Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.064
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
PLoS Genet ; 19(10): e1011011, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37856540

RESUMO

Circadian clocks in terrestrial animals are encoded by molecular feedback loops involving the negative regulators PERIOD, TIMELESS or CRYPTOCHROME2 and positive transcription factors CLOCK and BMAL1/CYCLE. The molecular basis of circatidal (~12.4 hour) or other lunar-mediated cycles (~15 day, ~29 day), widely expressed in coastal organisms, is unknown. Disrupting circadian clockworks does not appear to affect lunar-based rhythms in several organisms that inhabit the shoreline suggesting a molecular independence of the two cycles. Nevertheless, pharmacological inhibition of casein kinase 1 (CK1) that targets PERIOD stability in mammals and flies, affects both circadian and circatidal phenotypes in Eurydice pulchra (Ep), the speckled sea-louse. Here we show that these drug inhibitors of CK1 also affect the phosphorylation of EpCLK and EpBMAL1 and disrupt EpCLK-BMAL1-mediated transcription in Drosophila S2 cells, revealing a potential link between these two positive circadian regulators and circatidal behaviour. We therefore performed dsRNAi knockdown of Epbmal1 as well as the major negative regulator in Eurydice, Epcry2 in animals taken from the wild. Epcry2 and Epbmal1 knockdown disrupted Eurydice's circadian phenotypes of chromatophore dispersion, tim mRNA cycling and the circadian modulation of circatidal swimming, as expected. However, circatidal behaviour was particularly sensitive to Epbmal1 knockdown with consistent effects on the power, amplitude and rhythmicity of the circatidal swimming cycle. Thus, three Eurydice negative circadian regulators, EpCRY2, in addition to EpPER and EpTIM (from a previous study), do not appear to be required for the expression of robust circatidal behaviour, in contrast to the positive regulator EpBMAL1. We suggest a neurogenetic model whereby the positive circadian regulators EpBMAL1-CLK are shared between circadian and circatidal mechanisms in Eurydice but circatidal rhythms require a novel, as yet unknown negative regulator.


Assuntos
Fatores de Transcrição ARNTL , Relógios Circadianos , Isópodes , Animais , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Proteínas CLOCK/genética , Drosophila/metabolismo , Proteínas de Drosophila , Isópodes/genética , Isópodes/metabolismo , Mamíferos/metabolismo , Natação
2.
Ecol Lett ; 27(4): e14414, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38622965

RESUMO

Animals assimilate macronutrients and mineral nutrients in specific quantities and ratios to maximise fitness. To achieve this, animals must ingest different foods that contain the needed nutrients or facilitate the digestion of those nutrients. We explored how these multidimensional considerations affect the desert isopods (Hemilepistus reaumuri) curious food selection, using field and laboratory experiments. Wild isopods consumed three-fold more macronutrient-poor biological soil crust (BSC) than plant litter. Isopods tightly regulated macronutrient and calcium intake, but not phosphorus when eating the two natural foods and when artificial calcium and phosphorus sources substituted the BSC. Despite the equivalent calcium ingestion, isopods performed better when eating BSC compared to artificial foods. Isopods that consumed BSC sterilised by gamma-radiation ate more but grew slower than isopods that ate live BSC, implying that ingested microorganisms facilitate litter digestion. Our work highlights the need to reveal the multifaceted considerations that affect food-selection when exploring trophic-interactions.


Assuntos
Poeira , Isópodes , Animais , Cálcio , Dieta/veterinária , Nutrientes
3.
Proc Biol Sci ; 291(2030): 20240823, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39255840

RESUMO

Most deep-ocean life relies on organic carbon from the surface ocean. While settling primary production rapidly attenuates in the water column, pulses of organic material can be quickly transported to depth in the form of food falls. One example of fresh material that can reach great depths across the tropical Atlantic Ocean and Caribbean Sea is the pelagic macroalgae Sargassum. However, little is known about the deep-ocean organisms able to use this food source. Here, we encountered the isopod Bathyopsurus nybelini at depths 5002-6288 m in the Puerto Rico Trench and Mid-Cayman Spreading Center using the Deep Submergence Vehicle Alvin. In most of the 32 observations, the isopods carried fronds of Sargassum. Through an integrative suite of morphological, DNA sequencing, and microbiological approaches, we show that this species is adapted to feed on Sargassum by using a specialized swimming stroke, having serrated and grinding mouthparts, and containing a gut microbiome that provides a dietary contribution through the degradation of macroalgal polysaccharides and fixing nitrogen. The isopod's physiological, morphological, and ecological adaptations demonstrate that vertical deposition of Sargassum is a direct trophic link between the surface and deep ocean and that some deep-sea organisms are poised to use this material.


Assuntos
Isópodes , Sargassum , Sargassum/fisiologia , Isópodes/fisiologia , Animais , Oceano Atlântico , Porto Rico , Comportamento Alimentar , Microbioma Gastrointestinal , Cadeia Alimentar , Região do Caribe
4.
J Exp Zool B Mol Dev Evol ; 342(6): 425-436, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38828691

RESUMO

Similar phenotypes can evolve repeatedly under the same evolutionary pressures. A compelling example is the evolution of pigment loss and eye loss in cave-dwelling animals. While specific genomic regions or genes associated with these phenotypes have been identified in model species, it remains uncertain whether a bias towards particular genetic mechanisms exists. An isopod crustacean, Asellus aquaticus, is an ideal model organism to investigate this phenomenon. It inhabits surface freshwaters throughout Europe but has colonized groundwater on multiple independent occasions and evolved several cave populations with distinct ecomorphology. Previous studies have demonstrated that three different cave populations utilized common genetic regions, potentially the same genes, in the evolution of pigment and eye loss. Expanding on this, we conducted analysis on two additional cave populations, distinct either phylogenetically or biogeographically from those previously examined. We generated F2 hybrids from cave × surface crosses and tested phenotype-genotype associations, as well as conducted complementation tests by crossing individuals from different cave populations. Our findings revealed that pigment loss and orange eye pigment in additional cave populations were associated with the same genomic regions as observed in the three previously tested cave populations. Moreover, the lack of complementation across all cross combinations suggests that the same gene likely drives pigment loss. These results substantiate a genetic bias in the recurrent evolution of pigment loss in this model system. Future investigations should focus on the cause behind this bias, possibly arising from allele recruitment from ancestral surface populations' genetic variation or advantageous allele effects via pleiotropy.


Assuntos
Evolução Biológica , Cavernas , Isópodes , Pigmentação , Animais , Pigmentação/genética , Isópodes/genética , Fenótipo
5.
Oecologia ; 204(1): 147-159, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38151651

RESUMO

Functional trait ecology has the potential to provide generalizable and mechanistic predictions of ecosystem function from data of species distributions and traits. The traits that are selected should both respond to environmental factors and influence ecosystem functioning. Invertebrate mouthpart traits fulfill these criteria, but are seldom collected, lack standardized measurement protocols, and have infrequently been investigated in response to environmental factors. We surveyed isopod species that consume plant detritus, and tree communities in 58 plots across primary and secondary forests in Singapore. We measured body dimensions (body size traits), pereopod and antennae lengths (locomotory traits), dimensions of mandible structures (morphological mouthpart traits), and mechanical advantages generated by mandible shape (mechanical mouthpart traits) for six isopod species found in these plots and investigated if these traits respond to changes in tree community composition, tree diversity, and forest structure. Morphological mouthpart traits responded to a tree compositional gradient reflecting forest recovery degree. Mouthpart features associated with greater consumption of litter (broader but less serrated/rugose lacinia mobilis [an important cutting and chewing structure on the mandible]) were most prevalent in abandoned plantation and young secondary forests containing disturbance-associated tree species. Feeding strategies associated with fungi grazing (narrower and more serrated/rugose lacinia mobilis) were most prevalent in late secondary forests containing later successional tree species. Since morphological mouthpart traits likely also predict consumption and excretion rates of isopods, these traits advance our understanding of environment-trait-ecosystem functioning relationships across contrasting tropical forest plots that vary in composition, disturbance history, and post-disturbance recovery.


Assuntos
Ecossistema , Isópodes , Animais , Clima Tropical , Ecologia , Plantas
6.
Zoolog Sci ; 41(3): 323-328, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38809871

RESUMO

Species in the anthurid isopod genus Mesanthura have specific, dorsal dark pigmentation patterning on the body. Though Mesanthura species have traditionally been distinguished mainly by differences in the dorsal pigmentation pattern in females, the stability of the pigmentation pattern within species had not been investigated, and information was lacking on ontogenetic variation in the pattern. Our study showed the following for M. miyakoensis. (1) Mancae begin to show dorsal pigmentation in the marsupium roughly 9 days before their release. (2) The pigmentation pattern in the first-instar mancae (first free-living stage) differs from that in later instars. (3) The pigmentation pattern in females is discrete and stable from putative second-instar mancae through females lacking oostegites, and distorted but recognizable in ovigerious females. (4) The pattern in males is different from and less discrete than that in females; it remains similar through the molt from subadult to adult male but changes markedly with age, leading to heavy pigmentation of the body. (5) The pigmentation pattern in mancae and females remains stable and observable after storage in ethanol for at least 13.7 months. Our results suggest that comparisons of pigmentation pattern across species in Mesanthura taxonomy should be restricted to females in the post-manca or later stages.


Assuntos
Isópodes , Pigmentação , Animais , Isópodes/fisiologia , Feminino , Masculino
7.
Dis Aquat Organ ; 159: 63-69, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39145472

RESUMO

All species of the isopod family Cymothoidae are obligate fish parasites, extracting nourishment through hematophagy and tissue consumption. To elucidate the detrimental effects of this parasitic relationship upon the host fish, we examined body length, weight of body, gonad, liver and stomach contents, and condition factor of Japanese scad Decapterus maruadsi infected with the buccal cavity parasite Ceratothoa carinata in different seasons. During the host fish's breeding season in July, the wet weight and condition factor of male and female host fish ages 1 and 2 were conspicuously diminished. No impacts were detected in September, after the breeding season. We found no impact of the parasite on the stomach content weight or signs of prey fish in the stomachs. Thus, parasite infection with C. carinata potentially diminishes the reproductive success of the host fish by negatively impacting the host's physiological condition, particularly during the breeding season.


Assuntos
Doenças dos Peixes , Isópodes , Reprodução , Animais , Doenças dos Peixes/parasitologia , Isópodes/fisiologia , Feminino , Masculino , Interações Hospedeiro-Parasita , Estações do Ano , Boca/parasitologia , População do Leste Asiático
8.
Dis Aquat Organ ; 158: 185-193, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869094

RESUMO

The southern king crab (SKC) Lithodes santolla is a crustacean parasitised by the bopyrid Eremitione tuberculata. This study aimed to analyse spatial and temporal variations in E. tuberculata prevalence in the juvenile SKC population of San Jorge Gulf (SJG) and adjacent waters (Argentine Patagonia), and evaluate the effects of the parasite on SKC juveniles to improve our understanding of its impact as a disease on SKC health condition. Moult increment and body weight were compared between parasitised and unparasitised individuals. The prevalence of E. tuberculata in SKC juveniles varied both spatially and temporally. In the south of SJG, the prevalence was 54.5% (n = 11). Temporal prevalence analysis revealed values lower than 17.4% in mid SJG during May and September 2015. No significant differences were observed in E. tuberculata prevalence between sexes or among seasons. Eremitione tuberculata had a negative effect on SKC growth (lower body dry mass, moult increment and relative increment rate) in parasitised individuals. We hypothesised that the higher prevalence of E. tuberculata in the south SJG could be attributed to the retention of parasite larvae and the presence of the frontal system in this part of the gulf. The temporal variations could reflect host mortality. Our results suggest that bopyrid infestation may have a more important role than previously believed in the dynamics of the SKC population in mid-Patagonia.


Assuntos
Anomuros , Isópodes , Anomuros/crescimento & desenvolvimento , Anomuros/parasitologia , Isópodes/fisiologia , Argentina , Distribuição Animal , Estações do Ano , Animais , Dinâmica Populacional
9.
Parasitol Res ; 123(4): 188, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635142

RESUMO

Patterns in parasite diversity are shaped by their environmental and ecological settings, and to better understand their interactions with hosts and the corresponding biology, it is crucial to understand these context-dependent patterns. To achieve this, we use cymothoid isopods, an important group of fish parasites, to test a long-standing hypothesis about parasite diversity and prevalence pattern: whether semi-enclosed water bodies allow low diversity and high prevalence of parasitic isopods. Specifically, we compare these patterns between Chilika lagoon (Odisha, India), a semi-enclosed water body, and the adjoining Odisha coast (India). Our finding reveals that the semi-enclosed Chilika lagoon has a considerably lower diversity of parasitic isopods than its adjoining open sea along the Odisha coast. Additionally, the parasitic isopod infection levels in Chilika lagoon are noticeably higher, and isopod assemblage is less even than those in coastal waters along the Odisha coast. Our results support the hypothesised association between enclosed water bodies, parasite diversity, and host prevalence and contribute to an enhanced comprehension of the ecology of parasitic isopods in distinct marine environments.


Assuntos
Isópodes , Parasitos , Animais , Ecossistema , Prevalência , Índia , Água
10.
Parasitol Res ; 123(1): 86, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38182847

RESUMO

With the opening of the Suez Canal in 1869, many changes have occurred in the Mediterranean Sea ecosystem so became a home to many invasive Lessepsian marine species that have migrated from the Red Sea. About 500 marine species including pufferfish have immigrated and rapidly established a population in the Mediterranean Sea causing significant impact on its ecosystem and fisheries sector. The parasitic fauna of these pufferfish has scarcely been studied in the Mediterranean Sea and also in their native habitat. During this surveillance study on the invasive pufferfish species from the Egyptian Mediterranean coast, the female cymothoid isopod Elthusa raynaudii was detected from the branchial cavity and also in the buccal cavity of 23.9% of the examined Lagocephalus sceleratus. The isolated isopod species was firstly identified and described through electron microscopy and molecular phylogeny based on the sequences of mitochondrial 16S rRNA gene. Additionally, the description of eggs, embryonic stage, and manca of E. raynaudii was firstly provided. The pathological impact on the infested fish tissues was investigated and revealed curling and loss of secondary gill lamellae in addition to mucous exudates in between the gill filaments and granuloma formation in the gill arch. The study provided the first report of L. sceleratus as a new host for the isopod E. raynaudii collected from the Egyptian Mediterranean coast as a new locality record. The role of the Lessepsian invasive pufferfish in transmitting parasites to the native fish species was discussed.


Assuntos
Isópodes , Tetraodontiformes , Feminino , Animais , Filogenia , Prata , Ecossistema , Mar Mediterrâneo , RNA Ribossômico 16S/genética , Espécies Introduzidas
11.
An Acad Bras Cienc ; 96(1): e20230706, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656057

RESUMO

Over recent years, fish parasites of the genus Cymothoa Fabricius, 1793, have received increased attention due to both their ecological and their economic importance to aquaculture and fishery. As the studies about Cymothoa have increased this improve our understanding on the host specificity and distribution of these parasites. The aim of this paper was to review the current global geographic distribution, distribution patterns and parasite-host interactions patterns of Cymothoa spp. associated with fish from marine and brackish water bodies around the world. A total of 144 samples were analyzed, from which 23 species of Cymothoa were found parasitizing 84 teleost fish species of 35 families and 20 orders. Most of these parasites were found in the mouth of the host fish, including in wild fish. The highest occurrence of parasites was found in host species belonging to the families Carangidae and Lutjanidae. Host specificity was an important factor in the geographic distribution of Cymothoa species as also environmental temperature. Cymothoa indica, Cymothoa exigua and Cymothoa excisa were the species with lowest specificity for host family and widest geographic distribution.


Assuntos
Doenças dos Peixes , Peixes , Especificidade de Hospedeiro , Interações Hospedeiro-Parasita , Isópodes , Animais , Isópodes/classificação , Isópodes/parasitologia , Peixes/parasitologia , Peixes/classificação , Doenças dos Peixes/parasitologia , Distribuição Animal
12.
Syst Parasitol ; 101(4): 50, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972021

RESUMO

The comparative analysis of records of Elthusa samariscii (Shiino, 1951) from Japan and India, alongside corresponding illustrations, indicates that the records of E. samariscii from Samaris cristatus Gray in India represent a distinct and previously undescribed species. This study introduces Sandythoa tiranga gen. and sp. nov., providing comprehensive descriptions of various lifecycle stages, including the female, male, transitional, premanca, and manca larvae. The following combinations of characters identify the genus: cephalon anterior margin with acute rostrum; pleonite 1 is distinctly narrow, not extending laterally; presence of a narrow gap between pleonites; antenna with more than 10 articles; maxilliped with oostegital lobe. Sandythoa tiranga sp. nov. is specifically identified along the southwest coast of India. Furthermore, we propose transferring the following species from Elthusa: Sandythoa arnoglossi (Trilles and Justine 2006) comb. nov.; Sandythoa parabothi (Trilles and Justine, 2004) comb. nov.; Sandythoa samariscii (Shiino, 1951) comb. nov.; Sandythoa moritakii (Saito and Yamauchi, 2016) comb. nov. A revised key to the global marine branchial cymothoid genera is provided.


Assuntos
Isópodes , Especificidade da Espécie , Animais , Oceano Índico , Isópodes/classificação , Isópodes/anatomia & histologia , Feminino , Masculino , Peixes/parasitologia
13.
Syst Parasitol ; 101(2): 26, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478214

RESUMO

Brucethoa isro n. sp., a new species of deep-sea cymothoid is described and illustrated from the host fish Spinyjaw greeneye, Chlorophthalmus corniger Alcock, 1894, at depths of 265 to 458 metres from the southwest coast of India. Brucethoa isro n. sp. is recovered from the base of the gill cavity, facing the head towards the anterior, and the dorsal body closely adpressed against the gill, while the ventral brood presses against the inner wall of the operculum. Brucethoa isro n. sp., the second species of the genus, is characterized by: head weakly immersed in pereonite 1, very elongated body (3.15 times as long as wide); body dorsum not vaulted, almost flat; all coxae short, 0.5 times as the length of corresponding pereonites; sternite 7 with prominent posterior lobes. All adult life stages of the new species are described [including females (ovigerous and non-ovigerous), males, transitional, and juvenile. The species is currently known from the southwest coast of India and is the type locality. Additionally, this research provides valuable ecological insights into Brucethoa isro n. sp. and its habitat. As part of the taxonomic contributions, two species, Brucethoa alvaradoensis (Rocha-Ramírez, Chávez-López & Bruce, 2005) comb. n. and Brucethoa epinepheli (Trilles & Justine, 2010) comb. n., are transferred from the Elthusa genus to the Brucethoa genus.


Assuntos
Isópodes , Parasitos , Feminino , Masculino , Animais , Oceano Índico , Especificidade da Espécie , Peixes/parasitologia
14.
Evol Dev ; 25(2): 137-152, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36755467

RESUMO

Novel phenotypes can come about through a variety of mechanisms including standing genetic variation from a founding population. Cave animals are an excellent system in which to study the evolution of novel phenotypes such as loss of pigmentation and eyes. Asellus aquaticus is a freshwater isopod crustacean found in Europe and has both a surface and a cave ecomorph which vary in multiple phenotypic traits. An orange eye phenotype was previously revealed by F2 crosses and backcrosses to the cave parent within two examined Slovenian cave populations. Complete loss of pigmentation, both in eye and body, is epistatic to the orange eye phenotype and therefore the orange eye phenotype is hidden within the cave populations. Our goal was to investigate the origin of the orange eye alleles within the Slovenian cave populations by examining A. aquaticus individuals from Slovenian and Romanian surface populations and Asellus aquaticus infernus individuals from a Romanian cave population. We found orange eye individuals present in lab raised surface populations of A. aquaticus from both Slovenia and Romania. Using a mapping approach with crosses between individuals of two surface populations, we found that the region known to be responsible for the orange eye phenotype within the two previously examined Slovenian cave populations was also responsible within both the Slovenian and the Romanian surface populations. Complementation crosses between orange eye Slovenian and orange eye Romanian surface individuals suggest that the same gene is responsible for the orange eye phenotype in both surface populations. Additionally, we observed a low frequency phenotype of eye loss in crosses generated between the two surface populations and also in the Romanian surface population. Finally, in a cave population from Romania, A. aquaticus infernus, we found that the same region is also responsible for the orange eye phenotype as the Slovenian cave populations and the Slovenian and Romanian surface populations. Therefore, we present evidence that variation present in the cave populations could originate from standing variation present in the surface populations and/or transgressive hybridization of different surface phylogenetic lineages rather than de novo mutations.


Assuntos
Isópodes , Animais , Filogenia , Fenótipo , Variação Genética , Água Doce , Cavernas
15.
Environ Microbiol ; 25(12): 2776-2791, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37041018

RESUMO

Microplastic (MP) is an environmental burden and enters food webs via ingestion by macrofauna, including isopods (Porcellio scaber) in terrestrial ecosystems. Isopods represent ubiquitously abundant, ecologically important detritivores. However, MP-polymer specific effects on the host and its gut microbiota are unknown. We tested the hypothesis that biodegradable (polylactic acid [PLA]) and non-biodegradable (polyethylene terephthalate [PET]; polystyrene [PS]) MPs have contrasting effects on P. scaber mediated by changes of the gut microbiota. The isopod fitness after an 8-week MP-exposure was generally unaffected, although the isopods showed avoidance behaviour to PS-food. MP-polymer specific effects on gut microbes were detected, including a stimulation of microbial activity by PLA compared with MP-free controls. PLA stimulated hydrogen emission from isopod guts, while PET and PS were inhibitory. We roughly estimated 107 kg year-1 hydrogen emitted from the isopods globally and identified their guts as anoxic, significant mobile sources of reductant for soil microbes despite the absence of classical obligate anaerobes, likely due to Enterobacteriaceae-related fermentation activities that were stimulated by lactate generated during PLA-degradation. The findings suggest negative effects of PET and PS on gut fermentation, modulation of important isopod hydrogen emissions by MP pollution and the potential of MP to affect terrestrial food webs.


Assuntos
Isópodes , Microbiota , Animais , Isópodes/fisiologia , Microplásticos/farmacologia , Plásticos , Ingestão de Alimentos , Poliésteres
16.
Proc Biol Sci ; 290(2000): 20230725, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37312543

RESUMO

Encroachment of artificial light at night (ALAN) into natural habitats is increasingly recognized as a major source of anthropogenic disturbance. Research focussed on variation in the intensity and spectrum of ALAN emissions has established physiological, behavioural and population-level effects across plants and animals. However, little attention has been paid to the structural aspect of this light, nor how combined morphological and behavioural anti-predator adaptations are affected. We investigated how lighting structure, background reflectance and the three-dimensional properties of the environment combined to affect anti-predator defences in the marine isopod Ligia oceanica. Experimental trials monitored behavioural responses including movement and background choice, and also colour change, a widespread morphological anti-predator mechanism little considered in relation to ALAN exposure. We found that behavioural responses of isopods to ALAN were consistent with classic risk-aversion strategies, being particularly exaggerated under diffuse lighting. However, this behaviour was disconnected from optimal morphological strategies, as diffuse light caused isopods to become lighter coloured while seeking out darker backgrounds. Our work highlights the potential for the structure of natural and artificial light to play a key role in behavioural and morphological processes likely to affect anti-predator adaptations, survival, and ultimately wider ecological effects.


Assuntos
Isópodes , Animais , Poluição Luminosa , Aclimatação , Afeto , Efeitos Antropogênicos
17.
Mol Phylogenet Evol ; 180: 107681, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36572163

RESUMO

Epicaridea is a group of isopods with high morphological diversity, reduction and loss of characters, and strong sexual dimorphism due to their parasitic lifestyles but their systematics is not well understood. Despite the use of nuclear and mitochondrial genes to test the phylogeny of many invertebrate groups, few molecular data from epicarideans are known, especially from the subfamily Orbioninae. Species in this group are obligate penaeoid shrimp parasites and the lack molecular data has hampered studies on the phylogeny of Orbioninae. To rectify this, mitochondrial and nuclear genes of 9 orbionine species are sequenced here. Compared to the isopod ground pattern, the sequences of orbionines seem to be more plastic near the control region and major translocations are located between rrns and cob. A phylogenetic analysis based on three data sets showed strong support for a monophyletic Orbioninae and that Epicaridea should be accepted at the rank of a suborder within Isopoda. The monophyly of Parapenaeon and Orbione is in doubt based on morphological and molecular data. The genus Parapenaeon is revised and a new genus Aparapenaeon is erected for Parapenaeon japonica and three closely related species.


Assuntos
Isópodes , Parasitos , Animais , Isópodes/genética , Filogenia , Sequência de Bases , Genes Mitocondriais , Parasitos/genética
18.
Biol Lett ; 19(10): 20230271, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37875158

RESUMO

Prey should select safer breeding sites over riskier sites of otherwise similar habitats. This preference, however, may differ between conspecifics of different competitive abilities if the costs of intraspecific competition overpower the benefits of breeding in a safer site. Our goal was to test this hypothesis by exploring the burrow-site selection of different-sized desert isopods (Hemilepistus reaumuri) near and away from a scorpion burrow. We found that larger females are more likely to occupy burrows than smaller females, regardless of whether these burrows were close or away from scorpion burrows. We also found that larger females stayed longer in safer burrows and that smaller females tended to stay longer in riskier sites even in the absence of direct competition, implying a prudent burrow-site selection. We found no association between male size and the tendency to occupy or to spend time in a burrow, regardless of whether these burrows were close or away from scorpion burrows. Our work highlights the need to consider intraspecific competition when exploring how predators regulate prey behaviour.


Assuntos
Ecossistema , Isópodes , Animais , Feminino , Masculino , Isópodes/fisiologia , Medo
19.
Biol Lett ; 19(1): 20220457, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36628964

RESUMO

In the isopod Armadillidium vulgare, many females produce progenies with female-biased sex ratios, owing to two feminizing sex ratio distorters (SRD): Wolbachia endosymbionts and the f element. We investigated the distribution and population dynamics of these SRD and mitochondrial DNA variation in 16 populations from Europe and Japan. Confirming and extending results from the 1990s, we found that the SRD are present at variable frequencies in populations and that the f element is overall more frequent than Wolbachia. The two SRD never co-occur at high frequency in any population, suggesting an apparent mutual exclusion. We also detected Wolbachia or the f element in some males, which probably reflects insufficient titer to induce feminization or presence of masculinizing alleles. Our results are consistent with a single integration event of a Wolbachia genome in the A. vulgare genome at the origin of the f element, which contradicts an earlier hypothesis of frequent losses and gains. We identified strong linkage between Wolbachia strains and mitochondrial haplotypes, but no association between the f element and mitochondrial background. Our results open new perspectives on SRD evolutionary dynamics in A. vulgare, the evolution of genetic conflicts and their impact on the variability of sex determination systems.


Assuntos
Isópodes , Wolbachia , Masculino , Animais , Feminino , Isópodes/genética , Razão de Masculinidade , Haplótipos , Europa (Continente) , Japão , Wolbachia/genética
20.
Naturwissenschaften ; 110(5): 47, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37725149

RESUMO

In many crustacean species, an individual possesses both uniramous and biramous appendages that enable us to compare the two types on the same genetic background. Therefore, among the diverse morphologies of arthropod appendages, crustacean biramous appendages provide interesting subjects for studying the developmental mechanisms underlying appendage modifications. In this study, we report a malformed specimen of the terrestrial isopod Porcellio scaber, in which one of the pleopods was transformed into a different structure. Morphological observations of exoskeletons and musculatures by confocal scanning laser microscopy revealed that the transformed appendage was three-segmented, with at least the apical two segments having pereopod-like musculoskeletal structures. The apical segment of the transformed appendage lacked muscles, and the following segment had a pair of muscle bundles. These findings together with those of some previous studies of gene expression patterns in this species suggest that this anomaly could be caused by homeotic transformation of a flap-like pleopod into a three-segmented pereopod tip, which may be a homologous structure of the pleopod.


Assuntos
Artrópodes , Isópodes , Humanos , Animais , Isópodes/genética , Músculos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA