Prótons por Ressonância Magnética , Receptores CCR5/metabolismo , Células THP-1
5.
Plant Mol Biol ; 97(4-5): 357-370, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29948657

RESUMO

KEY MESSAGE: The potent anti-HIV microbicide griffithsin was expressed to high levels in tobacco chloroplasts, enabling efficient purification from both fresh and dried biomass, thus providing storable material for inexpensive production and scale-up on demand. The global HIV epidemic continues to grow, with 1.8 million new infections occurring per year. In the absence of a cure and an AIDS vaccine, there is a pressing need to prevent new infections in order to curb the disease. Topical microbicides that block viral entry into human cells can potentially prevent HIV infection. The antiviral lectin griffithsin has been identified as a highly potent inhibitor of HIV entry into human cells. Here we have explored the possibility to use transplastomic plants as an inexpensive production platform for griffithsin. We show that griffithsin accumulates in stably transformed tobacco chloroplasts to up to 5% of the total soluble protein of the plant. Griffithsin can be easily purified from leaf material and shows similarly high virus neutralization activity as griffithsin protein recombinantly expressed in bacteria. We also show that dried tobacco provides a storable source material for griffithsin purification, thus enabling quick scale-up of production on demand.


Assuntos
Fármacos Anti-HIV/metabolismo , Inibidores da Fusão de HIV/metabolismo , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Nicotiana/metabolismo , Lectinas de Plantas/metabolismo , Fármacos Anti-HIV/isolamento & purificação , Cloroplastos/genética , Cloroplastos/metabolismo , Genoma de Cloroplastos/genética , Inibidores da Fusão de HIV/isolamento & purificação , Infecções por HIV/virologia , Humanos , Agricultura Molecular , Folhas de Planta/genética , Folhas de Planta/metabolismo , Lectinas de Plantas/genética , Lectinas de Plantas/isolamento & purificação , Nicotiana/genética
6.
Bioorg Med Chem Lett ; 28(10): 1842-1845, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29680665

RESUMO

DNA helix-based HIV-1 fusion inhibitors have been discovered as potent drug candidates. Introduction of hydrophobic groups to a nucleobase provides an opportunity to design inhibitors with novel structures and mechanisms of action. In this work, two novel nucleoside analogues (1 and 2) were synthesized and incorporated into four DNA duplex- and quadruplex-based inhibitors. All the molecules showed anti-HIV-1 fusion activity. The effect of the p-benzyloxyphenyl group and the attached linker on the helix formation and thermal stability were fully compared and discussed. Surface plasmon resonance analysis further indicated that inhibitors with the same DNA helix may still have variable reaction targets, mainly attributed to the different hydrophobic modifications.


Assuntos
DNA/metabolismo , Inibidores da Fusão de HIV/síntese química , Nucleosídeos/química , Dicroísmo Circular , DNA/química , Proteína gp41 do Envelope de HIV/antagonistas & inibidores , Proteína gp41 do Envelope de HIV/metabolismo , Inibidores da Fusão de HIV/metabolismo , Inibidores da Fusão de HIV/farmacologia , HIV-1/efeitos dos fármacos , Humanos , Cinética , Ressonância de Plasmônio de Superfície , Temperatura de Transição
7.
Bioorg Med Chem Lett ; 28(1): 49-52, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29162455

RESUMO

A series of novel or known water-soluble derivatives of chiral gossypol were synthesized and screened in vitro for their anti-HIV-1 activity. (-)-gossypol derivative was more active against HIV-1 than the corresponding (+)-gossypol derivative, respectively. Among these derivatives, d-glucosamine derivative of (-)-gossypol, oligopeptide derivative of (-)-gossypol and taurine derivative of (-)-gossypol, such as compounds 1a, 3a and 14a, showed significant inhibitory activities against HIV-1 replication, HIV-1 mediated cell-cell fusion and HIV gp41 6-helix bundle formation as some amino acid derivatives of (-)-gossypol.


Assuntos
Gossipol/química , Proteína gp41 do Envelope de HIV/antagonistas & inibidores , Inibidores da Fusão de HIV/síntese química , HIV-1/fisiologia , Sítios de Ligação , Desenho de Fármacos , Gossipol/metabolismo , Gossipol/farmacologia , Proteína gp41 do Envelope de HIV/metabolismo , Inibidores da Fusão de HIV/metabolismo , Inibidores da Fusão de HIV/farmacologia , Humanos , Ligação de Hidrogênio , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína , Solubilidade , Estereoisomerismo , Replicação Viral/efeitos dos fármacos , Água/química
8.
Bioorg Med Chem Lett ; 27(14): 3177-3184, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28558972

RESUMO

The viral protein HIVgp41 is an attractive and validated drug target that proceeds through a sequence of conformational changes crucial for membrane fusion, which facilitates viral entry. Prior work has identified inhibitors that interfere with the formation of a required six-helix bundle, composed of trimeric C-heptad (CHR) and N-heptad (NHR) repeat elements, through blocking association of an outer CHR helix or obstructing formation of the inner NHR trimer itself. In this work, we employed similarity-based scoring to identify and experimentally characterize 113 compounds, related to 2 small-molecule inhibitors recently reported by Allen et al. (Bioorg. Med. Chem Lett.2015, 25 2853-59), proposed to act via the NHR trimer obstruction mechanism. The compounds were first tested in an HIV cell-cell fusion assay with the most promising evaluated in a second, more biologically relevant viral entry assay. Of the candidates, compound #11 emerged as the most promising hit (IC50=37.81µM), as a result of exhibiting activity in both assays with low cytotoxicity, as was similarly seen with the known control peptide inhibitor C34. The compound also showed no inhibition of VSV-G pseudotyped HIV entry compared to a control inhibitor suggesting it was specific for HIVgp41. Molecular dynamics simulations showed the predicted DOCK pose of #11 interacts with HIVgp41 in an energetic fashion (per-residue footprints) similar to the four native NHR residues (IQLT) which candidate inhibitors were intended to mimic.


Assuntos
Desenho de Fármacos , Proteína gp41 do Envelope de HIV/antagonistas & inibidores , Inibidores da Fusão de HIV/química , HIV/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Proteína gp41 do Envelope de HIV/metabolismo , Inibidores da Fusão de HIV/metabolismo , Inibidores da Fusão de HIV/toxicidade , Humanos , Simulação de Acoplamento Molecular , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/metabolismo , Estrutura Terciária de Proteína , Internalização do Vírus/efeitos dos fármacos
9.
Bioorg Med Chem Lett ; 25(14): 2853-9, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26013847

RESUMO

Identification of mechanistically novel anti-HIV fusion inhibitors was accomplished using a computer-aided structure-based design approach with the goal of blocking the formation of the N-heptad repeat (NHR) trimer of the viral protein gp41. A virtual screening strategy that included per-residue interaction patterns (footprints) was employed to identify small molecules compatible with putative binding pockets at the internal interface of the NHR helices at the core native viral six-helix bundle. From a screen of ∼2.8 million compounds using the DOCK program, 120 with favorable energetic and footprint overlap characteristics were purchased and experimentally tested leading to two compounds with favorable cell-cell fusion (IC50) and cytotoxicity profiles. Importantly, both hits were identified on the basis of scores containing footprint overlap terms and would not have been identified using the standard DOCK energy function alone. To our knowledge, these compounds represent the first reported small molecules that inhibit viral entry via the proposed NHR-trimer obstruction mechanism.


Assuntos
Proteína gp41 do Envelope de HIV/antagonistas & inibidores , Inibidores da Fusão de HIV/química , HIV-1/metabolismo , Bibliotecas de Moléculas Pequenas/química , Sítios de Ligação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Desenho de Fármacos , Proteína gp41 do Envelope de HIV/metabolismo , Inibidores da Fusão de HIV/metabolismo , Inibidores da Fusão de HIV/toxicidade , Humanos , Simulação de Acoplamento Molecular , Multimerização Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Internalização do Vírus/efeitos dos fármacos
10.
Retrovirology ; 11: 86, 2014 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-25274545

RESUMO

BACKGROUND: The HIV-1 envelope glycoprotein (Env) undergoes conformational changes that mediate fusion between virus and host cell membranes. These changes involve transient exposure of two heptad-repeat domains (HR1 and HR2) in the gp41 subunit and their subsequent self-assembly into a six-helix bundle (6HB) that drives fusion. Env residues and features that influence conformational changes and the rate of virus entry, however, are poorly understood. Peptides corresponding to HR1 and HR2 (N and C peptides, respectively) interrupt formation of the 6HB by binding to the heptad repeats of a fusion-intermediate conformation of Env, making the peptides valuable probes for studying Env conformational changes. RESULTS: Using a panel of Envs that are resistant to N-peptide fusion inhibitors, we investigated relationships between virus entry kinetics, 6HB stability, and resistance to peptide fusion inhibitors to elucidate how HR1 and HR2 mutations affect Env conformational changes and virus entry. We found that gp41 resistance mutations increased 6HB stability without increasing entry kinetics. Similarly, we show that increased 6HB thermodynamic stability does not correlate with increased entry kinetics. Thus, N-peptide fusion inhibitors do not necessarily select for Envs with faster entry kinetics, nor does faster entry kinetics predict decreased potency of peptide fusion inhibitors. CONCLUSIONS: These findings provide new insights into the relationship between 6HB stability and viral entry kinetics and mechanisms of resistance to inhibitors targeting fusion-intermediate conformations of Env. These studies further highlight how residues in HR1 and HR2 can influence virus entry by altering stability of the 6HB and possibly other conformations of Env that affect rate-limiting steps in HIV entry.


Assuntos
Farmacorresistência Viral , Proteína gp41 do Envelope de HIV/química , Inibidores da Fusão de HIV/metabolismo , HIV-1/efeitos dos fármacos , Complexos Multiproteicos/química , Multimerização Proteica , Internalização do Vírus/efeitos dos fármacos , Linhagem Celular , Proteína gp41 do Envelope de HIV/genética , Proteína gp41 do Envelope de HIV/metabolismo , HIV-1/genética , HIV-1/fisiologia , Humanos , Cinética , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformação Proteica , Estabilidade Proteica , Termodinâmica
11.
J Virol ; 87(10): 5868-81, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23487463

RESUMO

Here, we applied the designed ankyrin repeat protein (DARPin) technology to develop novel gp120-directed binding molecules with HIV entry-inhibiting capacity. DARPins are interesting molecules for HIV envelope inhibitor design, as their high-affinity binding differs from that of antibodies. DARPins in general prefer epitopes with a defined folded structure. We probed whether this capacity favors the selection of novel gp120-reactive molecules with specificities in epitope recognition and inhibitory activity that differ from those found among neutralizing antibodies. The preference of DARPins for defined structures was notable in our selections, since of the four gp120 modifications probed as selection targets, gp120 arrested by CD4 ligation proved the most successful. Of note, all the gp120-specific DARPin clones with HIV-neutralizing activity isolated recognized their target domains in a conformation-dependent manner. This was particularly pronounced for the V3 loop-specific DARPin 5m3_D12. In stark contrast to V3-specific antibodies, 5m3_D12 preferentially recognized the V3 loop in a specific conformation, as probed by structurally arrested V3 mimetic peptides, but bound linear V3 peptides only very weakly. Most notably, this conformation-dependent V3 recognition allowed 5m3_D12 to bypass the V1V2 shielding of several tier 2 HIV isolates and to neutralize these viruses. These data provide a proof of concept that the DARPin technology holds promise for the development of HIV entry inhibitors with a unique mechanism of action.


Assuntos
Repetição de Anquirina , Proteína gp120 do Envelope de HIV/metabolismo , Inibidores da Fusão de HIV/metabolismo , Proteínas/metabolismo , Inibidores da Fusão de HIV/isolamento & purificação , Humanos , Ligação Proteica , Conformação Proteica , Proteínas/isolamento & purificação
12.
Protein Expr Purif ; 95: 136-42, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24365663

RESUMO

The use of antiretroviral drugs is gaining importance in the recent past for the treatment of human immunodeficiency virus infection. Enfuvirtide (T20) is one of the fusion inhibitors, inhibits the fusion between the virus and healthy target CD4 cells. The treatment with T20 involves very high therapeutic dose. In addition to its high dose, production of T20 by synthetic methods is expensive and cumbersome. We report an alternative recombinant approach for the production of the T20 peptide through a novel short fusion-tag expression system. This expression system consists of the hydrophobic region of growth hormone (GH) as the fusion tag, a factor Xa cleavage site upstream to the T20. The fusion protein was expressed in Escherichia coli as inclusion bodies. We also report here, a simple and an efficient down-stream strategy for the purification of recombinant T20 peptide (rT20). Our study is the first to demonstrate a novel approach using GH fusion tag, ensured the peptide stability, for the production of rT20 which yields more than 250mg/L with 98% purity. The biological activity of the rT20 is comparable to its synthetic counterpart. Thus, this novel approach could be an alternate method of choice for production of therapeutically important small peptides.


Assuntos
Escherichia coli/metabolismo , Proteína gp41 do Envelope de HIV/metabolismo , Inibidores da Fusão de HIV/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas Recombinantes/metabolismo , Enfuvirtida , Escherichia coli/genética , Proteína gp41 do Envelope de HIV/análise , Proteína gp41 do Envelope de HIV/química , Inibidores da Fusão de HIV/análise , Inibidores da Fusão de HIV/química , Corpos de Inclusão/química , Corpos de Inclusão/metabolismo , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/química , Proteínas Recombinantes/análise , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Dodecilsulfato de Sódio , Solubilidade
13.
Proc Natl Acad Sci U S A ; 108(18): 7613-8, 2011 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-21502494

RESUMO

HIV-1 drug resistance is a major clinical problem. Resistance is evaluated using in vitro assays measuring the fold change in IC(50) caused by resistance mutations. Antiretroviral drugs are used at concentrations above IC(50), however, and inhibition at clinical concentrations can only be predicted from IC(50) if the shape of the dose-response curve is also known. Curve shape is influenced by cooperative interactions and is described mathematically by the slope parameter or Hill coefficient (m). Implicit in current analysis of resistance is the assumption that mutations shift dose-response curves to the right without affecting the slope. We show here that m is altered by resistance mutations. For reverse transcriptase and fusion inhibitors, single resistance mutations affect both slope and IC(50). For protease inhibitors, single mutations primarily affect slope. For integrase inhibitors, only IC(50) is affected. Thus, there are fundamental pharmacodynamic differences in resistance to different drug classes. Instantaneous inhibitory potential (IIP), the log inhibition of single-round infectivity at clinical concentrations, takes into account both slope and IC(50), and thus provides a direct measure of the reduction in susceptibility produced by mutations and the residual activity of drugs against resistant viruses. The standard measure, fold change in IC(50), does not correlate well with changes in IIP when mutations alter slope. These results challenge a fundamental assumption underlying current analysis of HIV-1 drug resistance and suggest that a more complete understanding of how resistance mutations reduce antiviral activity requires consideration of a previously ignored parameter, the dose-response curve slope.


Assuntos
Relação Dose-Resposta a Droga , Farmacorresistência Viral/genética , Inibidores da Fusão de HIV/metabolismo , Inibidores de Integrase de HIV/metabolismo , Inibidores da Protease de HIV/metabolismo , HIV-1/genética , Concentração Inibidora 50 , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Inibidores da Fusão de HIV/farmacologia , Inibidores de Integrase de HIV/farmacologia , Inibidores da Protease de HIV/farmacologia , Humanos , Modelos Biológicos , Mutação/genética , Análise de Regressão
14.
Eur J Med Chem ; 269: 116299, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38479167

RESUMO

Dendritic cells (DCs) play a pivotal role in controlling HIV-1 infections of CD4+ T cells. DC-SIGN, which is expressed on the surface of DCs, efficiently captures HIV-1 virions by binding to the highly mannosylated membrane protein, gp120, and then the DCs transport the virus to target T cells in lymphoid organs. This study explored the modification of T20, a peptide inhibitor of HIV-1 fusion, by conjugation of the N-terminus with varying sizes of oligomannose, which are DC-SIGN-specific carbohydrates, aiming to create dual-targeting HIV inhibitors. Mechanistic studies indicated the dual-target binding of the conjugates. Antiviral assays demonstrated that N-terminal mannosylation of T20 resulted in increased inhibition of the viral infection of TZM-b1 cells (EC50 = 0.3-0.8 vs. 1.4 nM). Pentamannosylated T20 (M5-T20) exhibited a stronger inhibitory effect on virus entry into DC-SIGN+ 293T cells compared with T20 (67% vs. 50% inhibition at 500 µM). M5-T20 displayed an extended half-life in rats relative to T20 (T1/2: 8.56 vs. 1.64 h, respectively). These conjugates represent a potential new treatment for HIV infections with improved antiviral activity and pharmacokinetics, and this strategy may prove useful in developing dual-target inhibitors for other pathogens that require DC-SIGN involvement for infection.


Assuntos
Inibidores da Fusão de HIV , Infecções por HIV , HIV-1 , Animais , Ratos , Enfuvirtida/farmacologia , Enfuvirtida/metabolismo , Inibidores da Fusão de HIV/farmacologia , Inibidores da Fusão de HIV/metabolismo , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/metabolismo , Proteína gp41 do Envelope de HIV/metabolismo
15.
Biophys J ; 105(11): 2586-97, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24314089

RESUMO

RANTES (CCL5) is a chemokine that recruits immune cells to inflammatory sites by interacting with the G-protein coupled receptor CCR5, which is also the primary coreceptor used together with CD4 by HIV to enter and infect target cells. Ligands of CCR5, including chemokines and chemokine analogs, are capable of blocking HIV entry, and studies of their structures and interactions with CCR5 will be key to understanding and optimizing HIV inhibition. The RANTES derivative 5P12-RANTES is a highly potent HIV entry inhibitor that is being developed as a topical HIV prevention agent (microbicide). We have characterized the structure and dynamics of 5P12-RANTES by solution NMR. With the exception of the nine flexible N-terminal residues, 5P12-RANTES has the same structure as wild-type RANTES but unlike the wild-type, does not dimerize via its N-terminus. To prepare the ground for interaction studies with detergent-solubilized CCR5, we have also investigated the interaction of RANTES and 5P12-RANTES with various commonly used detergents. Both RANTES variants are stable in Cymal-5, DHPC, Anzergent-3-12, dodecyltrimethylammonium chloride, and a DDM/CHAPS/CHS mixture. Fos-Cholines, dodecyldimethylglycine, and sodium dodecyl-sulfate denature both RANTES variants at low pH, whereas at neutral pH the stability is considerably higher. The onset of Fos-Choline-12-induced denaturation and the denatured state were characterized by circular dichroism and NMR. The detergent interaction starts below the critical micelle concentration at a well-defined mixed hydrophobic/positive surface region of the chemokine, which overlaps with the dimer interface. An increase of Fos-Choline-12 concentration above the critical micelle concentration causes a transition to a denatured state with a high α-helical content.


Assuntos
Quimiocinas CC/química , Inibidores da Fusão de HIV/química , Simulação de Dinâmica Molecular , Fosforilcolina/análogos & derivados , Sequência de Aminoácidos , Quimiocinas CC/metabolismo , Detergentes/química , Inibidores da Fusão de HIV/metabolismo , Dados de Sequência Molecular , Fosforilcolina/química , Ligação Proteica , Desnaturação Proteica
16.
Biochim Biophys Acta ; 1818(12): 2950-7, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22867851

RESUMO

Enfuvirtide (T20), the first FDA-approved peptide HIV fusion/entry inhibitor derived from the HIV-1 gp41 C-terminal heptad-repeat (CHR) domain, is believed to share a target with C34, another well-characterized CHR-peptide, by interacting with the gp41 N-terminal heptad-repeat (NHR) to form six-helix bundle core. However, our previous studies showed that T20 mainly interacts with the N-terminal region of the NHR (N-NHR) and lipid membranes, while C34 mainly binds to the NHR C-terminal pocket region. But so far, no one has shown that C34 can induce drug-resistance mutation in the gp41 pocket region. In this study, we constructed pseudoviruses in which the Ala at the position of 67 in the gp41 pocket region was substituted with Asp, Gly or Ser, respectively, and found that these mutations rendered the viruses highly resistant to C34, but sensitive to T20. The NHR-peptide N36 with mutations of A67 exhibited reduced anti-HIV-1 activity and decreased α-helicity. The stability of six-helix bundle formed by C34 and N36 with A67 mutations was significantly lower than that formed by C34 and N36 with wild-type sequence. The combination of C34 and T20 resulted in potent synergistic anti-HIV-1 effect against the viruses with mutations in either N- or C-terminal region in NHR. These results suggest that C34 with a pocket-binding domain and T20 containing the N-NHR- and membrane-binding domains inhibit HIV-1 fusion by interacting with different target sites and the combinatorial use of C34 and T20 is expected to be effective against HIV-1 variants resistant to HIV fusion inhibitors.


Assuntos
Proteína gp41 do Envelope de HIV/química , Inibidores da Fusão de HIV/metabolismo , Inibidores da Fusão de HIV/farmacologia , HIV-1/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Linhagem Celular , Enfuvirtida , Variação Genética , Proteína gp41 do Envelope de HIV/genética , Proteína gp41 do Envelope de HIV/metabolismo , Proteína gp41 do Envelope de HIV/farmacologia , Inibidores da Fusão de HIV/química , HIV-1/genética , HIV-1/crescimento & desenvolvimento , Humanos , Dados de Sequência Molecular , Mutação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Mutação Puntual , Conformação Proteica , Estrutura Terciária de Proteína
17.
Antimicrob Agents Chemother ; 57(3): 1415-20, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23295922

RESUMO

Nowadays, antiretroviral therapy is recommended during pregnancy to prevent mother-to-child transmission of HIV. However, for many antiretroviral drugs, including maraviroc, a CCR5 antagonist, very little data exist regarding placental transfer. Besides, various factors may modulate this transfer, including efflux transporters belonging to the ATP-binding cassette (ABC) transporter superfamily. We investigated maraviroc placental transfer and the influence of ABC transporter expression on this transfer using the human cotyledon perfusion model. Term placentas were perfused ex vivo for 90 min with maraviroc (600 ng/ml) either in the maternal-to-fetal (n = 10 placentas) or fetal-to-maternal (n = 6 placentas) direction. Plasma concentrations were determined by ultra performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). Fetal transfer rates (FTR) and clearance indexes (CLI) were calculated as ratios of fetal to maternal concentrations at steady state (mean values between 30 and 90 min) and ratios of FTR of maraviroc to that of antipyrine, respectively. ABC transporter gene expression levels were determined by quantitative reverse transcription (RT)-PCR and ABCB1 protein expression by Western blotting. For the maternal-to-fetal direction, the mean FTR and CLI were 8.0% ± 3.0 and 0.26 ± 0.07, respectively, whereas the mean CLI was 0.52 ± 0.23 for the fetal-to-maternal direction. We showed a significant inverse correlation between maraviroc CLI and ABCC2, ABCC10, and ABCC11 placental gene expression levels (P < 0.05). To conclude, we report a low maraviroc placental transfer probably involving ABC efflux transporters and thus in all likelihood associated with a limited fetal exposition. Nevertheless, these results would need to be supported by in vivo data obtained from paired maternal and cord blood samples.


Assuntos
Cicloexanos/metabolismo , Expressão Gênica , Inibidores da Fusão de HIV/metabolismo , Modelos Biológicos , Placenta/metabolismo , Triazóis/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Cromatografia Líquida , Cicloexanos/farmacologia , Cultura em Câmaras de Difusão , Feminino , Feto , Inibidores da Fusão de HIV/farmacologia , Humanos , Cinética , Maraviroc , Troca Materno-Fetal , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Técnicas de Cultura de Órgãos , Perfusão , Placenta/efeitos dos fármacos , Gravidez , Espectrometria de Massas em Tandem , Triazóis/farmacologia
18.
BMC Microbiol ; 13: 4, 2013 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-23298379

RESUMO

BACKGROUND: Vaginal probiotics are investigated as a binary strategy for prevention of bacterial vaginosis and HIV. We applied an innovative experimental model using primary and immortalized human cervical and vaginal epithelial cells to assess the functional properties of Lactobacillus jensenii, a predominant constituent of the healthy vaginal microbiome, engineered to express the HIV-1 entry inhibitor modified cyanovirin-N (mCV-N). In this model bacteria colonize the epithelial cells over a period of 24-72 h. Staurosporine and the Toll-like receptor 2/6 ligand macrophage-activating lipopeptide-2 (MALP-2) serve as positive controls for apoptosis and proinflammatory activation, respectively. In 24-hour intervals, the colonized epithelium is assessed microscopically, supernatants are collected for measurement of soluble immunoinflammatory mediators and production of CV-N, and cells are lysed for assessment of: 1) apoptosis by cleaved versus total caspase-3 assay; 2) NF-κB activation by a luciferase reporter assay; or 3) epithelia-associated colony forming units (CFU) in Brucella agar. RESULTS: Wild type (WT) L. jensenii 1153 consistently colonized cervical and vaginal cells in the absence of epithelial damage and apoptosis. The bioengineered derivatives expressing mCV-N or control plasmids showed the same stable colonization pattern, which was reproducible between technologists and bacterial batches (CFU coefficient of variation <10% within and between experiments and epithelial cell types). MALP-2 activated NF-κB and caused fold-increased levels of proinflammatory mediators with clinically established significance in the cervicovaginal environment (IL-1α, IL-1ß, IL-6, TNF-α, IL-8, RANTES, MIP-3α, and ICAM-1), measured by a multiplex electrochemiluminescence assay. At the same time levels of protective anti-inflammatory mediators interleukin 1 receptor antagonist (IL-1RA) and secretory leukocyte protease inhibitor (SLPI), both measured by ELISA, remained constant (IL-1RA) or moderately increased (SLPI). Similarly to MALP-2, colonization by L. jensenii WT activated NF-κB; however, unlike the synthetic TLR2/6 ligand, the live microorganisms did not induce significant changes in the secreted levels across all inflammation-associated proteins. The mCV-N production and function were confirmed by western blot and a HIV-1 gp120 binding assay, respectively. The bioengineered lactobacilli expressed mCV-N with anti-HIV activity preserved in the epithelial cell context and caused no significant immunoinflammatory changes as compared to the WT L. jensenii. CONCLUSIONS: These results highlight the translational value of the colonization model and justify further clinical investigation of the homeostatic and anti-HIV effectiveness of the L. jensenii derivates.


Assuntos
Anti-Infecciosos/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Células Epiteliais/microbiologia , Inibidores da Fusão de HIV/metabolismo , Lactobacillus/fisiologia , Apoptose , Carga Bacteriana , Feminino , Humanos , Lactobacillus/genética , NF-kappa B/metabolismo
19.
FASEB J ; 26(3): 1018-26, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22085645

RESUMO

We previously reported that the combinatorial use of T20 and T1144, the first and next generations of HIV fusion inhibitors, containing different functional domains resulted in synergistic anti-HIV-1 effect, but this effect diminished when T20 and T1144 were covalently linked together. To elucidate the mechanism underlying this synergistic anti-HIV-1 effect, we studied the interactions between T20 and T1144 either in a mixture state or in a covalently linked state. T20 alone in solution was largely featureless, while T1144 alone was in α-helical trimeric conformation. When mixed in solution, T20 and T1144 showed a loose and transient interaction, with a moderate 10% α-helical content increase, but this interaction was greatly enhanced in the linked state, and T20 and T1144 showed ∼100% α-helical content. These results suggested that the loose and transient interaction between T20 and T1144 may destabilize the T1144 trimer, which makes its otherwise shielded binding sites more accessible to N-terminal heptad repeat (NHR) and increases its associating rate, thus increasing its anti-HIV-1 potency against the temporarily exposed target in NHR and causing the synergistic anti-HIV-1 effect. However, the strong interaction between T20 and T1144 in the covalently linked state may shield their NHR-binding sites, resulting in reduction of the synergistic effect.


Assuntos
Inibidores da Fusão de HIV/química , Inibidores da Fusão de HIV/farmacologia , HIV-1/efeitos dos fármacos , Sequência de Aminoácidos , Linhagem Celular Tumoral , Dicroísmo Circular , Sinergismo Farmacológico , Eletroforese em Gel de Poliacrilamida , Enfuvirtida , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/metabolismo , Proteína gp41 do Envelope de HIV/farmacologia , Inibidores da Fusão de HIV/metabolismo , HIV-1/crescimento & desenvolvimento , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacologia , Ligação Proteica , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos
20.
Int J Mol Sci ; 14(7): 14724-43, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23860208

RESUMO

T-20 and T-1249 fusion inhibitor peptides were shown to interact with 1-palmitoyl-2-oleyl-phosphatidylcholine (POPC) (liquid disordered, ld) and POPC/cholesterol (1:1) (POPC/Chol) (liquid ordered, lo) bilayers, and they do so to different extents. Although they both possess a tryptophan-rich domain (TRD), T-20 lacks a pocket binding domain (PBD), which is present in T-1249. It has been postulated that the PBD domain enhances FI interaction with HIV gp41 protein and with model membranes. Interaction of these fusion inhibitor peptides with both the cell membrane and the viral envelope membrane is important for function, i.e., inhibition of the fusion process. We address this problem with a molecular dynamics approach focusing on lipid properties, trying to ascertain the consequences and the differences in the interaction of T-20 and T-1249 with ld and lo model membranes. T-20 and T-1249 interactions with model membranes are shown to have measurable and different effects on bilayer structural and dynamical parameters. T-1249's adsorption to the membrane surface has generally a stronger influence in the measured parameters. The presence of both binding domains in T-1249 appears to be paramount to its stronger interaction, and is shown to have a definite importance in membrane properties upon peptide adsorption.


Assuntos
Colesterol/química , Inibidores da Fusão de HIV/metabolismo , Bicamadas Lipídicas/metabolismo , Simulação de Dinâmica Molecular , Peptídeos/metabolismo , Fosfatidilcolinas/química , Enfuvirtida , HIV/metabolismo , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/metabolismo , Inibidores da Fusão de HIV/química , Humanos , Ligação de Hidrogênio , Bicamadas Lipídicas/química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Peptídeos/química , Ligação Proteica , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA