Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 781
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
2.
Nature ; 574(7776): 90-94, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31578485

RESUMO

Groundwater is the world's largest freshwater resource and is critically important for irrigation, and hence for global food security1-3. Already, unsustainable groundwater pumping exceeds recharge from precipitation and rivers4, leading to substantial drops in the levels of groundwater and losses of groundwater from its storage, especially in intensively irrigated regions5-7. When groundwater levels drop, discharges from groundwater to streams decline, reverse in direction or even stop completely, thereby decreasing streamflow, with potentially devastating effects on aquatic ecosystems. Here we link declines in the levels of groundwater that result from groundwater pumping to decreases in streamflow globally, and estimate where and when environmentally critical streamflows-which are required to maintain healthy ecosystems-will no longer be sustained. We estimate that, by 2050, environmental flow limits will be reached for approximately 42 to 79 per cent of the watersheds in which there is groundwater pumping worldwide, and that this will generally occur before substantial losses in groundwater storage are experienced. Only a small decline in groundwater level is needed to affect streamflow, making our estimates uncertain for streams near a transition to reversed groundwater discharge. However, for many areas, groundwater pumping rates are high and environmental flow limits are known to be severely exceeded. Compared to surface-water use, the effects of groundwater pumping are markedly delayed. Our results thus reveal the current and future environmental legacy of groundwater use.


Assuntos
Mapeamento Geográfico , Água Subterrânea/análise , Chuva , Rios/química , Movimentos da Água , Abastecimento de Água/métodos , Irrigação Agrícola/métodos , Organismos Aquáticos , Mudança Climática , Dessecação , Secas/estatística & dados numéricos , Ecossistema , Água Doce/análise , Internacionalidade , Modelos Teóricos
3.
BMC Plant Biol ; 24(1): 237, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38566021

RESUMO

BACKGROUND: Onions are economically and nutritionally important vegetable crops. Despite advances in technology and acreage, Indian onion growers face challenges in realizing their full productivity potential. This study examines the technical efficiency of onion growers, the factors influencing it, and the constraints faced by those adopting drip irrigation in the Ghod river basin of western Maharashtra. A sample of 480 farmers including those practicing drip irrigation and those not practicing it, was selected from Junnar, Shirur, Parner, and Shrigonda blocks of the basin. The primary data was collected through semi-structured interviews. Analytical tools such as the Cobb-Douglas production function (represents technological relationship between multiple inputs and the resulting output), a single-stage stochastic frontier model, the Tobit model, and descriptive statistics were used to assess the technical efficiency of onion production at the farm level. RESULTS: According to the maximum likelihood estimates of the stochastic frontier analysis, drip adopters exhibited a mean technical efficiency of 92%, while for non-adopters it was 65%. It indicates that the use of drip irrigation technology is associated with higher technical efficiency. The association of technical efficiency and socio-economic characters of households showed that education, extension contacts, social participation, and use of information sources had a positive influence on technical efficiency, while family size had a negative influence on the drip irrigation adopters. For non-drip adopters, significant positive effects were observed for landholding, extension contact, and information source use. The major constraints faced by drip system adopters included a lack of knowledge about the proper operating techniques for drip systems and the cost of maintenance. CONCLUSION: The differences with inputs associated with two irrigation methods showed that the response of inputs to increase onion yield is greater for farmers who use drip irrigation than for farmers who do not, and are a result of the large differences in the technical efficiencies. These inefficiencies and other limitations following the introduction of drip irrigation, such as lack of knowledge about the proper operations, need to be addressed through tailored training for farmers and further interventions.


Assuntos
Irrigação Agrícola , Cebolas , Irrigação Agrícola/métodos , Índia , Fazendas , Produtos Agrícolas
4.
BMC Plant Biol ; 24(1): 317, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654169

RESUMO

BACKGROUND: Fennel essential oils are fragrance compounds used in food and pharmaceutical sectors. One of the major impediments to expansion of fennel farming in Egypt's reclamation areas is saline water. Titanium dioxide (TiO2) or TiO2 nano particles (TiO2NP) can be utilized to boost the yield of aromatic plants cultivated under saline irrigation water. Saline water, particularly which contains sodium chloride can harm fennel plant; consequently, it was predicted that fennel production would fail in Egypt's reclaimed area, where the primary source of irrigation is groundwater consisting sodium chloride. This study sought to help fennel respond to sodium chloride by applying Ti forms to their leaves in order to reduce the detrimental effects of sodium chloride on them for expanding their production in the newly reclamation areas as a natural source of essential oil. Ti forms were applied as foliar application at 0, 0.1, 0.2 TiO2, 0.1 TiO2NP, and 0.2 TiO2NP, mM under irrigation with fresh water (0.4 dS m-1), or saline water (51.3 mM or 4.7 dS m-1). RESULTS: Plants exposed to 0.1 mM TiO2NP under fresh water resulted in the maximum values of morphological characters, estragole, oxygenated monoterpenes and photosynthetic pigments; while those subjected to 0.1 mM TiO2NP under saline water gave the greatest values of essential oil, proline, antioxidant enzymes and phenols. The greatest amounts of soluble sugars were recorded with 0.2 mM TiO2NP irrigated with saline water. Plants subjected to 0 mM TiO2 under saline water produced the greatest values of flavonoids, hydrogen peroxide and malondialdehyde. CONCLUSION: To mitigate the negative effects of salty irrigation water on fennel plant production, TiO2NP application is suggested as a potential strategy.


Assuntos
Irrigação Agrícola , Foeniculum , Folhas de Planta , Titânio , Irrigação Agrícola/métodos , Folhas de Planta/efeitos dos fármacos , Foeniculum/química , Nanopartículas , Águas Salinas , Óleos Voláteis
5.
BMC Plant Biol ; 24(1): 548, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38872106

RESUMO

Enhancing wheat productivity by implementing a comprehensive approach that combines irrigation, nutrition, and organic amendments shows potential for collectively enhancing crop performance. This study examined the individual and combined effects of using irrigation systems (IS), foliar potassium bicarbonate (PBR) application, and compost application methods (CM) on nine traits related to the growth, physiology, and yield of the Giza-171 wheat cultivar. Analysis of variance revealed significant (P ≤ 0.05) main effects of IS, PBR, and CM on wheat growth, physiology, and yield traits over the two growing seasons of the study. Drip irrigation resulted in a 16% increase in plant height, leaf area index, crop growth rate, yield components, and grain yield compared to spray irrigation. Additionally, the application of foliar PBR at a concentration of 0.08 g/L boosted these parameters by up to 22% compared to the control. Furthermore, the application of compost using the role method resulted in enhanced wheat performance compared to the treatment including mix application. Importantly, the combined analysis revealed that the three-way interaction between the three factors had a significant effect (P ≤ 0.05) on all the studied traits, with drip irrigation at 0.08 g PBR rate and role compost application method (referred as Drip_0.08g_Role) resulting in the best performance across all traits, while sprinkle irrigation without PBR and conventional mixed compost method (referred as sprinkle_CK_Mix) produced the poorest results. This highlights the potential to synergistically improve wheat performance through optimized agronomic inputs.


Assuntos
Irrigação Agrícola , Triticum , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Irrigação Agrícola/métodos , Fertilizantes , Bicarbonatos/metabolismo , Compostagem/métodos , Compostos de Potássio , Solo/química
7.
Environ Res ; 242: 117710, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37996001

RESUMO

The conventional wheat-maize systems in the North China Plain are energy and water intensive with high carbon emissions. It is imperative to find cleaner production technologies for sustainable food-water-energy-carbon synergism. Here, a three-year field experiment was performed to explore the effects of two tillage modes and four irrigation regimes during wheat season on crop yield, economic profile, water use efficiency, energy utilization, and carbon footprint in typical wheat-maize cropping systems in the North China Plain. Pre-sowing irrigation resulted in the lowest crop yield and benefit profile. Pre-sowing + anthesis irrigation decreased economic benefit and water use efficiency with higher carbon footprint. Pre-sowing + jointing + anthesis irrigation led to the greatest energy consumption and greenhouse gas emissions. However, pre-sowing + jointing irrigation increased yield by 2.3-8.7%, economic benefit by 4.0-11.1%, water use efficiency by 7.4-10.9%, and net energy by 6.5-12.0% but reduced carbon footprint by 9.8-14.3% compared to pre-sowing + anthesis irrigation and pre-sowing + jointing + anthesis irrigation. The corresponding metrics in rotary tillage improved by 9.6%, 13.9%, 7.0%, and 14.2%, respectively, relative to subsoiling, whereas carbon footprint decreased by 12.4-17.2%. Besides, rotary tillage coupled with additional jointing irrigation obtained the highest value based on a Z-score method, which was recommended as a cleaner management practice to improve benefit return and water use efficiency with lower energy consumption and carbon footprint. This work provides valuable insights into food-water-energy-carbon nexus for ensuring food security and achieving environmental sustainability in the wheat-maize cropping systems.


Assuntos
Triticum , Zea mays , Água , Carbono , Tecnologia , China , Solo , Agricultura/métodos , Irrigação Agrícola/métodos
8.
Environ Res ; 255: 119138, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750999

RESUMO

The application of organic amendments is one way to manage low water irrigation in paddy soils. In this 60-day greenhouse pot experiment involving paddy soil undergoing drying-rewetting cycles, we examined the effects of two organic amendments: azo-compost with a low carbon to phosphorus ratio (C:P) of 40 and rice straw with a high C:P ratio of 202. Both were applied at rates of 1.5% of soil weight (w/w). The investigation focused on changes in certain soil biochemical characteristics related to C and P in the rice rhizosphere, as well as rice plant characteristics. The irrigation regimes applied in this study included constant soil moisture in a waterlogged state (130% water holding capacity (WHC)), mild drying-rewetting (from 130 to 100% WHC), and severe drying-rewetting (from 130 to 70% WHC). The results indicated that the application of amendments was effective in severe drying-rewetting irrigation regimes on soil characteristics. Drying-rewetting decreased soil respiration rate (by 60%), microbial biomass carbon (by 70%), C:P ratio (by 12%), soil organic P (by 16%), shoot P concentration (by 7%), and rice shoot biomass (by 30%). However, organic amendments increased soil respiration rate (by 8 times), soil microbial biomass C (51%), total C (TC) (53%), dissolved organic carbon (3 times), soil available P (AP) (100%), soil organic P (63%), microbial biomass P (4.5 times), and shoot P concentration (21%). The highest significant correlation was observed between dissolved organic carbon and total C (r= 0.89**). Organic amendments also increased P uptake by the rice plant in the order: azo-compost > rice straw > control treatments, respectively, and eliminated the undesirable effect of mild drying-rewetting irrigation regime on rice plant biomass. Overall, using suitable organic amendments proves promising for enhancing soil properties and rice growth under drying-rewetting conditions, highlighting the interdependence of P and C biochemical changes in the rhizosphere during the rice vegetative stage.


Assuntos
Irrigação Agrícola , Oryza , Solo , Oryza/crescimento & desenvolvimento , Irrigação Agrícola/métodos , Solo/química , Carbono/análise , Fósforo/análise , Água , Biomassa , Microbiologia do Solo
9.
Environ Res ; 252(Pt 3): 118693, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38537742

RESUMO

Soil nitrogen (N) transformation processes, encompassing denitrification, anaerobic ammonium oxidation (anammox), and anaerobic ammonium oxidation coupled with iron reduction (Feammox), constitute the primary mechanisms of soil dinitrogen (N2) loss. Despite the significance of these processes, there is a notable gap in research regarding the assessment of managed fertilization and irrigation impacts on anaerobic N transformations in paddy soil, crucial for achieving sustainable soil fertility management. This study addressed the gap by investigating the contributions of soil denitrification, anammox, and Feammox to N2 loss in paddy soil across varying soil depths, employing different fertilization and irrigation practices by utilizing N stable isotope technique for comprehensive insights. The results showed that anaerobic N transformation processes decreased with increasing soil depth under alternate wetting and drying (AWD) irrigation, but increased with the increasing soil depth under conventional continuous flooding (CF) irrigation. The denitrification and anammox rates varied from 0.41 to 2.12 mg N kg-1 d-1 and 0.062-0.394 mg N kg-1 d-1, respectively, which accounted for 84.3-88.1% and 11.8-15.7% of the total soil N2 loss. Significant correlations were found among denitrification rate and anammox rate (r = 0.986, p < 0.01), Fe (Ⅲ) reduction rate and denitrification rate (r = 0.527, p < 0.05), and Fe(Ⅲ) reduction rate and anammox rate (r = 0.622, p < 0.05). Moreover, nitrogen loss was more pronounced in the surface layer of the paddy soil compared to the deep layer. The study revealed that denitrification predominantly contributed to N loss in the surface soil, while Feammox emerged as a significant N loss pathway at depths ranging from 20 to 40 cm, accounting for up to 26.1% of the N loss. It was concluded that fertilization, irrigation, and soil depth significantly influenced anaerobic N transformation processes. In addition, the CF irrigation practice is best option to reduce N loss under managed fertilization. Furthermore, the role of microbial communities and their response to varying soil depths, fertilization practices, and irrigation methods could enhance our understanding on nitrogen loss pathways should be explored in future study.


Assuntos
Irrigação Agrícola , Desnitrificação , Nitrogênio , Solo , Nitrogênio/metabolismo , Nitrogênio/análise , Irrigação Agrícola/métodos , Solo/química , Anaerobiose , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Oxirredução , Microbiologia do Solo , Fertilizantes/análise
10.
Environ Res ; 252(Pt 2): 118920, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38657849

RESUMO

Long-term wastewater irrigation leads to the loss of calcium carbonate (CaCO3) in the tillage layer of calcareous land, which irreversibly damages the soil's ability to retain cadmium (Cd). In this study, we selected calcareous agricultural soil irrigated with wastewater for over 50 years to examine the recalcification effects of sugar beet factory lime (SBFL) at doses of 0%, 2.5%, 5%, and 10%. We found that SBFL promoted Cd transformation in the soil from active exchangeable species to more stable carbonate-bonded and residual species, which the X-ray diffraction patterns also confirmed results that CdSO4 reduced while CdS and CaCdCO3 increased. Correspondingly, the soil bioavailable Cd concentration was significantly reduced by 65.6-84.7%. The Cd concentrations in maize roots and shoots were significantly reduced by 11.7-50.6% and 13.0-70.0%, respectively, thereby promoting maize growth. Nevertheless, SBFL also increased the proportion of plant-unavailable phosphorus (P) in Ca8-P and Ca10-P by 4.3-13.0% and 10.7-25.9%, respectively, reducing the plant-available P (Olsen P) content by 5.2-22.1%. Consequently, soil P-acquiring associated enzyme (alkaline phosphatase) activity and microbial (Proteobacteria, Bacteroidota, and Actinobacteria) community abundance significantly increased. Our findings showed that adding SBFL to wastewater-irrigated calcareous soil stabilized Cd, but exacerbated P limitation. Therefore, it is necessary to alleviate P limitations in the practice of recalcifying degraded calcareous land.


Assuntos
Cádmio , Carbonato de Cálcio , Fósforo , Poluentes do Solo , Solo , Águas Residuárias , Zea mays , Cádmio/análise , Cádmio/química , Fósforo/análise , Águas Residuárias/química , Poluentes do Solo/análise , Poluentes do Solo/química , Solo/química , Zea mays/química , Carbonato de Cálcio/química , Irrigação Agrícola/métodos , Microbiologia do Solo , Óxidos , Compostos de Cálcio
11.
Environ Res ; 249: 118387, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38336162

RESUMO

Achieving a balance between greenhouse gas mitigation and biomass production in grasslands necessitates optimizing irrigation frequency and nitrogen addition, which significantly influence grassland productivity and soil nitrous oxide emissions, and consequently impact the ecosystem carbon dioxide exchange. This study aimed to elucidate these influences using a controlled mesocosm experiment where bermudagrass (Cynodon dactylon L.) was cultivated under varied irrigation frequencies (daily and every 6 days) with (100 kg ha-1) or without nitrogen addition; measurements of net ecosystem carbon dioxide exchange, ecosystem respiration, soil respiration, and nitrous oxide emissions across two cutting events were performed as well. The findings revealed a critical interaction between water-filled pore space, regulated by irrigation, and nitrogen availability, with the latter exerting a more substantial influence on aboveground biomass growth and ecosystem carbon dioxide exchange than water availability. Moreover, the total dry matter was significantly higher with nitrogen addition compared to without nitrogen addition, irrespective of the irrigation frequency. In contrast, soil nitrous oxide emissions were observed to be significantly higher with increased irrigation frequency and nitrogen addition. The effects of nitrogen addition on soil respiration components appeared to depend on water availability, with autotrophic respiration seeing a significant rise with nitrogen addition under limited irrigation (5.4 ± 0.6 µmol m-2 s-1). Interestingly, the lower irrigation frequency did not result in water stress, suggesting resilience in bermudagrass. These findings highlight the importance of considering interactions between irrigation and nitrogen addition to optimize water and nitrogen input in grasslands for a synergistic balance between grassland biomass production and greenhouse gas emission mitigation.


Assuntos
Irrigação Agrícola , Biomassa , Pradaria , Gases de Efeito Estufa , Nitrogênio , Gases de Efeito Estufa/análise , Nitrogênio/metabolismo , Irrigação Agrícola/métodos , Óxido Nitroso/análise , Óxido Nitroso/metabolismo , Solo/química , Cynodon/crescimento & desenvolvimento , Cynodon/metabolismo , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Fertilizantes/análise
12.
Ecotoxicol Environ Saf ; 277: 116376, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38657453

RESUMO

The application of an external magnetic field has been shown to improve the Cd phytoremediation efficiency of F. arundinacea by leaf harvesting. However, the influencing mechanisms of the promoting effect have not yet been revealed. This study evaluated variations in the Cd subcellular allocation and fractions in various F. arundinacea leaves, with or without magnetized water irrigation. Over 50 % of the metal were sequestered within the cell wall in all tissues under all treatments, indicating that cell wall binding was a critical detoxification pathway for Cd. After magnetized water treatment, the metal stored in the cytoplasm of roots raised from 33.1 % to 45.3 %, and the quantity of soluble Cd in plant roots enhanced from 53.4 % to 59.0 %. The findings suggested that magnetized water mobilized Cd in the roots, and thus drove it into the leaves. In addition, the proportion of Cd in the organelles, and the concentration of ethanol-extracted Cd in emerging leaves, decreased by 13.0 % and 47.1 %, respectively, after magnetized water treatment. These results explained why an external field improved the phytoextraction effect of the plant through leaf harvesting.


Assuntos
Biodegradação Ambiental , Cádmio , Festuca , Folhas de Planta , Raízes de Plantas , Folhas de Planta/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Raízes de Plantas/metabolismo , Festuca/metabolismo , Festuca/efeitos dos fármacos , Irrigação Agrícola/métodos , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Água/química
13.
ScientificWorldJournal ; 2024: 9982796, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38818109

RESUMO

Irrigation development, particularly small-scale irrigation, is one of the most important projects for improving agricultural productivity in a country's rural communities. The extent to which small-scale irrigation has improved household livelihoods in Ethiopia's rural areas is not widely recognized. As a result, research on the influence of small-scale irrigation on farmers' livelihoods in the Legehida district will be sought. The study took a "with" and "without" strategy, comparing farmers who used irrigation against those who did not. For analysis, both quantitative and qualitative data were employed. The survey's respondents were chosen using a random sample approach from both irrigation users and nonuser households. Quantitative data for the study were collected from randomly selected 241 farm households, of which 113 were users and 128 were nonusers, using a semistructured questionnaire. Accordingly, the propensity score matching model was employed to examine the impacts of small-scale irrigation on farmers' livelihoods. The logit model result indicates that cultivated land size, off-farm income, education level, family size, dependency ratio, total livestock unit, and distance to the nearest agricultural extension office/FTC are determinant factors in determining whether to practice irrigation when other factors remain constant. The impact of irrigation on a household's income and food security (in terms of daily calorie intake) was evaluated using a propensity score matching model. The result shows that a positive and significant impact on farmers who use small-scale irrigation has increased the daily calorie intake and annual income of households by 244.162 kilocalories and 5234.258 ETB, respectively, as compared to nonirrigation users. This shows that households that participate in small-scale irrigation activities have a higher annual income and food security status than comparable groups. In general, the study recommends that to reduce food insecurity and the socioeconomic problems of rural households, irrigation farming is one of the viable solutions; therefore, the government and nongovernmental organizations should extensively focus on the enhancement of small-scale irrigation infrastructure, policies, strategies, and extension services to increase productivity, income, and livelihood improvement in rural households.


Assuntos
Irrigação Agrícola , Características da Família , População Rural , Etiópia , Irrigação Agrícola/métodos , Humanos , Fazendeiros , Fazendas , Inquéritos e Questionários , Renda , Feminino , Masculino , Agricultura/métodos , Adulto , Segurança Alimentar
14.
J Environ Manage ; 361: 121240, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38805960

RESUMO

Afforestation plays a crucial role in environmental management for many countries. Yet, frequently extreme high temperature (EHT) events in arid and semi-arid regions easily cause the death of artificially planted saplings. To address this, we present a new in-situ supplementary irrigation device (SID) consisting of a rainwater catching board, a storage tank, and ceramic emitters. A continuous EHT experiment combined with the HYDRUS-2D model in North China is further conducted to investigate the soil water-heat properties of the in-situ SID and the growth performance of the planted saplings (Platycladus orientalis) under EHT. The results show that in-situ SID keeps a stable and suitable soil water-heat status in the root layer of the planted saplings under EHT. Especially, the in-situ SID with one ceramic emitter maintains the soil water moisture in a narrow and suitable range from 0.149 cm3 cm-3 to 0.153 cm3 cm-3, and reduces the maximum soil temperature by 2.7 °C compared to the traditional irrigation method. Furthermore, the in-situ SID with one ceramic emitter presents the highest average leaf water content (66.9%), new shoot (35.0 mm), and tree height (62.0 mm). The economic benefit analysis finds that the in-situ SID provides a shorter time to recover high funds and saves a large amount of irrigation water resources. Overall, this study provides an effective irrigation device for forest managers to improve the ecological service effectiveness of afforestation in areas with frequent EHT events and scarce water resources.


Assuntos
Solo , China , Irrigação Agrícola/métodos , Árvores/crescimento & desenvolvimento , Chuva , Temperatura Alta
15.
J Environ Manage ; 361: 121270, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38820796

RESUMO

Reliable nitrogen (N) fertilizer management indicators are essential for improving crop yields and minimizing environmental impacts for sustainable production. The objectives of this study were to assess the importance of major N management indicators (NMIs) for higher yield with low risks of environmental pollution in an intensive potato system under drip irrigation. Six drip-irrigated field experiments with no N application (Control), farmer practice (FP), and optimized N management (OM) based on N-balance, soil mineral N (Nmin), and target yield were conducted from 2018 to 2020 in Inner Mongolia, China. The response of NMIs to potato yield and yield-based environment impact indices (EIY) was evaluated by the random forest algorithm. The N input, N losses from N leaching, ammonia (NH3) volatilization, nitrous oxide (N2O) emission, N use efficiency (NUE), N surplus, and soil residual N after harvest were obtained to identify the best NMIs for high yield and minimal ecological impact. The N management practices in field experimental sites affected the importance of the order of NMIs on potato yield and EIY. The NUE and N leaching were identified as the highest importance scores and the most essential controlling variables to potato yield and EIY, respectively. The integrated NUE and N leaching indicator played a vital role in improving potato yield and reducing ecological impact. The OM treatment achieved 46.0%, 63.6%, and 64.6% lower in N application rate, N surplus, and reactive N loss, and 62.4% higher in NUE than the FP treatment while achieving equal potato yields, respectively. Those key NMIs can guide farmers in understanding their practice short comes to achieve both high productivity and environmental sustainability in intensive potato production systems under drip irrigation.


Assuntos
Irrigação Agrícola , Produção Agrícola , Fertilizantes , Nitrogênio , Solo , Solanum tuberosum , Solanum tuberosum/crescimento & desenvolvimento , Irrigação Agrícola/métodos , Produção Agrícola/métodos , Solo/química , China , Agricultura/métodos , Produtos Agrícolas/crescimento & desenvolvimento
16.
J Environ Manage ; 352: 120087, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38215592

RESUMO

Saline water has proven to be one of the alternative sources of freshwater for agricultural irrigation in water-scarce areas. However, the changes in farmland ecology caused by saline water irrigation remain unclear. In this study, six irrigation water salinities (CK: 1.3 dS m-1, S1: 3.4 dS m-1, S2: 7.1 dS m-1, S3: 10.6 dS m-1, S4: 14.1 dS m-1, S5: 17.7 dS m-1) were set in a three-year (2019, 2021-2022) experiment to investigate their effects on soil environment and greenhouse gas emissions in cotton fields under long-term saline water irrigation. Results show that soil salinity in the same layer increased as increasing water salinity. Soil moisture of S3-S5 increased significantly by 4.99-12.94%. There was no significant difference in soil organic matter content between CK and S1. Saline water irrigation increased soil ammonium nitrogen content by 0.57-49.26%, while decreasing nitrate nitrogen content by 1.43-32.03%. Soil CO2 and N2O emissions and CH4 uptake were lower in S1-S5 than in CK at different cotton growth stages. In addition, saline water irrigation reduced the global warming potential by 6.93-53.86%. A structural equation model was developed to show that soil salinity, moisture, and ammonium nitrogen content were negatively correlated with global warming potential, while organic matter and nitrate nitrogen had positive effects on global warming potential. Considering the comprehensive perspectives of gas emissions and cotton yield, irrigation water with salinity less than 10.6 dS m-1 could effectively reduce greenhouse gas emissions from cotton fields while maintaining stable cotton yields in the experimental area and similar region.


Assuntos
Compostos de Amônio , Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Nitratos , Óxido Nitroso/análise , Solo/química , Irrigação Agrícola/métodos , China , Águas Salinas , Nitrogênio , Agricultura , Fertilizantes/análise , Metano/análise
17.
J Environ Manage ; 362: 121228, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38823304

RESUMO

The advent of air nanobubbles (ANBs) has opened up a wide range of commercial applications spanning industries including wastewater treatment, food processing, biomedical engineering, and agriculture. The implementation of electric field-based air nanobubbles (EF-ANBs) irrigation presents a promising approach to enhance agricultural crop efficiency, concurrently promoting environmentally sustainable practices through reducing fertilizer usage. This study investigated the impact of EF-ANBs on the germination and overall growth of agricultural crops in soil. Results indicate a substantial enhancement in both germination rates and plant growth upon the application of EF-ANBs. Notably, the introduction of ANBs led to a significant enhancement in the germination rate of lettuce and basil, increasing from approximately 20% to 96% and from 16% to 53%, respectively over two days. Moreover, the presence of EF-ANBs facilitates superior hypocotyl elongation, exhibiting a 2.8- and a 1.6-fold increase in the elongation of lettuce and basil, respectively, over a six-day observation period. The enriched oxygen levels within the air nanobubbles expedite aerobic respiration, amplifying electron leakage from the electron transport chain (ETC) and resulting in heightened reactive oxygen species (ROS) production, playing a pivotal role in stimulating growth signaling. Furthermore, the application of EF-ANBs in irrigation surpasses the impact of traditional fertilizers, demonstrating a robust catalytic effect on the shoot, stem, and root length, as well as the leaf count of lettuce plants. Considering these parameters, a single fertilizer treatment (at various concentrations) during EF-ANBs administration, demonstrates superior plant growth compared to regular water combined with fertilizer. The findings underscore the synergistic interaction between aerobic respiration and the generation of ROS in promoting plant growth, particularly in the context of reduced fertilizer levels facilitated by the presence of EF-ANBs. This promising correlation holds significant potential in establishing more sustainability for ever-increasing environmentally conscious agriculture.


Assuntos
Irrigação Agrícola , Produtos Agrícolas , Fertilizantes , Produtos Agrícolas/crescimento & desenvolvimento , Irrigação Agrícola/métodos , Lactuca/crescimento & desenvolvimento , Germinação/efeitos dos fármacos , Solo/química , Agricultura/métodos , Ar
18.
J Sci Food Agric ; 104(9): 5207-5218, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38314862

RESUMO

BACKGROUND: Seasonal late-season water deficits negatively affect the yield and quality of sweet potatoes in northern China. However, the amount of late-season irrigation to achieve high yield and consistent quality storage root remains undetermined. We assessed the yield and some qualitative traits of sweet potatoes such as size, shape, skin/flesh colour and nutritional content, as influenced by five irrigation levels (T0: unirrigated control; T1: 33% ETc; T2: 75% ETc; T3: 100% ETc; and T4: 125% ETc). RESULTS: Late-season irrigation significantly increased yield and marketable yield. Yields for T2 and T3 were significantly higher than other treatments, whereas T2 had the highest Grade A rating in a 2-year test. The vertical length of storage roots gradually increased with an increase in irrigation level, whereas the maximum width remained unchanged. The proportion of long elliptic and elliptic storage roots also increased, whereas the proportion of ovate, obovate and round storage roots gradually decreased. The skin and flesh colours became more vivid as the level of irrigation increased, with the skin colour becoming redder and the flesh colour becoming more orange-yellow. The levels of carotenoids, vitamin C and soluble sugar were significantly higher in irrigated crops, with the highest vitamin C and soluble sugar levels in T2 and the highest carotenoid levels in T3 treatment. CONCLUSION: Taken together, these results demonstrate the potential of moderate irrigation in the late-season to improve both yield production and quality potential. The results are of great importance for improving the market value of sweet potatoes and increasing grower profits. © 2024 Society of Chemical Industry.


Assuntos
Irrigação Agrícola , Ipomoea batatas , Estações do Ano , Ipomoea batatas/crescimento & desenvolvimento , Ipomoea batatas/química , Ipomoea batatas/metabolismo , Irrigação Agrícola/métodos , China , Tubérculos/química , Tubérculos/crescimento & desenvolvimento , Tubérculos/metabolismo , Água/análise , Água/metabolismo , Carotenoides/análise , Carotenoides/metabolismo , Ácido Ascórbico/análise , Ácido Ascórbico/metabolismo , Valor Nutritivo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Produção Agrícola/métodos , Cor
19.
Environ Geochem Health ; 46(1): 26, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225519

RESUMO

Irrigation with treated livestock wastewater (TWW) is a promising strategy for reusing resources. However, TWW irrigation might introduce antibiotic resistant genes (ARGs) into the soil, posing environmental risks associated with antibiotic resistance. This study focuses on investigating the influence of irrigation amounts and duration on the fate of ARGs and identifies key factors driving their changes. The results showed that there were 13 ARGs in TWW, while only 5 ARGs were detected in irrigated soil. That is some introduced ARGs from TWW could not persistently exist in the soil. After 1-year irrigation, an increase in irrigation amount from 0.016 t/m2 to 0.048 t/m2 significantly enhanced the abundance of tetC by 29.81%, while ermB and sul2 decreased by 45.37% and 76.47%, respectively (p < 0.01). After 2-year irrigation, the abundance of tetC, ermB, ermF, dfrA1, and total ARGs significantly increased (p < 0.05) when the irrigation amount increased. The abundances of ARGs after 2-year irrigation were found to be 2.5-34.4 times higher than 1 year. Obviously, the irrigation years intensified the positive correlation between ARGs abundance and irrigation amount. TetC and ermF were the dominant genes resulting in the accumulation of ARGs. TWW irrigation increased the content of organic matter and total nitrogen in the soil, which affected microbial community structure. The changes of the potential host were the determining factors driving the ARGs abundance. Our study demonstrated that continuous TWW irrigation for 2 years led to a substantial accumulation of ARGs in soil.


Assuntos
Solo , Águas Residuárias , Animais , Solo/química , Gado , Fazendas , Antibacterianos , Irrigação Agrícola/métodos , Microbiologia do Solo , China
20.
Environ Monit Assess ; 196(4): 378, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499847

RESUMO

Allocation of water in the situation of climate change presents various uncertainties. Consequently, decisions must be made to ensure stability and functionality across different climatic scenarios. This study aims to examine the effectiveness of adaptation strategies in the agricultural sector, including a 5% increase in irrigation efficiency (S1) and a shift in irrigation method to Dry-DSR (direct seeded rice) under conditions of climatic uncertainty using a decision-making approach. The study focuses on the basin downstream of the Sefidroud dam, encompassing the Sefidroud irrigation and drainage network. Initially, basin modeling was conducted using the WEAP integrated management software for the period 2006-2020. Subsequently, the impact of climate change was assessed, considering RCP2.6, RCP4.5, and RCP8.5 emission scenarios on surface water resources from 2021 to 2050. Runoff and cultivated area, both subject to uncertainty, were identified as key parameters. To evaluate strategy performance under different uncertainties and determine the efficacy of each strategy, regret and satisfaction approaches were employed. Results indicate a projected decrease in future rainfall by 3.5-11.8% compared to the base period, accompanied by an increase in maximum and minimum temperatures (0.83-1.62 °C and 1.15-1.33 °C, respectively). Inflow to the Sefidroud dam is expected to decrease by 13-28%. Presently, the Sefidroud irrigation and drainage network faces an annual deficit of 505.4 MCM, and if current trends persist with the impact of climate change, this shortfall may increase to 932.7 MCM annually. Furthermore, satisfaction indices for strategy (S2) are 0.77 in an optimistic scenario and 0.70 in strategy (S1). In a pessimistic scenario, these indices are 0.67 and 0.56, respectively. Notably, changing the irrigation method with Dry-DSR is recommended as a robust strategy, demonstrating the ability to maintain basin stability under a broad range of uncertainties and climate change scenarios. It is crucial to note that the results solely highlight the effects of climate change on water sources entering the Sefidroud dam. Considering anthropogenic activities upstream of the Sefidroud basin, water resource shortages are expected to increase. Therefore, reallocating water resources and implementing practical and appropriate measures in this area are imperative.


Assuntos
Mudança Climática , Monitoramento Ambiental , Irã (Geográfico) , Agricultura/métodos , Água , Irrigação Agrícola/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA