Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 318(2): E262-E275, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31821038

RESUMO

miR-130b is a microRNA whose expression is particularly elevated within adipose tissue and in the circulation in diabetic states. Hepatic miR-130b expression has been linked to hepatocellular carcinoma and changes in lipid metabolism. Here, we investigated the role of miR-130b in hepatic lipid homeostasis and lipoprotein export. We observed that overexpression of miR-130b-3p or -5p in HepG2 cells markedly enhanced the secretion of very-low-density lipoprotein (VLDL) particles, enhanced the secretion of [3H]glycerol metabolically labeled triglyceride (TG), and significantly increased the number or the average size of lipid droplets (LDs), respectively. Overexpression of miR-130b also altered the expression of key genes involved in lipid metabolism and in particular markedly increased both mRNA and protein expression levels of microsomal triglyceride transfer protein (MTP). Conversely, the miR-130b inhibitor decreased mRNA levels of MTP and fatty acid synthase (FAS) in HepG2 cells. However, dual-luciferase reporter assays indicated that MTP is not a direct target of miR-130b-3p. miR-130b overexpression did not alter de novo synthesized TG or the stability and secretion of apolipoprotein B 100. Interestingly, knockdown of phosphatase and tensin homolog (PTEN) blocked the upregulation of MTP mRNA induced by miR-130b. Finally, miR-130b-induced stimulation of VLDL secretion was also observed in a second hepatocyte cell culture model, immortalized human hepatocytes, confirming the effects observed in HepG2 cells. Overall, these data suggest a potential role for miR-130b in promoting hepatic VLDL assembly and secretion mediated by marked stimulation of MTP expression and TG mobilization. Thus miR-130b overexpression corrects the defect in VLDL production in HepG2 cells.


Assuntos
Proteínas de Transporte/biossíntese , Lipoproteínas VLDL/biossíntese , Lipoproteínas VLDL/metabolismo , Fígado/metabolismo , MicroRNAs/metabolismo , Microssomos Hepáticos/enzimologia , Apolipoproteína B-100/biossíntese , Apolipoproteína B-100/genética , Linhagem Celular , Células Cultivadas , Inibidores da Síntese de Ácidos Graxos/farmacologia , Técnicas de Silenciamento de Genes , Hepatócitos/metabolismo , Humanos , Metabolismo dos Lipídeos/genética , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo
2.
PLoS Biol ; 15(5): e2002214, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28542493

RESUMO

Examining the fundamental structure and processes of living cells at the nanoscale poses a unique analytical challenge, as cells are dynamic, chemically diverse, and fragile. A case in point is the cell membrane, which is too small to be seen directly with optical microscopy and provides little observational contrast for other methods. As a consequence, nanoscale characterization of the membrane has been performed ex vivo or in the presence of exogenous labels used to enhance contrast and impart specificity. Here, we introduce an isotopic labeling strategy in the gram-positive bacterium Bacillus subtilis to investigate the nanoscale structure and organization of its plasma membrane in vivo. Through genetic and chemical manipulation of the organism, we labeled the cell and its membrane independently with specific amounts of hydrogen (H) and deuterium (D). These isotopes have different neutron scattering properties without altering the chemical composition of the cells. From neutron scattering spectra, we confirmed that the B. subtilis cell membrane is lamellar and determined that its average hydrophobic thickness is 24.3 ± 0.9 Ångstroms (Å). Furthermore, by creating neutron contrast within the plane of the membrane using a mixture of H- and D-fatty acids, we detected lateral features smaller than 40 nm that are consistent with the notion of lipid rafts. These experiments-performed under biologically relevant conditions-answer long-standing questions in membrane biology and illustrate a fundamentally new approach for systematic in vivo investigations of cell membrane structure.


Assuntos
Bacillus subtilis/metabolismo , Membrana Celular/metabolismo , Ácidos Graxos/metabolismo , Bicamadas Lipídicas/metabolismo , Microdomínios da Membrana/metabolismo , Modelos Biológicos , Algoritmos , Bacillus subtilis/química , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Cerulenina/farmacologia , Deutério , Enoil-CoA Hidratase/genética , Enoil-CoA Hidratase/metabolismo , Inibidores da Síntese de Ácidos Graxos/farmacologia , Ácidos Graxos/química , Deleção de Genes , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/química , Microdomínios da Membrana/química , Microdomínios da Membrana/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Difração de Nêutrons , Ácidos Palmíticos/química , Ácidos Palmíticos/metabolismo , Espalhamento a Baixo Ângulo , Estereoisomerismo
3.
J Biochem Mol Toxicol ; 34(1): e22413, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31714634

RESUMO

Hepatic diseases leading to fibrosis affect millions of individuals worldwide and are a major public health challenge. Although, there have been many advances in understanding hepatic fibrogenesis, an effective therapy remains elusive. Studies focus primarily on activation of the hepatic stellate cells (HSCs), the principal fibrogenic cells in the liver; however, fewer numbers of studies have examined molecular mechanisms that deactivate HSC, controlling the profibrogenic phenotype. In the present study, we evaluated cellular and molecular actions of the chemical triclosan (TCS) in reverting activated HSCs to a quiesced phenotype. We demonstrated that the inhibition of the enzyme fatty acid synthase by TCS in activated HSCs promotes survival of the cells and triggers cellular and molecular changes that promote cellular phenotypic reversion, offering potentially new therapeutic directions.


Assuntos
Inibidores da Síntese de Ácidos Graxos/farmacologia , Células Estreladas do Fígado/efeitos dos fármacos , Triclosan/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ácido Graxo Sintases/antagonistas & inibidores , Células Estreladas do Fígado/citologia , Humanos
4.
Plant Physiol ; 178(3): 1112-1129, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30181343

RESUMO

Fatty acids are synthesized in the stroma of plant and algal chloroplasts by the fatty acid synthase complex. Newly synthesized fatty acids are then used to generate plastidial lipids that are essential for chloroplast structure and function. Here, we show that inhibition of fatty acid synthesis in the model alga Chlamydomonas reinhardtii activates autophagy, a highly conserved catabolic process by which cells degrade intracellular material under adverse conditions to maintain cell homeostasis. Treatment of Chlamydomonas cells with cerulenin, a specific fatty acid synthase inhibitor, stimulated lipidation of the autophagosome protein ATG8 and enhanced autophagic flux. We found that inhibition of fatty acid synthesis decreased monogalactosyldiacylglycerol abundance, increased lutein content, down-regulated photosynthesis, and increased the production of reactive oxygen species. Electron microscopy revealed a high degree of thylakoid membrane stacking in cerulenin-treated cells. Moreover, global transcriptomic analysis of these cells showed an up-regulation of genes encoding chloroplast proteins involved in protein folding and oxidative stress and the induction of major catabolic processes, including autophagy and proteasome pathways. Thus, our results uncovered a link between lipid metabolism, chloroplast integrity, and autophagy through a mechanism that involves the activation of a chloroplast quality control system.


Assuntos
Autofagia/efeitos dos fármacos , Chlamydomonas reinhardtii/fisiologia , Ácido Graxo Sintases/antagonistas & inibidores , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Cerulenina/farmacologia , Chlamydomonas reinhardtii/efeitos dos fármacos , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/ultraestrutura , Cloroplastos/efeitos dos fármacos , Cloroplastos/fisiologia , Cloroplastos/ultraestrutura , Retículo Endoplasmático/metabolismo , Inibidores da Síntese de Ácidos Graxos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estresse Oxidativo , Fotossíntese , Proteínas de Plantas/antagonistas & inibidores , Dobramento de Proteína , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima
5.
Mol Pharm ; 16(7): 3065-3071, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31244223

RESUMO

Staphylococcus aureus is one of the most common pathogens causing hospital-acquired and community-acquired infections. Methicillin-resistant S. aureus (MRSA)-formed biofilms in wounds are difficult to treat with conventional antibiotics. By targeting FabB/FabF of bacterial fatty acid synthases, platensimycin (PTM) was discovered to act as a promising natural antibiotic against MRSA infections. In this study, PTM and its previously synthesized sulfur-Michael derivative PTM-2t could reduce over 95% biofilm formation by S. aureus ATCC 29213 when used at 2 µg/mL in vitro. Topical application of ointments containing PTM or PTM-2t (2 × 4 mg/day/mouse) was successfully used to treat MRSA infections in a BABL/c mouse burn wound model. As a potential prodrug lead, PTM-2t showed improved in vivo efficacy in a mouse peritonitis model compared with PTM. Our study suggests that PTM and its analogue may be used topically or locally to treat bacterial infections. In addition, the use of prodrug strategies might be instrumental to improve the poor pharmacokinetic properties of PTM.


Assuntos
Adamantano/uso terapêutico , Aminobenzoatos/uso terapêutico , Anilidas/uso terapêutico , Antibacterianos/uso terapêutico , Queimaduras/tratamento farmacológico , Inibidores da Síntese de Ácidos Graxos/uso terapêutico , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Peritonite/tratamento farmacológico , Pró-Fármacos/uso terapêutico , Infecções Cutâneas Estafilocócicas/tratamento farmacológico , Adamantano/administração & dosagem , Aminobenzoatos/administração & dosagem , Anilidas/administração & dosagem , Animais , Antibacterianos/administração & dosagem , Biofilmes/efeitos dos fármacos , Queimaduras/microbiologia , Modelos Animais de Doenças , Farmacorresistência Bacteriana/efeitos dos fármacos , Estabilidade de Medicamentos , Ácido Graxo Sintase Tipo II/antagonistas & inibidores , Inibidores da Síntese de Ácidos Graxos/administração & dosagem , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microssomos/efeitos dos fármacos , Peritonite/microbiologia , Pró-Fármacos/administração & dosagem , Infecções Cutâneas Estafilocócicas/microbiologia , Sulfetos , Resultado do Tratamento
6.
Mol Microbiol ; 103(4): 698-712, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27875634

RESUMO

The stringent response is a universal adaptive mechanism to protect bacteria from nutritional and environmental stresses. The role of the stringent response during lipid starvation has been studied only in Gram-negative bacteria. Here, we report that the stringent response also plays a crucial role in the adaptation of the model Gram-positive Bacillus subtilis to fatty acid starvation. B. subtilis lacking all three (p)ppGpp-synthetases (RelBs , RelP and RelQ) or bearing a RelBs variant that no longer synthesizes (p)ppGpp suffer extreme loss of viability on lipid starvation. Loss of viability is paralleled by perturbation of membrane integrity and function, with collapse of membrane potential as the likely cause of death. Although no increment of (p)ppGpp could be detected in lipid starved B. subtilis, we observed a substantial increase in the GTP/ATP ratio of strains incapable of synthesizing (p)ppGpp. Artificially lowering GTP with decoyinine rescued viability of such strains, confirming observations that low intracellular GTP is important for survival of nutritional stresses. Altogether, our results show that activation of the stringent response by lipid starvation is a broadly conserved response of bacteria and that a key role of (p)ppGpp is to couple biosynthetic processes that become detrimental if uncoordinated.


Assuntos
Trifosfato de Adenosina/metabolismo , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Ácidos Graxos/metabolismo , Guanosina Trifosfato/metabolismo , Ligases/genética , Potenciais da Membrana/fisiologia , Inanição/metabolismo , Cerulenina/farmacologia , Inibidores da Síntese de Ácidos Graxos/farmacologia , Ácidos Graxos/biossíntese , Estresse Fisiológico
7.
Artigo em Inglês | MEDLINE | ID: mdl-29661867

RESUMO

One of the most important clinical obstacles in cystic fibrosis (CF) treatment is antibiotic treatment failure due to biofilms produced by Pseudomonas aeruginosa The ability of this pathogen to survive eradication by tobramycin and pathoadapt into a hyperbiofilm state leading to chronic infections is key to its success. Retrospective studies have demonstrated that preventing this pathoadaptation by improving eradication is essential to extend the lives of CF patients. To identify adjuvants that enhance tobramycin eradication of P. aeruginosa, we performed a high-throughput screen of 6,080 compounds from four drug-repurposing libraries. We identified that the Food and Drug Administration (FDA)-approved compound triclosan, in combination with tobramycin, resulted in a 100-fold reduction of viable cells within biofilms at 6 h, but neither compound alone had significant antimicrobial activity against biofilms. This synergistic treatment significantly accelerated the killing of biofilms compared to that with tobramycin treatment alone, and the combination was effective against 6/7 CF clinical isolates compared to tobramycin treatment alone, including a tobramycin-resistant strain. Further, triclosan and tobramycin killed persister cells, causing a 100-fold reduction by 8 h and complete eradication by 24 h. Triclosan also enhances tobramycin killing of multiple Burkholderia cenocepacia and Staphylococcus aureus clinical isolates grown as biofilms. Additionally, triclosan showed synergy with other aminoglycosides, such as gentamicin or streptomycin. Triclosan is a well-tolerated aminoglycoside adjuvant shown to be safe for human use that could improve the treatment of biofilm-based infections.


Assuntos
Adjuvantes Farmacêuticos/farmacologia , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Inibidores da Síntese de Ácidos Graxos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Tobramicina/farmacologia , Triclosan/farmacologia , Biofilmes/crescimento & desenvolvimento , Fibrose Cística/tratamento farmacológico , Sinergismo Farmacológico , Quimioterapia Combinada , Ensaios de Triagem em Larga Escala , Humanos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/isolamento & purificação
8.
J Recept Signal Transduct Res ; 38(4): 335-341, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30256698

RESUMO

De novo lipogenesis (DNL) by upregulation of fatty acid synthase (FASN) is an important metabolic alteration of cancer cells. FASN is over-expressed in several cancers and is often associated with a high risk of recurrence and poor prognosis. Differential expression of FASN in cancer cells and their normal counterparts leads to the impression that FASN can be an attractive druggable target in cancer therapy. Present study focuses on identification of inhibitors against FASN ketoacyl synthase (KS) domain from Asinex Biodesign compound database using in silico tools. Virtual screening resulted in the identification of two hit compounds BDD27845077 and BDD27845082 with a common core structure. Molecular Docking studies showed that BDD27845077 and BDD27845082 bind at the substrate entry channel of KS domain with GScore -12.03 kcal/mol and -12.29 kcal/mol respectively. Molecular dynamics (MD) simulation of the protein-ligand complexes shows the binding stability of ligands with FASN-KS. In vitro validation of BDD27845082 demonstrated that the compound possesses antiproliferative activity in a panel of human cancer cell lines including MDA-MB-231 (breast cancer), HCT-116 (colon cancer) and HeLa (cervical cancer) with maximum sensitivity against HCT-116 (IC 50 = 25 µM). The study put forward two lead compounds against FASN with favorable pharmacokinetic profile as indicated by virtual screening tools for the development of cancer chemotherapeutics.


Assuntos
Proliferação de Células/efeitos dos fármacos , Detecção Precoce de Câncer , Inibidores da Síntese de Ácidos Graxos/química , Neoplasias/tratamento farmacológico , Apoptose/efeitos dos fármacos , Simulação por Computador , Ácido Graxo Sintases/química , Ácido Graxo Sintases/uso terapêutico , Inibidores da Síntese de Ácidos Graxos/isolamento & purificação , Inibidores da Síntese de Ácidos Graxos/uso terapêutico , Células HCT116 , Humanos , Lipogênese/efeitos dos fármacos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Interface Usuário-Computador
9.
Appl Microbiol Biotechnol ; 102(24): 10603-10612, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30276713

RESUMO

We have recently developed Corynebacterium glutamicum strains that produce free fatty acids in culture supernatant due to enhanced fatty acid biosynthesis. Of these producing strains, the basic producer PAS-15 has a defect in the gene for a fatty acid biosynthesis repressor protein, and the advanced producer PCC-6 has two additional mutations to augment the production by strain PAS-15. The aim of the present study was to obtain novel genetic traits for improving fatty acid production by these producers. A new mutant with increased production derived from strain PAS-15 had a missense mutation in the accD3 gene (mutation accD3A433T), which is involved in the biosynthesis of mycolic acids that are cell envelope lipids of C. glutamicum, as the causal mutation. Mutation accD3A433T was verified to reduce the AccD3 enzymatic activity and increase fatty acid production in strain PAS-15 by 1.8-fold. Deletion of the accD3 gene in strain PAS-15, which was motivated by the characteristic of mutation accD3A433T, increased fatty acid production by 3.2-fold. Susceptibility of strain PAS-15 to vancomycin was significantly increased by accD3 gene deletion and by mutation accD3A433T to the intermediate level, suggesting that the cell envelope permeability barrier by mycolic acids is weakened by this engineering. Furthermore, mutation accD3A433T also increased fatty acid production in strain PCC-6 by 1.3-fold. These increased production levels were suggested to be involved not only in the redirection of carbon flux from mycolic acid biosynthesis to fatty acid production but also in the permeability of the cell envelope.


Assuntos
Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Ácidos Micólicos/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cerulenina/farmacologia , Corynebacterium glutamicum/efeitos dos fármacos , Inibidores da Síntese de Ácidos Graxos/farmacologia , Ácidos Graxos/metabolismo , Microrganismos Geneticamente Modificados , Mutação , Vancomicina/farmacologia
10.
Pestic Biochem Physiol ; 148: 116-125, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29891362

RESUMO

The prevalent occurrence of herbicide resistant weeds increases the necessity for new site of action herbicides for effective control as well as to relax selection pressure on the known sites of action. As a consequence, interest increased in the unexploited molecule cinmethylin as a new solution for the control of weedy grasses in cereals. Therefore, the mechanism of action of cinmethylin was reevaluated. We applied the chemoproteomic approach cellular Target Profiling™ from Evotec to identify the cinmethylin target in Lemna paucicostata protein extracts. We found three potential targets belonging to the same protein family of fatty acid thioesterases (FAT) to bind to cinmethylin with high affinity. Binding of cinmethylin to FAT proteins from Lemna and Arabidopsis was confirmed by fluorescence-based thermal shift assay. The plastid localized enzyme FAT plays a crucial role in plant lipid biosynthesis, by mediating the release of fatty acids (FA) from its acyl carrier protein (ACP) which is necessary for FA export to the endoplasmic reticulum. GC-MS analysis of free FA composition in Lemna extracts revealed strong reduction of unsaturated C18 as well as saturated C14, and C16 FAs upon treatment with cinmethylin, indicating that FA release for subsequent lipid biosynthesis is the primary target of cinmethylin. Lipid biosynthesis is a prominent target of different herbicide classes. To assess whether FAT inhibition constitutes a new mechanism of action within this complex pathway, we compared physiological effects of cinmethylin to different ACCase and VLCFA synthesis inhibitors and identified characteristic differences in plant symptomology and free FA composition upon treatment with the three herbicide classes. Also, principal component analysis of total metabolic profiling of treated Lemna plants showed strong differences in overall metabolic changes after cinmethylin, ACCase or VLCFA inhibitor treatments. Our results identified and confirmed FAT as the cinmethylin target and validate FAT inhibition as a new site of action different from other lipid biosynthesis inhibitor classes.


Assuntos
Arabidopsis/efeitos dos fármacos , Araceae/efeitos dos fármacos , Ácidos Graxos/antagonistas & inibidores , Herbicidas/metabolismo , Proteínas de Plantas/metabolismo , Tioléster Hidrolases/metabolismo , Arabidopsis/metabolismo , Araceae/metabolismo , Transporte Biológico , Cristalografia por Raios X , Retículo Endoplasmático/metabolismo , Inibidores da Síntese de Ácidos Graxos/metabolismo , Inibidores da Síntese de Ácidos Graxos/farmacologia , Ácidos Graxos/biossíntese , Fluorescência , Cromatografia Gasosa-Espectrometria de Massas , Resistência a Herbicidas , Herbicidas/farmacologia , Análise de Componente Principal , Conformação Proteica , Tioléster Hidrolases/química
11.
Lab Invest ; 97(2): 194-206, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27918556

RESUMO

Fatty acid synthase (FASN) is responsible for the endogenous production of fatty acids from acetyl-CoA and malonyl-CoA. Its overexpression is associated with poor prognosis in human cancers including melanomas. Our group has previously shown that the inhibition of FASN with orlistat reduces spontaneous lymphatic metastasis in experimental B16-F10 melanomas, which is a consequence, at least in part, of the reduction of proliferation and induction of apoptosis. Here, we sought to investigate the effects of pharmacological FASN inhibition on lymphatic vessels by using cell culture and mouse models. The effects of FASN inhibitors cerulenin and orlistat on the proliferation, apoptosis, and migration of human lymphatic endothelial cells (HDLEC) were evaluated with in vitro models. The lymphatic outgrowth was evaluated by using a murine ex vivo assay. B16-F10 melanomas and surgical wounds were produced in the ears of C57Bl/6 and Balb-C mice, respectively, and their peripheral lymphatic vessels evaluated by fluorescent microlymphangiography. The secretion of vascular endothelial growth factor C and D (VEGF-C and -D) by melanoma cells was evaluated by ELISA and conditioned media used to study in vitro lymphangiogenesis. Here, we show that cerulenin and orlistat decrease the viability, proliferation, and migration of HDLEC cells. The volume of lymph node metastases from B16-F10 experimental melanomas was reduced by 39% in orlistat-treated animals as well as the expression of VEGF-C in these tissues. In addition, lymphatic vessels from orlistat-treated mice drained more efficiently the injected FITC-dextran. Orlistat and cerulenin reduced VEGF-C secretion and, increase production of VEGF-D by B16-F10 and SK-Mel-25 melanoma cells. Finally, reduced lymphatic cell extensions, were observed following the treatment with conditioned medium from cerulenin- and orlistat-treated B16-F10 cells. Altogether, our results show that FASN inhibitors have anti-metastatic effects by acting on lymphatic endothelium and melanoma cells regardless the increase of lymphatic permeability promoted by orlistat.


Assuntos
Cerulenina/farmacologia , Ácido Graxo Sintases/antagonistas & inibidores , Lactonas/farmacologia , Vasos Linfáticos/efeitos dos fármacos , Melanoma Experimental/prevenção & controle , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Inibidores da Síntese de Ácidos Graxos/farmacologia , Humanos , Linfangiogênese/efeitos dos fármacos , Metástase Linfática , Vasos Linfáticos/metabolismo , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Orlistate , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator C de Crescimento do Endotélio Vascular/metabolismo , Fator D de Crescimento do Endotélio Vascular/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-28193654

RESUMO

The need for new antimicrobials to treat bacterial infections has led to the use of type II fatty acid synthesis (FASII) enzymes as front-line targets. However, recent studies suggest that FASII inhibitors may not work against the opportunist pathogen Staphylococcus aureus, as environmental fatty acids favor emergence of multi-anti-FASII resistance. As fatty acids are abundant in the host and one FASII inhibitor, triclosan, is widespread, we investigated whether fatty acid pools impact resistance in clinical and veterinary S. aureus isolates. Simple addition of fatty acids to the screening medium led to a 50% increase in triclosan resistance, as tested in 700 isolates. Moreover, nonculturable triclosan-resistant fatty acid auxotrophs, which escape detection under routine conditions, were uncovered in primary patient samples. FASII bypass in selected isolates correlated with polymorphisms in the acc and fabD loci. We conclude that fatty-acid-dependent strategies to escape FASII inhibition are common among S. aureus isolates and correlate with anti-FASII resistance and emergence of nonculturable variants.


Assuntos
Antibacterianos/farmacologia , Anti-Infecciosos Locais/farmacologia , Ácido Graxo Sintase Tipo II/antagonistas & inibidores , Inibidores da Síntese de Ácidos Graxos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Triclosan/farmacologia , Animais , Bovinos , Farmacorresistência Bacteriana/genética , Ácido Graxo Sintase Tipo II/genética , Ácido Graxo Sintase Tipo II/metabolismo , Ácidos Graxos/metabolismo , Humanos , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/isolamento & purificação , Staphylococcus aureus/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-28784680

RESUMO

The type II fatty acid synthesis (FASII) pathway is essential for bacterial lipid biosynthesis and continues to be a promising target for novel antibacterial compounds. Recently, it has been demonstrated that Chlamydia is capable of FASII and this pathway is indispensable for Chlamydia growth. Previously, a high-content screen with Chlamydia trachomatis-infected cells was performed, and acylated sulfonamides were identified to be potent growth inhibitors of the bacteria. C. trachomatis strains resistant to acylated sulfonamides were isolated by serial passage of a wild-type strain in the presence of low compound concentrations. Results from whole-genome sequencing of 10 isolates from two independent drug-resistant populations revealed that mutations that accumulated in fabF were predominant. Studies of the interaction between the FabF protein and small molecules showed that acylated sulfonamides directly bind to recombinant FabF in vitro and treatment of C. trachomatis-infected HeLa cells with the compounds leads to a decrease in the synthesis of Chlamydia fatty acids. This work demonstrates the importance of FASII for Chlamydia development and may lead to the development of new antimicrobials.


Assuntos
Antibacterianos/farmacologia , Chlamydia trachomatis/efeitos dos fármacos , Ácido Graxo Sintase Tipo II/metabolismo , Inibidores da Síntese de Ácidos Graxos/farmacologia , Ácidos Graxos/biossíntese , Sulfametoxazol/farmacologia , Acilação/efeitos dos fármacos , Adamantano/farmacologia , Aminobenzoatos/farmacologia , Anilidas/farmacologia , Animais , Linhagem Celular Tumoral , Cerulenina/farmacologia , Infecções por Chlamydia/tratamento farmacológico , Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/genética , Chlamydia trachomatis/metabolismo , Chlorocebus aethiops , Ácido Graxo Sintase Tipo II/genética , Células HeLa , Humanos , Triclosan/farmacologia , Células Vero
14.
J Clin Microbiol ; 55(6): 1755-1766, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28330890

RESUMO

Drug-resistant tuberculosis (TB) is a major threat to TB control worldwide. Globally, only 40% of the 340,000 notified TB patients estimated to have multidrug-resistant-TB (MDR-TB) were detected in 2015. This study was carried out to evaluate the utility of high-resolution melt curve analysis (HRM) for the rapid and direct detection of MDR-TB in Mycobacterium tuberculosis in sputum samples. A reference plasmid library was first generated of the most frequently observed mutations in the resistance-determining regions of rpoB, katG, and an inhA promoter and used as positive controls in HRM. The assay was first validated in 25 MDR M. tuberculosis clinical isolates. The assay was evaluated on DNA isolated from 99 M. tuberculosis culture-positive sputum samples that included 84 smear-negative sputum samples, using DNA sequencing as gold standard. Mutants were discriminated from the wild type by comparing melting-curve patterns with those of control plasmids using HRM software. Rifampin (RIF) and isoniazid (INH) monoresistance were detected in 11 and 21 specimens, respectively, by HRM. Six samples were classified as MDR-TB by sequencing, one of which was missed by HRM. The HRM-RIF, INH-katG, and INH-inhA assays had 89% (95% confidence interval [CI], 52, 100%), 85% (95% CI, 62, 97%), and 100% (95% CI, 74, 100%) sensitivity, respectively, in smear-negative samples, while all assays had 100% sensitivity in smear-positive samples. All assays had 100% specificity. Concordance of 97% to 100% (κ value, 0.9 to 1) was noted between sequencing and HRM. Heteroresistance was observed in 5 of 99 samples by sequencing. In conclusion, the HRM assay was a cost-effective (Indian rupee [INR]400/US$6), rapid, and closed-tube method for the direct detection of MDR-TB in sputum, especially for direct smear-negative cases.


Assuntos
Antituberculosos/farmacologia , Farmacorresistência Bacteriana , Técnicas de Genotipagem/métodos , Testes de Sensibilidade Microbiana/métodos , Mycobacterium tuberculosis/efeitos dos fármacos , Escarro/microbiologia , Tuberculose Pulmonar/microbiologia , DNA Bacteriano/genética , Inibidores da Síntese de Ácidos Graxos , Humanos , Isoniazida/farmacologia , Mycobacterium tuberculosis/isolamento & purificação , Rifampina/farmacologia , Sensibilidade e Especificidade , Temperatura de Transição
15.
Plant Physiol ; 171(1): 179-91, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27208047

RESUMO

Previous attempts at engineering Arabidopsis (Arabidopsis thaliana) to produce seed oils containing hydroxy fatty acids (HFA) have resulted in low yields of HFA compared with the native castor (Ricinus communis) plant and caused undesirable effects, including reduced total oil content. Recent studies have led to an understanding of problems involved in the accumulation of HFA in oils of transgenic plants, which include metabolic bottlenecks and a decrease in the rate of fatty acid synthesis. Focusing on engineering the triacylglycerol assembly mechanisms led to modest increases in the HFA content of seed oil, but much room for improvement still remains. We hypothesized that engineering fatty acid synthesis in the plastids to increase flux would facilitate enhanced total incorporation of fatty acids, including HFA, into seed oil. The transcription factor WRINKLED1 (WRI1) positively regulates the expression of genes involved in fatty acid synthesis and controls seed oil levels. We overexpressed Arabidopsis WRI1 in seeds of a transgenic line expressing the castor fatty acid hydroxylase. The proportion of HFA in the oil, the total HFA per seed, and the total oil content of seeds increased to an average of 20.9%, 1.26 µg, and 32.2%, respectively, across five independent lines, compared with 17.6%, 0.83 µg, and 27.9%, respectively, for isogenic segregants. WRI1 and WRI1-regulated genes involved in fatty acid synthesis were up-regulated, providing for a corresponding increase in the rate of fatty acid synthesis.


Assuntos
Proteínas de Arabidopsis/antagonistas & inibidores , Arabidopsis/metabolismo , Inibidores da Síntese de Ácidos Graxos/farmacologia , Ácidos Graxos/metabolismo , Retroalimentação Fisiológica , Regulação da Expressão Gênica de Plantas , Sementes/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Acetiltransferases/genética , Acetiltransferases/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ricinus communis/genética , Elongases de Ácidos Graxos , Ácidos Graxos/análise , Germinação/genética , Fenótipo , Óleos de Plantas/análise , Plantas Geneticamente Modificadas/genética , Plastídeos/genética , Sementes/enzimologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triglicerídeos/metabolismo , Regulação para Cima
16.
Int J Mol Sci ; 18(6)2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28561793

RESUMO

This study determined the comparative nephrotoxic potential of four trichloronitrobenzenes (TCNBs) (2,3,4-; 2,4,5-; 2,4,6-; and 3,4,5-TCNB) and explored the effects of antioxidants and biotransformation inhibitors on TCNB-induced cytotoxicity in isolated renal cortical cells (IRCC) from male Fischer 344 rats. IRCC were incubated with a TCNB up to 1.0 mM for 15-120 min. Pretreatment with an antioxidant or cytochrome P450 (CYP), flavin monooxygenase (FMO), or peroxidase inhibitor was used in some experiments. Among the four TCNBs, the order of decreasing nephrotoxic potential was approximately 3,4,5- > 2,4,6- > 2,3,4- > 2,4,5-TCNB. The four TCNBs exhibited a similar profile of attenuation of cytotoxicity in response to antioxidant pretreatments. 2,3,4- and 3,4,5-TCNB cytotoxicity was attenuated by most of the biotransformation inhibitors tested, 2,4,5-TCNB cytotoxicity was only inhibited by isoniazid (CYP 2E1 inhibitor), and 2,4,6-TCNB-induced cytotoxicity was inhibited by one CYP inhibitor, one FMO inhibitor, and one peroxidase inhibitor. All of the CYP specific inhibitors tested offered some attenuation of 3,4,5-TCNB cytotoxicity. These results indicate that 3,4,5-TCNB is the most potent nephrotoxicant, free radicals play a role in the TCNB cytotoxicity, and the role of biotransformation in TCNB nephrotoxicity in vitro is variable and dependent on the position of the chloro groups.


Assuntos
Radicais Livres/metabolismo , Córtex Renal/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Biotransformação/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Inibidores das Enzimas do Citocromo P-450/farmacologia , Inibidores da Síntese de Ácidos Graxos/farmacologia , Hidrocarbonetos Clorados , Isoniazida/farmacologia , Córtex Renal/citologia , Córtex Renal/metabolismo , Masculino , Ratos Endogâmicos F344
17.
Mol Pharm ; 13(3): 720-8, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26824142

RESUMO

Fatty acid synthase (FASN), the enzyme that catalyzes de novo synthesis of fatty acids, is expressed in many cancer types. Its potential as a therapeutic target is well recognized, but inhibitors of FASN have not yet been approved for cancer therapy. Orlistat (ORL), an FDA-approved lipase inhibitor, is also an effective inhibitor of FASN. However, ORL is extremely hydrophobic and has low systemic uptake after oral administration. Thus, new strategies are required to formulate ORL for cancer treatment as a FASN inhibitor. Here, we report the development of a nanoparticle (NP) formulation of ORL using amphiphilic bioconjugates that are derived from hyaluronic acid (HA), termed Nano-ORL. The NPs were loaded with up to 20 wt % weight of ORL at greater than 95% efficiency. The direct inhibition of the human recombinant thioesterase domain of FASN by ORL extracted from Nano-ORL was similar to that of stock ORL. Nano-ORL demonstrated a similar ability to inhibit cellular FASN activity when compared to free ORL, as demonstrated by analysis of (14)C-acetate incorporation into lipids. Nano-ORL treatment also disrupted mitochondrial function similarly to ORL by reducing adenosine triphosphate turnover in MDA-MB-231 and LNCaP cells. Nano-ORL demonstrated increased potency compared to ORL toward prostate and breast cancer cells. Nano-ORL decreased viability of human prostate and breast cancer cell lines to 55 and 57%, respectively, while free ORL decreased viability to 71 and 79% in the same cell lines. Moreover, Nano-ORL retained cytotoxic activity after a 24 h preincubation in aqueous conditions. Preincubation of ORL dramatically reduced the efficacy of ORL as indicated by high cell viability (>85%) in both breast and prostate cell lines. These data demonstrate that NP formulation of ORL using HA-derived polymers retains similar levels of FASN, lipid synthesis, and ATP turnover inhibition while significantly improving the cytotoxic activity against cancer cell lines.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Ácido Graxo Sintases/antagonistas & inibidores , Lactonas/farmacologia , Nanopartículas/química , Neoplasias da Próstata/patologia , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Composição de Medicamentos , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacologia , Inibidores da Síntese de Ácidos Graxos/administração & dosagem , Inibidores da Síntese de Ácidos Graxos/farmacologia , Feminino , Humanos , Lactonas/administração & dosagem , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Nanopartículas/administração & dosagem , Orlistate , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/enzimologia , Células Tumorais Cultivadas
18.
Appl Microbiol Biotechnol ; 100(16): 7239-48, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27270600

RESUMO

Acyl-CoAs are crucial compounds involved in essential metabolic pathways such as the Krebs cycle and lipid, carbohydrate, and amino acid metabolisms, and they are also key signal molecules involved in the transcriptional regulation of lipid biosynthesis in many organisms. In this study, we took advantage of the high selectivity of mass spectrometry and developed an ion-pairing reverse-phase high-pressure liquid chromatography electrospray ionization high-resolution mass spectrometry (IP-RP-HPLC/ESI-HRMS) method to carry on a comprehensive analytical determination of the wide range of fatty acyl-CoAs present in actinomycetes. The advantage of using a QTOF spectrometer resides in the excellent mass accuracy over a wide dynamic range and measurements of the true isotope pattern that can be used for molecular formula elucidation of unknown analytes. As a proof of concept, we used this assay to determine the composition of the fatty acyl-CoA pools in Mycobacterium, Streptomyces, and Corynebacterium species, revealing an extraordinary difference in fatty acyl-CoA amounts and species distribution between the three genera and between the two species of mycobacteria analyzed, including the presence of different chain-length carboxy-acyl-CoAs, key substrates of mycolic acid biosynthesis. The method was also used to analyze the impact of two fatty acid synthase inhibitors on the acyl-CoA profile of Mycobacterium smegmatis, which showed some unexpected low levels of C24 acyl-CoAs in the isoniazid-treated cells. This robust, sensitive, and reliable method should be broadly applicable in the studies of the wide range of bacteria metabolisms in which acyl-CoA molecules participate.


Assuntos
Actinobacteria/metabolismo , Acil Coenzima A/metabolismo , Corynebacterium/metabolismo , Ácido Graxo Sintases/antagonistas & inibidores , Mycobacterium smegmatis/metabolismo , Streptomyces/metabolismo , Acil Coenzima A/análise , Cromatografia Líquida de Alta Pressão/métodos , Inibidores da Síntese de Ácidos Graxos/farmacologia , Isoniazida/farmacologia , Metabolismo dos Lipídeos/fisiologia , Espectrometria de Massas por Ionização por Electrospray
19.
Pharm Biol ; 54(9): 1919-25, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26864638

RESUMO

Context Fatty acid synthase (FAS) is the only mammalian enzyme to catalyse the synthesis of fatty acid. The expression level of FAS is related to cancer progression, aggressiveness and metastasis. In recent years, research on natural FAS inhibitors with significant bioactivities and low side effects has increasingly become a new trend. Herein, we present recent research progress on natural fatty acid synthase inhibitors as potent therapeutic agents. Objective This paper is a mini overview of the typical natural FAS inhibitors and their possible mechanism of action in the past 10 years (2004-2014). Method The information was collected and compiled through major databases including Web of Science, PubMed, and CNKI. Results Many natural products induce cancer cells apoptosis by inhibiting FAS expression, with fewer side effects than synthetic inhibitors. Conclusion Natural FAS inhibitors are widely distributed in plants (especially in herbs and foods). Some natural products (mainly phenolics) possessing potent biological activities and stable structures are available as lead compounds to synthesise promising FAS inhibitors.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Ácido Graxo Sintases/antagonistas & inibidores , Inibidores da Síntese de Ácidos Graxos/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos Fitogênicos/efeitos adversos , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Ácido Graxo Sintases/química , Ácido Graxo Sintases/metabolismo , Inibidores da Síntese de Ácidos Graxos/efeitos adversos , Inibidores da Síntese de Ácidos Graxos/química , Inibidores da Síntese de Ácidos Graxos/isolamento & purificação , Humanos , Neoplasias/enzimologia , Neoplasias/patologia , Fitoterapia , Plantas Medicinais , Conformação Proteica , Relação Estrutura-Atividade
20.
J Biol Chem ; 289(48): 33287-95, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25301948

RESUMO

Human fatty acid synthase (FAS) is a large, multidomain protein that synthesizes long chain fatty acids. Because these fatty acids are primarily provided by diet, FAS is normally expressed at low levels; however, it is highly up-regulated in many cancers. Human enoyl-acyl carrier protein-reductase (hER) is one of the FAS catalytic domains, and its inhibition by drugs like triclosan (TCL) can increase cytotoxicity and decrease drug resistance in cancer cells. We have determined the structure of hER in the presence and absence of TCL. TCL was not bound in the active site, as predicted, but rather at the protein-protein interface (PPI). TCL binding induces a dimer orientation change that causes downstream structural rearrangement in critical active site residues. Kinetics studies indicate that TCL is capable of inhibiting the isolated hER domain with an IC50 of ∼ 55 µM. Given the hER-TCL structure and the inhibition observed in the hER domain, it seems likely that TCL is observed in the physiologically relevant binding site and that it acts as an allosteric PPI inhibitor. TCL may be a viable scaffold for the development of anti-cancer PPI FAS inhibitors.


Assuntos
Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/química , Ácido Graxo Sintases/química , Inibidores da Síntese de Ácidos Graxos/química , Triclosan/química , Regulação Alostérica , Cristalografia por Raios X , Humanos , Cinética , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA