Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(10): 991, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39349888

RESUMO

Excess nutrients such as phosphate (PO43-) entering surface waters promote eutrophication, and phosphorous (P) removal is important to clear the water. Phytoremediation efforts have been used to improve water quality by varieties of P removal plants, such as water spinach (Ipomoea aquatica Forsk). Water spinach can reduce both internal and external resources of phosphorus from waterbody. The ion of lanthanum (La), one rare earth element (REE), is an immobilization substance for aqueous phosphate and also a fertilizer for plants. Therefore, lanthanum nitrate La (NO3)3 was used further to improve the phytoextraction of P from the polluted water. This study investigated the effects of La on the aqueous P removal by two genotypes of water spinach, green stem large leaves (GSLL) and green stem willow leaves (GSWL). The low concentration La (NO3)3 helped the plant to remove more phosphorous from eutrophic water, but La at high concentration lowered the removal of P. Under La (NO3)3 treatments, the optimum concentration for maximum P removal in GSLL is 3 mg/L, and for GSWL, it is 10 mg/L and P removal rates were enhanced to 95% and 96%, respectively. When the concentration of La (NO3)3 is 100 mg/L, the removal percentage of P was only 10% for both genotypes. The very high concentration of La will impose toxicity and even cause the death of the water spinach and produce secondary pollution; for example, under some specific circumstances, the bond between lanthanum and nitrates dissociates into lanthanum ions (La3⁺) and nitrate ions (NO3⁻). If the concentration is high, then it accumulates in the aquatic water organisms and plants and causes toxicity in their bodies. If humans eat up these plants and fish, it causes toxic effects in humans. The La (NO3)3 positively affects different parameters of plants. La (NO3)3 increases the growth, pigments, enzyme activity, and malondialdehyde (MDA) of plants which were also discussed in this study. The biological mechanism should be responsible for the enhanced aqueous phosphorus removal by water spinach using lanthanum nitrate.


Assuntos
Biodegradação Ambiental , Ipomoea , Lantânio , Nitratos , Fósforo , Poluentes Químicos da Água , Ipomoea/metabolismo , Nitratos/metabolismo , Poluentes Químicos da Água/metabolismo , Eutrofização
2.
New Phytol ; 238(4): 1351-1361, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36727281

RESUMO

Heritable fungal endosymbiosis is underinvestigated in plant biology and documented in only three plant families (Convolvulaceae, Fabaceae, and Poaceae). An estimated 40% of morning glory species in the tribe Ipomoeeae (Convolvulaceae) have associations with one of two distinct heritable, endosymbiotic fungi (Periglandula and Chaetothyriales) that produce the bioactive metabolites ergot alkaloids, indole diterpene alkaloids, and swainsonine, which have been of interest for their toxic effects on animals and potential medical applications. Here, we report the occurrence of ergot alkaloids, indole diterpene alkaloids, and swainsonine in the Convolvulaceae; and the fungi that produce them based on synthesis of previous studies and new indole diterpene alkaloid data from 27 additional species in a phylogenetic, geographic, and life-history context. We find that individual morning glory species host no more than one metabolite-producing fungal endosymbiont (with one possible exception), possibly due to costs to the host and overlapping functions of the alkaloids. The symbiotic morning glory lineages occur in distinct phylogenetic clades, and host species have significantly larger seed size than nonsymbiotic species. The distinct and widely distributed endosymbiotic relationships in the morning glory family and their alkaloids provide an accessible study system for understanding heritable plant-fungal symbiosis evolution and their potential functions for host plants.


Assuntos
Alcaloides , Convolvulaceae , Alcaloides de Claviceps , Ipomoea , Animais , Convolvulaceae/metabolismo , Convolvulaceae/microbiologia , Swainsonina/metabolismo , Filogenia , Ipomoea/genética , Ipomoea/metabolismo , Ipomoea/microbiologia , Alcaloides de Claviceps/metabolismo , Alcaloides/metabolismo , Alcaloides Diterpenos
3.
Pestic Biochem Physiol ; 184: 105111, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35715050

RESUMO

Ipomea purpurea (L.) Roth. reduces dry land crop yield and quality in Northeast China, especially in Liaoning Province. Frequent use of thifensulfuron-methyl in recent years has resulted in herbicide resistance in I. purpurea. We evaluated resistance levels of I. purpurea to thifensulfuron-methyl, an acetolactate synthase (ALS) inhibitor, in Liaoning Province and further investigated the resistance mechanisms. The results showed that 15 populations of I. purpurea have evolved up to 5.81-34.44-fold resistance to thifensulfuron-methyl, compared to the susceptible population (S), among which LN3 was the most resistant. DNA sequencing of the ALS gene in susceptible and resistant populations did not reveal any target site mutations that could be associated with resistance to thifensulfuron-methyl in I. purpurea. Additionally, no significant difference was detected between the in vitro ALS activity of LN3 and S. The GR50 of LN3 decreased sharply by 47% when malathion (a P450 inhibitor) was applied with thifensulfuron-methyl. Absorption of thifensulfuron-methyl by LN3 was equal to that of S; however, LN3 metabolized the herbicide significantly faster. This was repressed after the inhibition of P450s activity. Collectively, our results confirmed that I. purpurea in Liaoning Province has developed resistance to thifensulfuron-methyl and implied that the resistance was conferred by the increase in detoxification mediated by P450s. Furthermore, LN3 was sensitive to fluroxypyr, which can be used as an alternative to control I. purpurea.


Assuntos
Acetolactato Sintase , Herbicidas , Ipomoea , Acetolactato Sintase/metabolismo , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Ipomoea/genética , Ipomoea/metabolismo , Proteínas de Plantas/genética , Compostos de Sulfonilureia , Tiofenos
4.
Molecules ; 26(4)2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33567661

RESUMO

The study was undertaken to investigate the antioxidant, genotoxic, and cytotoxic potentialities of phyto-fabricated zinc oxide nanoparticles (ZnO-NPs) from Ipomoea obscura (L.) Ker Gawl. aqueous leaf extract. The UV-visible spectral analysis of the ZnO-NPs showed an absorption peak at 304 nm with a bandgap energy of 3.54 eV, which are characteristics of zinc nanoparticles. Moreover, the particles were of nano-size (~24.26 nm) with 88.11% purity and were agglomerated as observed through Scanning Electron Microscopy (SEM). The phyto-fabricated ZnO-NPs offered radical scavenging activity (RSA) in a dose-dependent manner with an IC50 of 0.45 mg mL-1. In addition, the genotoxicity studies of ZnO-NPs carried out on onion root tips revealed that the particles were able to significantly inhibit the cell division at the mitotic stage with a mitotic index of 39.49%. Further, the cytotoxic studies on HT-29 cells showed that the phyto-fabricated ZnO-NPs could arrest the cell division as early as in the G0/G1 phase (with 92.14%) with 73.14% cells showing early apoptotic symptoms after 24 h of incubation. The results of the study affirm the ability of phyto-fabricated ZnO-NPs from aqueous leaf extract of I. obscura is beneficial in the cytotoxic application.


Assuntos
Ipomoea/metabolismo , Nanopartículas/química , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Compostos de Bifenilo/química , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/metabolismo , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/toxicidade , Química Verde , Células HT29 , Humanos , Testes de Mutagenicidade , Cebolas/efeitos dos fármacos , Cebolas/genética , Picratos/química , Óxido de Zinco/metabolismo , Óxido de Zinco/toxicidade
5.
Ecotoxicol Environ Saf ; 195: 110486, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32200151

RESUMO

This study aimed at assessing heavy metals (Fe, Mn, Zn, Cu, Cr and Pb) in four perennial halophytes (viz. Heliotropium bacciferum, Halopyrum mucronatum, Ipomoea pes-caprae and Salsola imbricata) growing at two sites on the Karachi coast. Site - II, closer to the Industrial area had higher bioavailability as well as translocation factor (TF) for most of the heavy metals and Na+ where soil sediments had lower pH (approximately 7.5), higher salinity (EC) and organic matter (OM). Site - I which was far from Industrial area had comparatively higher bio-concentration factor (BCF) and lower TF for metal ions and soil pH of 8.1-9. Metal accumulation in plants was both site and species specific. Extractable concentration of shoot Pb in all tested halophytes was above normal of the threshold values (i.e., >0.3 mg kg-1) while Mn (<50 mg kg-1) and Cu (<40 mg kg-1) were within permissible limits. Salsola imbricata had highest Na+ at both sites (site - I = 73; site - II = 98 mg kg-1) with and 10 mg kg-1 extractable shoot Pb at site - I. Ipomea pes-caprae also accumulated shoot Pb higher than normal (site - I = 3.3; site - II = 0.8 mg kg-1) with lowest Na+ content. Heliotropium bacciferum had higher extractable Pb (site - I = 10.5; II = 2.75) with >20 mg kg-1 Na+ in shoot while maintaining > 1 TF for Pb, Cu, Mn and Zn at site - I and all tested metals at site - II. Halopyrum mucronatum had highest shoot Fe (644 mg kg-1), Zn (63 mg kg-1) and Cr (9.2 mg kg-1) at site - II and above threshold values of Pb at both sites (site - I = 8.2; site - II = 2.5 mg kg-1) which makes this species an ideal bio-indicator candidate while other species could be potentially used for Pb phytoremediation.


Assuntos
Bioacumulação , Monitoramento Ambiental/métodos , Metais Pesados/análise , Plantas Tolerantes a Sal/metabolismo , Poluentes do Solo/análise , Solo/química , Biodegradação Ambiental , Disponibilidade Biológica , Ipomoea/crescimento & desenvolvimento , Ipomoea/metabolismo , Metais Pesados/metabolismo , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Poluentes do Solo/metabolismo
6.
Ecotoxicol Environ Saf ; 206: 111184, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32861009

RESUMO

The potential toxicity of Cr to plants poses a severe threat to human health. Biochar and Se can reduce the absorption of Cr and its phytotoxicity in plants, but the associated mechanisms at subcellular levels have not been addressed in depth. A study was designed to investigate the effects of biochar, foliar application of Se, and their combination on the physicochemical and biological properties of the soil, Cr availability, Cr absorption, and Cr subcellular distribution in each part of the plant, and biomass and quality of two water spinach (Ipomoea aquatica) genotypes. The results showed that biochar, Se, and their combination increased the organic matter content and available NPK nutrients in the soil and improved the urease, phosphatase, catalase, and sucrase activities in the soil. Furthermore, they also increased the number of bacteria, actinomycetes, and fungi in the soil, were conducive to dry matter accumulation in I. aquatica, and increased the contents of soluble sugar and soluble protein in its leaves. The Cr contents in the roots and shoots of I. aquatica under different treatments were reduced compared with those in the control group. The content of Cr(VI) in the root-soil of I. aquatica with low Cr accumulation and the contents of Cr in various parts of I. aquatica were lower than those in I. aquatica with high Cr accumulation, and the absorbed Cr was mainly accumulated in the roots. Cr was mainly distributed in the cell walls and soluble fractions of the roots, stems, and leaves of I. aquatica and was less distributed in the organelles. Biochar and Se helped to increase the proportion of Cr in the cell walls of the roots and soluble fractions of the leaves of I. aquatica. The effects of improving the soil properties, passivating and inhibiting Cr absorption by I. aquatica, and reducing the Cr proportion in the organelles of biochar were superior to those of Se application. The foliar application of Se and biochar had no synergistic effect on inhibiting Cr absorption by I. aquatica. Based on these findings, the application of biochar in Cr-contaminated soil or foliar application of Se with low Cr-accumulating plants may be effective means of reducing the Cr absorption by plants and its toxicity to ensure the safe production of agricultural products in Cr-contaminated regions.


Assuntos
Carvão Vegetal/química , Cromo/análise , Ipomoea/efeitos dos fármacos , Selênio/farmacologia , Poluentes do Solo/análise , Transporte Biológico , Biomassa , Cromo/metabolismo , Ipomoea/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Selênio/metabolismo , Solo/química , Poluentes do Solo/metabolismo
7.
BMC Genomics ; 20(1): 911, 2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31783728

RESUMO

BACKGROUND: GRAS gene is an important transcription factor gene family that plays a crucial role in plant growth, development, adaptation to adverse environmental condition. Sweet potato is an important food, vegetable, industrial raw material, and biofuel crop in the world, which plays an essential role in food security in China. However, the function of sweet potato GRAS genes remains unknown. RESULTS: In this study, we identified and characterised 70 GRAS members from Ipomoea trifida, which is the progenitor of sweet potato. The chromosome distribution, phylogenetic tree, exon-intron structure and expression profiles were analysed. The distribution map showed that GRAS genes were randomly located in 15 chromosomes. In combination with phylogenetic analysis and previous reports in Arabidopsis and rice, the GRAS proteins from I. trifida were divided into 11 subfamilies. Gene structure showed that most of the GRAS genes in I. trifida lacked introns. The tissue-specific expression patterns and the patterns under abiotic stresses of ItfGRAS genes were investigated via RNA-seq and further tested by RT-qPCR. Results indicated the potential functions of ItfGRAS during plant development and stress responses. CONCLUSIONS: Our findings will further facilitate the functional study of GRAS gene and molecular breeding of sweet potato.


Assuntos
Ipomoea/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Mapeamento Cromossômico , Éxons , Genes de Plantas , Íntrons , Ipomoea/metabolismo , Família Multigênica , Filogenia , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Estresse Fisiológico/genética , Fatores de Transcrição/metabolismo , Transcriptoma
8.
BMC Genet ; 20(1): 41, 2019 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-31023242

RESUMO

BACKGROUND: The basic leucine zipper (bZIP) transcription factor is one of the most abundant and conserved transcription factor families. In addition to being involved in growth and development, bZIP transcription factors also play an important role in plant adaption to abiotic stresses. RESULTS: A total of 41 bZIP genes that encode 66 proteins were identified in Ipomoea trifida. They were distributed on 14 chromosomes of Ipomoea trifida. Segmental and tandem duplication analysis showed that segmental duplication played an important role in the ItfbZIP gene amplification. ItfbZIPs were divided into ten groups (A, B, C, D, E, F, G, H, I and S groups) according to their phylogenetic relationships with Solanum lycopersicum and Arabidopsis thaliana. The regularity of the exon/intron numbers and distributions is consistent with the group classification in evolutionary tree. Prediction of the cis-acting elements found that promoter regions of ItfbZIPs harbored several stress responsive cis-acting elements. Protein three-dimensional structural analysis indicated that ItfbZIP proteins mainly consisted of α-helices and random coils. The gene expression pattern from transcriptome data and qRT-PCR analysis showed that ItfbZIP genes expressed with a tissue-specific manner and differently expressed under various abiotic stresses, suggesting that the ItfbZIPs were involved in stress response and adaption in Ipomoea trifida. CONCLUSIONS: Genome-wide identification, gene structure, phylogeny and expression analysis of bZIP gene in Ipomoea trifida supplied a solid theoretical foundation for the functional study of bZIP gene family and further facilitated the molecular breeding of sweet potato.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Estudo de Associação Genômica Ampla , Ipomoea/genética , Ipomoea/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/química , Fatores de Transcrição de Zíper de Leucina Básica/genética , Redes Reguladoras de Genes , Genoma de Planta , Ipomoea/classificação , Família Multigênica , Filogenia , Melhoramento Vegetal
9.
J Chem Ecol ; 45(10): 879-887, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31686336

RESUMO

Many species of morning glories (Convolvulaceae) form symbioses with seed-transmitted Periglandula fungal endosymbionts, which produce ergot alkaloids and may contribute to defensive mutualism. Allocation of seed-borne ergot alkaloids to various tissues of several Ipomoea species has been demonstrated, including roots of I. tricolor. The goal of this study was to determine if infection of I. tricolor by the Periglandula sp. endosymbiont affects Southern root-knot nematode (Meloidogyne incognita) gall formation and host plant biomass. We hypothesized that I. tricolor plants infected by Periglandula (E+) would develop fewer nematode-induced galls compared to non-symbiotic plants (E-). E+ or E- status of plant lines was confirmed by testing methanol extracts from individual seeds for endosymbiont-produced ergot alkaloids. To test the effects of Periglandula on nematode colonization, E+ and E- I. tricolor seedlings were grown in soil infested with high densities of M. incognita nematodes (N+) or no nematodes (N-) for four weeks in the greenhouse before harvesting. After harvest, nematode colonization of roots was visualized microscopically, and total gall number and plant biomass were quantified. Four ergot alkaloids were detected in roots of E+ plants, but no alkaloids were found in E- plants. Gall formation was reduced by 50% in E+ plants compared to E- plants, independent of root biomass. Both N+ plants and E+ plants had significantly reduced biomass compared to N- and E- plants, respectively. These results demonstrate Periglandula's defensive role against biotic enemies, albeit with a potential trade-off with host plant growth.


Assuntos
Alcaloides de Claviceps/química , Hypocreales/metabolismo , Ipomoea/parasitologia , Tylenchoidea/fisiologia , Animais , Biomassa , Cromatografia Líquida de Alta Pressão , Alcaloides de Claviceps/análise , Ipomoea/química , Ipomoea/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/parasitologia , Tumores de Planta/parasitologia , Sementes/química , Sementes/metabolismo , Solo/parasitologia , Espectrometria de Massas por Ionização por Electrospray , Simbiose
10.
Regul Toxicol Pharmacol ; 107: 104416, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31265862

RESUMO

Dietary risk assessment generally combines food consumption data and the concentration of pesticide by using the risk quotient (RQ) method. Chlorothalonil is the second popular fungicide in the world, and its residue and risk assessment in water spinach remain unknown. In this paper, the field trials of chlorothalonil in water spinach were operated under good agricultural practice (GAP) in China to human health protective. The dissipation experiments demonstrated that chlorothalonil was rapidly degraded in water spinach, with the half-lives of 1.8-3.2 days, and the amount of its metabolite SDS-3701 (4-hydroxy-2,5,6-trichloroisophthalonitrile) taken up through the water spinach roots from the soil was minor. The terminal experiments disclosed that the average residues of chlorothalonil and SDS-3701 in water spinach were below 6.59 mg/kg and 0.01 mg/kg, respectively. The results suggested the chronic dietary risk probability of chlorothalonil was 51.95-59.15% in terms of all registered crops, and the acute dietary risk probability of chlorothalonil was 12.30%-63.01% in water spinach, highlighting that the dietary risk of chlorothalonil in water spinach under GAP was acceptable. MRL of chlorothalonil was proposed as 7 mg/kg for water spinach and 5 days was recommended as a safe pre-harvest interval (PHI) for chlorothalonil application in water spinach field.


Assuntos
Exposição Dietética , Fungicidas Industriais , Ipomoea , Nitrilas , Resíduos de Praguicidas , Exposição Dietética/análise , Contaminação de Alimentos/análise , Fungicidas Industriais/análise , Fungicidas Industriais/metabolismo , Humanos , Ipomoea/química , Ipomoea/metabolismo , Nitrilas/análise , Nitrilas/metabolismo , Resíduos de Praguicidas/análise , Resíduos de Praguicidas/metabolismo , Medição de Risco
11.
BMC Plant Biol ; 18(1): 95, 2018 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-29843615

RESUMO

BACKGROUND: Storage roots are an ecologically and agriculturally important plant trait that have evolved numerous times in angiosperms. Storage roots primarily function to store carbohydrates underground as reserves for perennial species. In morning glories, storage roots are well characterized in the crop species sweetpotato, where starch accumulates in storage roots. This starch-storage tissue proliferates, and roots thicken to accommodate the additional tissue. In morning glories, storage roots have evolved numerous times. The primary goal of this study is to understand whether this was through parallel evolution, where species use a common genetic mechanism to achieve storage root formation, or through convergent evolution, where storage roots in distantly related species are formed using a different set of genes. Pairs of species where one forms storage roots and the other does not were sampled from two tribes in the morning glory family, the Ipomoeeae and Merremieae. Root anatomy in storage roots and fine roots was examined. Furthermore, we sequenced total mRNA from storage roots and fine roots in these species and analyzed differential gene expression. RESULTS: Anatomical results reveal that storage roots of species in the Ipomoeeae tribe, such as sweetpotato, accumulate starch similar to species in the Merremieae tribe but differ in vascular tissue organization. In both storage root forming species, more genes were found to be upregulated in storage roots compared to fine roots. Further, we find that fifty-seven orthologous genes were differentially expressed between storage roots and fine roots in both storage root forming species. These genes are primarily involved in starch biosynthesis, regulation of starch biosynthesis, and transcription factor activity. CONCLUSIONS: Taken together, these results demonstrate that storage roots of species from both morning glory tribes are anatomically different but utilize a common core set of genes in storage root formation. This is consistent with a pattern of parallel evolution, thus highlighting the importance of examining anatomy together with gene expression to understand the evolutionary origins of ecologically and economically important plant traits.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica de Plantas , Ipomoea/genética , Transcriptoma , Vias Biossintéticas , Perfilação da Expressão Gênica , Ipomoea/anatomia & histologia , Ipomoea/metabolismo , Ipomoea batatas/anatomia & histologia , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Fenótipo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , RNA Mensageiro/genética , Amido/biossíntese , Regulação para Cima
12.
Ecotoxicol Environ Saf ; 165: 450-458, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30218968

RESUMO

To explore the possible roles of metallothioneins (MTs) played in cadmium (Cd) accumulation of water spinach, three IaMT genes, IaMT1, IaMT2 and IaMT3 in a high-shoot-Cd (T308) and a low-shoot-Cd accumulation cultivar (QLQ) were cloned, characterized, and quantitated. Gene expression analysis suggested that the expression of the IaMTs was differentially regulated by Cd stress in different cultivars, and T308 showed higher MTs expression overall. Furthermore, only shoot IaMT3 expression was cultivar dependent among the three IaMTs. Antioxidant analysis showed that the high production of IaMTs in T308 should be associated with its high oxidation resistance. The role of IaMTs in protecting against Cd toxicity was demonstrated in vitro via recombinant E. coli strains. The results showed that IaMT1 correlated with neither Cd tolerance nor Cd accumulation of E. coli, while IaMT2 conferred Cd tolerance in E. coli, IaMT2 and IaMT3 increased Cd accumulation in E. coli. These findings help to clarify the roles of IaMTs in Cd accumulation, and increase our understanding of the cultivar-dependent Cd accumulation in water spinach.


Assuntos
Cádmio/metabolismo , Poluentes Ambientais/metabolismo , Ipomoea/metabolismo , Metalotioneína/metabolismo , Spinacia oleracea/metabolismo , Escherichia coli/metabolismo , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Metalotioneína/genética , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo
13.
Environ Monit Assess ; 189(10): 497, 2017 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-28890992

RESUMO

Agricultural non-point source (ANPS) pollution is an important contributor to elevated nitrogen (N) and phosphorus (P) in surface waters, which can cause serious environmental problems. Considerable effort has therefore gone into the development of methods that control the ANPS input of N and P to surface waters. Phytoremediation has been extensively used because it is cost-effective, environmentally friendly, and efficient. The N and P loads from agricultural drainage are a potential threat to the water quality of the Yellow River in Ningxia, China. Yet, phytoremediation has only rarely been applied within the Ningxia irrigation area. In an experimental set-up, five species (Ipomoea aquatica, IA; Lactuca sativa, LS; Oryza sativa, OS; Typha latifolia, TL; Zizania latifolia, ZL) were evaluated for their ability to reduce N and P loads over 62 days and five observation periods. Total N and P concentrations, plant biomass, and nutrient content were measured. The results showed that OS, LS, and IA performed better than ZL and TL in terms of nutrients removal, biomass accumulation, and nutrients storage. The highest overall removal rates of N and P (57.7 and 57.3%, respectively) were achieved by LS treatment. In addition, plant uptake contributed significantly to nutrient removal, causing a 25.9-72.0% reduction in N removal and a 54.3-86.5% reduction in P removal. Thus, this study suggests that OS, LS, and IA would be more suitable than ZL and TL for controlling nutrient loads in the Ningxia irrigation area using phytoremediation.


Assuntos
Nitrogênio/metabolismo , Fósforo/metabolismo , Plantas/metabolismo , Poluição da Água/prevenção & controle , Irrigação Agrícola/normas , Biodegradação Ambiental , Biomassa , China , Monitoramento Ambiental , Eutrofização , Ipomoea/metabolismo , Lactuca/metabolismo , Nitrogênio/análise , Oryza/metabolismo , Fósforo/análise , Plantas/classificação , Poaceae/metabolismo , Distribuição Aleatória , Rios , Typhaceae/metabolismo , Qualidade da Água
14.
Environ Res ; 146: 340-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26803212

RESUMO

In vitro grown untransformed adventitious roots (AR) culture of Ipomoea hederifolia and its endophytic fungus (EF) Cladosporium cladosporioides decolorized Navy Blue HE2R (NB-HE2R) at a concentration of 20 ppm up to 83.3 and 65%, respectively within 96h. Whereas the AR-EF consortium decolorized the dye more efficiently and gave 97% removal within 36h. Significant inductions in the enzyme activities of lignin peroxidase, tyrosinase and laccase were observed in roots, while enzymes like tyrosinase, laccase and riboflavin reductase activities were induced in EF. Metabolites of dye were analyzed using UV-vis spectroscopy, FTIR and gas chromatography-mass spectrometry. Possible metabolic pathways of NB-HE2R were proposed with AR, EF and AR-EF systems independently. Looking at the superior efficacy of AR-EF system, a rhizoreactor was developed for the treatment of NB-HE2R at a concentration of 1000 ppm. Control reactor systems with independently grown AR and EF gave 94 and 85% NB-HE2R removal, respectively within 36h. The AR-EF rhizoreactor, however, gave 97% decolorization. The endophyte colonization additionally increased root and shoot lengths of candidate plants through mutualism. Combined bioreactor strategies can be effectively used for future eco-friendly remediation purposes.


Assuntos
Cladosporium/metabolismo , Corantes/metabolismo , Poluentes Ambientais/metabolismo , Recuperação e Remediação Ambiental/métodos , Ipomoea/metabolismo , Eliminação de Resíduos Líquidos/métodos , Biodegradação Ambiental , Reatores Biológicos , Endófitos/metabolismo , Raízes de Plantas/metabolismo , Indústria Têxtil
15.
Int J Phytoremediation ; 18(1): 87-93, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26147810

RESUMO

Three naturally growing plants Ipomoea carnea, Lantana camara, and Solanum surattense were found in fly ash dumpsite of Patratu thermal power station, Jharkhand, India. They were assessed for their metal uptake potential. The fly ash was slightly alkaline with very less nitrogen and organic carbon but enriched with phosphorus and heavy metals. Lantana camara and Ipomoea carnea showed good translocation from root to shoot for most of the metals except Mn and Pb. The order of metal accumulation in stem of both the plants were Fe(205mg/kg)>Mn(65mg/kg)>Cu(22.35mg/kg)>Pb(6.6mg/kg)>Cr(3.05mg/kg)>Ni(1 mg/kg)>Cd(0.5 mg/kg) and Fe(741 mg/kg)>Mn(154.05 mg/kg)>Cu(20.75 mg/kg)>Pb(6.75 mg/kg)>Ni(4.0 mg/kg)>Cr(3.3mg/kg)>Cd(0.05mg/kg), respectively. But Solanum surattense accumulated most of the metals in roots. The order was in the following order, Mn (382.2mg/kg) >Fe (264.1mg/kg) > Cu (25.35mg/kg) >Pb (5.95 mg/kg) > Ni (1.9 mg/kg) > Cr (1.8mg/kg) > Cd (0.55 mg/kg). The order of Bioconcentration factor (BCF) in root and shoot followed almost the same order as, Mn>Fe>Ni>Pb>Cu>Cr≈ Cd in all the three species. ANOVA showed significant variation in metal accumulation by root and stem between the species. Finally, it can be concluded that Solanum surattense can be used as phytostabilizer and other two species as phytoextractor of metal for fly ash dumpsite reclamation.


Assuntos
Cinza de Carvão/metabolismo , Ipomoea/metabolismo , Lantana/metabolismo , Metais Pesados/metabolismo , Poluentes do Solo/metabolismo , Solanum/metabolismo , Biodegradação Ambiental , Índia , Resíduos Industriais/análise , Instalações de Eliminação de Resíduos
16.
Plant J ; 78(2): 294-304, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24517863

RESUMO

Flavonoids are major pigments in plants, and their biosynthetic pathway is one of the best-studied metabolic pathways. Here we have identified three mutations within a gene that result in pale-colored flowers in the Japanese morning glory (Ipomoea nil). As the mutations lead to a reduction of the colorless flavonoid compound flavonol as well as of anthocyanins in the flower petal, the identified gene was designated enhancer of flavonoid production (EFP). EFP encodes a chalcone isomerase (CHI)-related protein classified as a type IV CHI protein. CHI is the second committed enzyme of the flavonoid biosynthetic pathway, but type IV CHI proteins are thought to lack CHI enzymatic activity, and their functions remain unknown. The spatio-temporal expression of EFP and structural genes encoding enzymes that produce flavonoids is very similar. Expression of both EFP and the structural genes is coordinately promoted by genes encoding R2R3-MYB and WD40 family proteins. The EFP gene is widely distributed in land plants, and RNAi knockdown mutants of the EFP homologs in petunia (Petunia hybrida) and torenia (Torenia hybrida) had pale-colored flowers and low amounts of anthocyanins. The flavonol and flavone contents in the knockdown petunia and torenia flowers, respectively, were also significantly decreased, suggesting that the EFP protein contributes in early step(s) of the flavonoid biosynthetic pathway to ensure production of flavonoid compounds. From these results, we conclude that EFP is an enhancer of flavonoid production and flower pigmentation, and its function is conserved among diverse land plant species.


Assuntos
Flavonoides/metabolismo , Liases Intramoleculares/fisiologia , Proteínas de Plantas/fisiologia , Antocianinas/química , Antocianinas/metabolismo , Vias Biossintéticas , Flavonoides/química , Flores/anatomia & histologia , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Liases Intramoleculares/genética , Liases Intramoleculares/metabolismo , Ipomoea/anatomia & histologia , Ipomoea/genética , Ipomoea/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Interferência de RNA
17.
Planta ; 242(3): 575-87, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26007684

RESUMO

MAIN CONCLUSION: UDP-glucose:flavonoid 3- O -glucosyltransferase is essential for maintaining proper production quantity, acylation, and glucosylation of anthocyanin, and defects cause pale and dull flower pigmentation in morning glories. The Japanese (Ipomoea nil) and the common (I. purpurea) morning glory display bright blue and dark purple flowers, respectively. These flowers contain acylated and glucosylated anthocyanin pigments, and a number of flower color mutants have been isolated in I. nil. Of these, the duskish mutants of I. nil produce pale- and dull-colored flowers. We found that the Duskish gene encodes UDP-glucose:flavonoid 3-O-glucosyltransferase (3GT). The duskish-1 mutation is a frameshift mutation caused by a 4-bp insertion, and duskish-2 is an insertion of a DNA transposon, Tpn10, at 1.3 kb upstream of the 3GT start codon. In the duskish-2 mutant, excision of Tpn10 is responsible for restoration of the expression of the 3GT gene. The recombinant 3GT protein displays expected 3GT enzymatic activities to catalyze 3-O-glucosylation of anthocyanidins in vitro. Anthocyanin analysis of a duskish-2 mutant and its germinal revertant showing pale and normal pigmented flowers, respectively, revealed that the mutation caused around 80 % reduction of anthocyanin accumulation. We further characterized two I. purpurea mutants showing pale brownish-red flowers, and found that they carry the same frameshift mutation in the 3GT gene. Most of the flower anthocyanins in the mutants were previously found to be anthocyanidin 3-O-glucosides lacking several caffeic acid and glucose moieties that are attached to the anthocyanins in the wild-type plants. These results indicated that 3GT is essential not only for production, but also for proper acylation and glucosylation, of anthocyanin in the morning glories.


Assuntos
Flores/metabolismo , Glucosiltransferases/metabolismo , Ipomoea/metabolismo , Uridina Difosfato Glucose/metabolismo , Antocianinas/metabolismo , Flores/enzimologia , Regulação da Expressão Gênica de Plantas , Ipomoea/enzimologia , Mutação
18.
Bull Environ Contam Toxicol ; 95(6): 790-5, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26395356

RESUMO

Immobilisation of heavy metals in a 30-year old active scrap metal yard soil using three waste materials, namely coconut tree sawdust (CTS), sugarcane bagasse (SB) and eggshell (ES) was investigated. The contaminated soil was amended with amendments at application rates of 0 %, 1 % and 3 % (w/w). The effects of amendments on metal accumulation in water spinach (Ipomoea aquatica) and soil metal bioavailability were studied in a pot experiment. All amendments increased biomass yield and reduced metal accumulation in the plant shoots. The bioconcentration factor and translocation factor values of the metals were in the order of Zn > Cu > Pb. The addition of ES, an alternative source of calcium carbonate (CaCO3), has significantly increased soil pH and resulted in marked reduction in soil metal bioavailability. Therefore, CTS, SB and ES are promising low-cost immobilising agents to restore metal contaminated land.


Assuntos
Metais Pesados/análise , Poluentes do Solo/análise , Solo/química , Resíduos/análise , Animais , Biodegradação Ambiental , Disponibilidade Biológica , Biomassa , Cocos/química , Casca de Ovo/química , Ipomoea/metabolismo , Brotos de Planta/química , Saccharum/química , Poluentes do Solo/química , Zinco
19.
Water Environ Res ; 86(5): 398-406, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24961066

RESUMO

A plant bioassay using hydroponically grown Ipomoea aquatica (water spinach) was applied to assess the phytotoxicity of untreated and treated wastewaters from a municipal solid waste incineration bottom ash recycling facility. The 50%-diluted, untreated wastewater exhibited acute toxicity (plants died within 24 hours). Highly diluted doses (3 and 6%) of both wastewater types displayed no significant differences when compared with the control. Treating the wastewater through sequential physical filtration and chemical precipitation processes decreased not only the dissolved solids content but also the pH and salt content. In addition, significant accumulations of Sr, Cr, and Sn were observed in the hydroponically grown I. aquatica plant tissues; in particular, the bioaccumulation of Sr in the leaves and roots was unexpectedly high.


Assuntos
Ipomoea/metabolismo , Metais Pesados/farmacocinética , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise , Poluentes Químicos da Água/farmacocinética , Biomassa , Ipomoea/efeitos dos fármacos , Metais Pesados/toxicidade , Poluentes Químicos da Água/toxicidade
20.
J Environ Biol ; 35(4): 721-5, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25004759

RESUMO

Cellulose decomposing microorganisms (CDMs) are important for efficient bioconversion of plant biomasses. To this end, we isolated seven fungal isolates (Aspergillus wentii, Fusarium solani, Mucor sp., Penicillum sp., Trichoderma harzaianum, Trichoderma sp.1 and Trichoderma sp.2) and three bacterial isolates (bacterial isolate I, II and III) from partially decomposed farm yard manure, rice straw and vermicompost, and evaluated them for decomposition of rice straw (Oryza sativa), Ipomoea camea and Eichhornia crassipes biomass. CDMs inoculation, in general, reduced the composting period by 14-28 days in rice straw, 14-34 days in Eichhornia and 10-28 days in Ipomoea biomass over control. Of the 10 CDMs tested, Mucor sp. was found to be the most effective as Mucor-inoculated biomass required minimum time, i.e. 84, 68 and 80 days respectively for composting of rice straw, Eichhornia and Ipomoea biomass as against 112, 102 and 108 days required under their respective control. CDMs inoculation also narrowed down the C:N ratio of the composts which ranged from 19.1-22.7, 12.9-14.7 and 10.5-13.1 in rice straw, Eichhornia and Ipomoea biomass respectively as against 24.1, 17.1 and 16.2 in the corresponding control treatments. Aspergillus wentii, Fusarium solani, Mucor sp., and Penicillum sp. were found most effective (statistically at par) in reducing C:N ratio and causing maximum loss of carbon and dry matter in composted materials. These benefits of CDMs inoculation were also accompanied by significant increase in NPK contents in the composted materials.


Assuntos
Agricultura/métodos , Bactérias/metabolismo , Celulose/metabolismo , Eichhornia/metabolismo , Fungos/metabolismo , Ipomoea/metabolismo , Oryza/metabolismo , Biodegradação Ambiental , Biomassa , Índia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA