Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.481
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(25): e2310180, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38342676

RESUMO

Knee replacement surgery confronts challenges including patient dissatisfaction and the necessity for secondary procedures. A key requirement lies in dual-modal measurement of force and temperature of artificial joints during postoperative monitoring. Here, a novel non-toxic near-infrared (NIR) phosphor Sr3Sn2O7:Nd, Yb, is designed to realize the dual-modal measurement. The strategy is to entail phonon-assisted upconversion luminescence (UCL) and trap-controlled mechanoluminescence (ML) in a single phosphor well within the NIR biological transmission window. The phosphor is embedded in medical bone cement forming a smart joint in total knee replacements illustrated as a proof-of-concept. The sensing device can be charged in vitro by a commercial X-ray source with a safe dose rate for ML, and excited by a low power 980 nm laser for UCL. It attains impressive force and temperature sensing capabilities, exhibiting a force resolution of 0.5% per 10 N, force detection threshold of 15 N, and a relative temperature sensitive of up to 1.3% K-1 at 309 K. The stability against humidity and thermal shock together with the robustness of the device are attested. This work introduces a novel methodological paradigm, paving the way for innovative research to enhance the functionality of artificial tissues and joints in living organisms.


Assuntos
Artroplastia do Joelho , Temperatura , Humanos , Estrôncio/química , Itérbio/química , Luminescência , Neodímio/química , Medições Luminescentes/métodos , Raios Infravermelhos
2.
Opt Lett ; 49(13): 3612-3615, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950222

RESUMO

While lasers have found their successful applications in various clinical specialties, in clinical dental practice, traditional mechanical drills are still predominantly utilized. Although erbium-doped lasers have been demonstrated for dental therapy, their clinical performance is still not satisfactory due to the long pulse width, low peak power, and small repetition rate. To attain a smaller thermal diffusion thus better biological safety and surgical precision, as well as more rapid ablation, the advancement of femtosecond laser techniques has opened another route of dental surgery; however, no biological safety investigation has been reported. Here, we present a systematic study of dental ablation by a Yb:CaAlGdO4 regenerative amplifier with a central wavelength of 1040 nm and pulse width of 160 fs. The in vivo experiment of dental surgery investigating the inflammatory response has been reported, for the first time to the best of our knowledge. It is demonstrated that dental surgery by Yb:CaAlGdO4 femtosecond laser ablation has better biological safety compared to the turbine drilling, thanks to its non-contact and ultrafast heat dissipation nature.


Assuntos
Terapia a Laser , Terapia a Laser/métodos , Terapia a Laser/instrumentação , Animais , Itérbio/química , Lasers de Estado Sólido
3.
Eur J Nucl Med Mol Imaging ; 51(6): 1558-1573, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38270686

RESUMO

PURPOSE: Classical brachytherapy of solid malignant tumors is an invasive procedure which often results in an uneven dose distribution, while requiring surgical removal of sealed radioactive seed sources after a certain period of time. To circumvent these issues, we report the synthesis of intrinsically radiolabeled and gum Arabic glycoprotein functionalized [169Yb]Yb2O3 nanoseeds as a novel nanoscale brachytherapy agent, which could directly be administered via intratumoral injection for tumor therapy. METHODS: 169Yb (T½ = 32 days) was produced by neutron irradiation of enriched (15.2% in 168Yb) Yb2O3 target in a nuclear reactor, radiochemically converted to [169Yb]YbCl3 and used for nanoparticle (NP) synthesis. Intrinsically radiolabeled NP were synthesized by controlled hydrolysis of Yb3+ ions in gum Arabic glycoprotein medium. In vivo SPECT/CT imaging, autoradiography, and biodistribution studies were performed after intratumoral injection of radiolabeled NP in B16F10 tumor bearing C57BL/6 mice. Systematic tumor regression studies and histopathological analyses were performed to demonstrate therapeutic efficacy in the same mice model. RESULTS: The nanoformulation was a clear solution having high colloidal and radiochemical stability. Uniform distribution and retention of the radiolabeled nanoformulation in the tumor mass were observed via SPECT/CT imaging and autoradiography studies. In a tumor regression study, tumor growth was significantly arrested with different doses of radiolabeled NP compared to the control and the best treatment effect was observed with ~ 27.8 MBq dose. In histopathological analysis, loss of mitotic cells was apparent in tumor tissue of treated groups, whereas no significant damage in kidney, lungs, and liver tissue morphology was observed. CONCLUSIONS: These results hold promise for nanoscale brachytherapy to become a clinically practical treatment modality for unresectable solid cancers.


Assuntos
Braquiterapia , Itérbio , Animais , Braquiterapia/métodos , Camundongos , Itérbio/química , Distribuição Tecidual , Nanopartículas/química , Marcação por Isótopo , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Camundongos Endogâmicos C57BL , Goma Arábica/química , Feminino , Glicoproteínas/química , Linhagem Celular Tumoral , Radioisótopos/química , Radioisótopos/uso terapêutico
4.
Ecotoxicol Environ Saf ; 284: 116905, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39191133

RESUMO

Lanthanide-doped upconversion nanoparticles (Ln-UCNPs) have been considered promising materials for various fields, such as biomedical and industrial applications. However, data and reports regarding its toxicity and environmental risks are scarce. Under these circumstances, data must be obtained to fully understand potential toxicity and adverse outcome pathways. In the present study, the toxicity of uncoated Ln-UCNP cores (NaYF4:Yb, Er) was systematically assessed in zebrafish embryos during early developmental stages. Ln-UCNPs were found to have multiple toxic effects, such as effects on survival rates, delayed hatching times, shorter body lengths, altered heart rates and blood circulation (significantly reduced), and neurobehavioral impairments in response to photoperiod stimulation. Bioimaging showed that Ln-UCNPs were distributed on the chorion, eyes, and skin at 72 hpf. However, it accumulates in the pharynx, esophagus, and intestine after oral administration. Ln-UCNPs disrupt the diversity and abundance of host-associated microorganisms (gut microbiota) leading to an increase in the prevalence of harmful bacteria in zebrafish. Transcriptomic and Ingenuity Pathway Analysis (IPA) predicted Interleukin-8 (IL-8) signaling, neuroinflammation, cardiac hypertrophy signaling pathways, immune and inflammation-related response interferon-gamma (ifnγ), and miR-155 as key mediators in regulatory effects. Based on this, a causal network was built showing the strong links between the induced gene expression of differentially expressed genes (DEGs), such as nitric oxide synthase 2 (nos2) and tumor necrosis factor (tnf) upon Ln-UCNPs treatment, and with the downstream adverse outcomes, in particular, the promotion of apoptosis, liver damage, and inflammatory response. Finally, RT-qPCR analysis confirmed the up-regulated expression of nos2 and tnf in the exposed larvae, consistent with the observation of an increased number of fluorescence-labelled neutrophils and macrophages in lyz: DsRed transgenic zebrafish until 120 hpf exposure, which together demonstrated the proinflammatory effects of Ln-UCNPs on organisms. In conclusion, we illustrated the developmental toxicity, disruption of gut-microbiome, and proinflammatory effects of Ln-UCNP cores on zebrafish, and the causal network from IPA analysis may help further elucidate the adverse outcome pathway of Ln-UCNPs.


Assuntos
Microbioma Gastrointestinal , Nanopartículas , Peixe-Zebra , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Nanopartículas/toxicidade , Ítrio/toxicidade , Fluoretos/toxicidade , Itérbio/toxicidade , Érbio/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Inflamação/induzido quimicamente
5.
Int J Mol Sci ; 25(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39063119

RESUMO

Thin films of the superconductor YBa2Cu3O7-δ (YBCO) were modified by low-energy light-ion irradiation employing collimated or focused He+ beams, and the long-term stability of irradiation-induced defects was investigated. For films irradiated with collimated beams, the resistance was measured in situ during and after irradiation and analyzed using a phenomenological model. The formation and stability of irradiation-induced defects are highly influenced by temperature. Thermal annealing experiments conducted in an Ar atmosphere at various temperatures demonstrated a decrease in resistivity and allowed us to determine diffusion coefficients and the activation energy ΔE=(0.31±0.03) eV for diffusive oxygen rearrangement within the YBCO unit cell basal plane. Additionally, thin YBCO films, nanostructured by focused He+-beam irradiation into vortex pinning arrays, displayed significant commensurability effects in magnetic fields. Despite the strong modulation of defect densities in these pinning arrays, oxygen diffusion during room-temperature annealing over almost six years did not compromise the signatures of vortex matching, which remained precisely at their magnetic fields predicted by the pattern geometry. Moreover, the critical current increased substantially within the entire magnetic field range after long-term storage in dry air. These findings underscore the potential of ion irradiation in tailoring the superconducting properties of thin YBCO films.


Assuntos
Cobre , Cobre/química , Temperatura , Supercondutividade , Itérbio/química , Oxigênio/química , Condutividade Elétrica
6.
Opt Lett ; 48(13): 3447-3450, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37390152

RESUMO

Erbium-ion-doped lithium niobate (LN) microcavity lasers working in the communication band have attracted extensive attention recently. However, their conversion efficiencies and laser thresholds still have significant room to improve. Here, we prepared microdisk cavities based on erbium-ytterbium-co-doped LN thin film by using ultraviolet lithography, argon ion etching, and a chemical-mechanical polishing process. Benefiting from the erbium-ytterbium co-doping-induced gain coefficient improvement, laser emission with an ultralow threshold (∼1 µW) and high conversion efficiency (1.8 × 10-3%) was observed in the fabricated microdisks under a 980-nm-band optical pump. This study provides an effective reference for improving the performance of LN thin-film lasers.


Assuntos
Érbio , Itérbio , Óxidos , Impressão
7.
Opt Lett ; 48(14): 3817-3820, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37450758

RESUMO

A single-frequency distributed-Bragg-reflector fiber laser at 980 nm with a quantum defect of less than 0.6% was developed with a 1.5-cm 12 wt% ytterbium-doped phosphate fiber pumped by a 974.5-nm laser diode. Linearly polarized single-longitude-mode laser with a polarization extinction ratio (PER) of nearly 30 dB and spectral linewidth of less than 1.8 kHz was obtained. A maximum output power of 275 mW was measured at a launched pump power of 620 mW. The performance of the single-frequency fiber laser pumped at 909 nm and 976 nm was also characterized. This research demonstrated an approach to high-power single-frequency fiber laser oscillators with mitigated thermal effects.


Assuntos
Lasers Semicondutores , Itérbio
8.
Mol Divers ; 27(1): 511-515, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35416620

RESUMO

A new Lewis acid promoted domino isocyanide insertion/5-exo-dig cyclization of readily available Strecker 3-component adducts to 4-substituted 5-aminoimidazole derivatives is herein reported. Despite their potential as relevant heterocyclic scaffolds in medicinal chemistry programs, this class of compounds is still underrepresented, with current synthetic strategies poorly efficient in terms of timing and yields. To this end, we show how the exploitation of unconventional reactivities of isocyanides, promoted by ytterbium-triflate, could represent a key resource to enable a fast and easy access to such an unexplored area of the chemical space.


Assuntos
Cianetos , Itérbio , Ciclização , Cianetos/química , Imidazóis/química
9.
Sensors (Basel) ; 23(11)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37299855

RESUMO

A tunable and narrow-bandwidth Q-switched ytterbium-doped fiber (YDF) laser is investigated in this paper. The non-pumped YDF acts as a saturable absorber and, together with a Sagnac loop mirror, provides a dynamic spectral-filtering grating to achieve a narrow-linewidth Q-switched output. By adjusting an etalon-based tunable fiber filter, a tunable wavelength from 1027 nm to 1033 nm is obtained. When the pump power is 1.75 W, the Q-switched laser pulses with a pulse energy of 10.45 nJ, and a repetition frequency of 11.98 kHz and spectral linewidth of 112 MHz are obtained. This work paves the way for the generation narrow-linewidth Q-switched lasers with tunable wavelengths in conventional ytterbium, erbium, and thulium fiber bands to address critical applications such as coherent detection, biomedicine, and nonlinear frequency conversion.


Assuntos
Lasers , Itérbio , Desenho de Equipamento , Luz , Érbio
10.
Molecules ; 28(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36838619

RESUMO

The luminescent performances of near-infrared (NIR) lanthanide (Ln) complexes were restricted greatly by vibration quenching of X-H (X = C, N, O) oscillators, which are usually contained in ligands and solvents. Encapsulating Ln3+ into a cavity of coordination atoms is a feasible method of alleviating this quenching effect. In this work, a novel ytterbium complex [Yb(DPPDA)2](DIPEA) coordinated with 4,7-diphenyl-1,10-phenanthroline-2,9-dicarboxylic acid (DPPDA) was synthesized and characterized by FT-IR, ESI-MS and elemental analysis. Under the excitation of 335 nm light, [Yb(DPPDA)2](DIPEA) showed two emission peaks at 975 and 1011 nm, respectively, which were assigned to the characteristic 2F5/2 → 2F7/2 transition of Yb3+. Meanwhile, this ytterbium complex exhibited a plausible absolute quantum yield of 0.46% and a luminescent lifetime of 105 µs in CD3OD solution. In particular, its intrinsic quantum yield was calculated to be 12.5%, and this considerably high value was attributed to the near-zero solvent molecules bound to Yb3+ and the absence of X-H oscillators in the first coordination sphere. Based on experimental results, we further proposed that the sensitized luminescence of [Yb(DPPDA)2](DIPEA) occurred via an internal redox mechanism instead of an energy transfer process.


Assuntos
Elementos da Série dos Lantanídeos , Itérbio , Espectroscopia de Infravermelho com Transformada de Fourier , Luminescência , Solventes
11.
J Am Chem Soc ; 144(29): 13356-13365, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35771602

RESUMO

We have prepared a hetero-tetrametallic assembly consisting of three ytterbium ions coordinated to a central [Ru(bpm)3]2+ (bpm = 2,2'-bipyrimidine) motif. Irradiation into the absorption band of the peripheral ytterbium ions at 980 nm engenders emission of the 3MLCT state of the central [Ru(bpm)3]2+ core at 636 nm, which represents the first example of f → d molecular upconversion (UC). Time-resolved measurements reveal a slow rise of the UC emission, which was modeled with a mathematical treatment of the observed kinetics according to a cooperative photosensitization mechanism using a virtual Yb centered doubly excited state followed by energy transfer to the Ru centered 1MLCT state.


Assuntos
Itérbio , Transferência de Energia , Íons
12.
J Am Chem Soc ; 144(14): 6148-6153, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35377146

RESUMO

Circularly polarized luminescence (CPL) in two subregions of the near-infrared (NIR) has been achieved. By leveraging the rigidity and diminishing detrimental vibrations of the heterobimetallic binolate complexes of erbium [(Binol)3ErNa3], species exhibiting an exceptionally high dissymmetry factor (|glum |) of 0.47 at 1550 nm were obtained. These erbium complexes are the first reported examples of CPL observed beyond 1200 nm. Analogous complexes of ytterbium and neodymium also exhibited strong CPL (|glum| = 0.17, 0.05, respectively) in a higher energy NIR window (800-1200 nm). All complexes exhibit high quantum yields (Er: 0.58%, Yb: 17%, Nd: 9.3%) and high BCPL values (Er: 57 M-1 cm-1, Yb: 379 M-1 cm-1, Nd: 29 M-1 cm-1). Because of their strong CPL emission in the telecom band (1550 nm), biologically relevant NIR emission window (800-1100 nm), and synthetic versatility, the complexes reported here could permit further promising developments in quantum communication technologies and biologically relevant sensors.


Assuntos
Érbio , Luminescência , Neodímio , Itérbio
13.
Anal Chem ; 94(20): 7200-7209, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35549212

RESUMO

In this study, we measure the absolute isotope ratios of ytterbium (Yb) by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) using an optimized regression model for mass bias correction. A rhenium (Re) reference material (NIST SRM 3143), which has been characterized previously, is selected as a primary calibrator to calibrate the absolute Yb isotope ratios for three Yb materials (GSB, Alfa Yb, and GBW). The three-isotope plot for all collected data indicates that the results of Yb isotope ratios obtained are not affected by any polyatomic interferences and the mass-independent isotopic fractionation. Furthermore, the recalibrated Hf historical isotope ratios by using the absolute Yb isotopic composition obtained in this study for the isobaric interference correction on Hf isotopes are in agreement with the original historical values. This work has further demonstrated the applicability of the regression model for the calibrated measurements of absolute isotope ratios using MC-ICP-MS. The three mono-elemental Yb standard solutions are thus proposed as the reference materials for Yb isotope ratio measurements in environmental and geoscience applications.


Assuntos
Isótopos , Itérbio , Isótopos/análise , Espectrometria de Massas/métodos , Análise Espectral
14.
Small ; 18(29): e2107976, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35732601

RESUMO

The spatial distribution and concentration of lanthanide activator and sensitizer dopant ions are of key importance for the luminescence color and efficiency of upconverting nanoparticles (UCNPs). Quantifying dopant ion distributions and intermixing, and correlating them with synthesis methods require suitable analytical techniques. Here, X-ray photoelectron spectroscopy depth-profiling with tender X-rays (2000-6000 eV), providing probe depths ideally matched to UCNP sizes, is used to measure the depth-dependent concentration ratios of Er3+ to Yb3+ , [Er3+ ]/[Yb3+ ], in three types of UCNPs prepared using different reagents and synthesis methods. This is combined with data simulations and inductively coupled plasma-optical emission spectroscopy (ICP-OES) measurements of the lanthanide ion concentrations to construct models of the UCNPs' dopant ion distributions. The UCNP sizes and architectures are chosen to demonstrate the potential of this approach. Core-only UCNPs synthesized with XCl3 ·6H2 O precursors (ß-phase) exhibit a homogeneous distribution of lanthanide ions, but a slightly surface-enhanced [Er3+ ]/[Yb3+ ] is observed for UCNPs prepared with trifluroacetate precursors (α-phase). Examination of Yb-core@Er-shell UCNPs reveals a co-doped, intermixed region between the single-doped core and shell. The impact of these different dopant ion distributions on the UCNP's optical properties is discussed to highlight their importance for UCNP functionality and the design of efficient UCNPs.


Assuntos
Érbio , Fluoretos , Nanopartículas , Itérbio , Ítrio , Cátions , Érbio/química , Fluoretos/química , Luminescência , Nanopartículas/química , Espectroscopia Fotoeletrônica , Raios X , Itérbio/química , Ítrio/química
15.
Opt Express ; 30(17): 30135-30148, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36242123

RESUMO

We introduce a broadband coherent anti-Stokes Raman scattering (CARS) microscope based on a 2-MHz repetition rate ytterbium laser generating 1035-nm high-energy (≈µJ level) femtosecond pulses. These features of the driving laser allow producing broadband red-shifted Stokes pulses, covering the whole fingerprint region (400-1800 cm-1), employing supercontinuum generation in a bulk crystal. Our system reaches state-of-the-art acquisition speed (<1 ms/pixel) and unprecedented sensitivity of ≈14.1 mmol/L when detecting dimethyl sulfoxide in water. To further improve the performance of the system and to enhance the signal-to-noise ratio of the CARS spectra, we designed a convolutional neural network for spectral denoising, coupled with a post-processing pipeline to distinguish different chemical species of biological tissues.


Assuntos
Aprendizado Profundo , Análise Espectral Raman , Dimetil Sulfóxido , Água , Itérbio
16.
Opt Express ; 30(9): 15376-15387, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35473258

RESUMO

A laser system for standoff coherent anti-Stokes Raman scattering (CARS) spectroscopy of various materials under ambient light conditions is presented. The system is based on an ytterbium laser and an ultrafast optical parametric amplifier for the generation of a broadband pump tunable from 880 to 930 nm, a Stokes at 1025 nm, and a narrowband probe at 512.5 nm. High-resolution Raman spectra encompassing the fingerprint region (400-1800 cm-1) are obtained in 5 ms for toluene, and 100 ms for two types of sugars, glucose and fructose, at a distance of 1 m. As a demonstration of the potential of the setup, hyperspectral images of a 2×2-cm2 target area are collected for a toluene cuvette and a glucose/fructose pressed disk. Our approach is suitable for implementation of a portable system for standoff CARS imaging of chemical and biological materials.


Assuntos
Análise Espectral Raman , Itérbio , Frutose , Glucose , Lasers , Análise Espectral Raman/métodos , Tolueno
17.
Inorg Chem ; 61(34): 13618-13626, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-35974695

RESUMO

The efficient energy transfer in La3GaGe5O16:Cr3+, Yb3+/Nd3+ and La3GaGe5O16:Cr3+, Yb3+, Nd3+ was investigated in detail. In this phosphor, Cr3+ acts as the energy absorber (250-700 nm) to sensitize Yb3+/Nd3+ in La3GaGe5O16. Under excitation at 418 nm, La3GaGe5O16:Cr3+, Yb3+ phosphors exhibited a broad emission band in the near-infrared (NIR) region located at 976 nm (La3GaGe5O16:Cr3+, Nd3+ at 1056 nm), which was attributed to the 2F5/2-2F7/2 transition of the Yb3+ ions (2F3/2 → 4I11/2 transition of Nd3+). Moreover, a Nd3+ ion was introduced into La3GaGe5O16:Cr3+, Yb3+. The analysis of excitation spectra and decay time proves that Nd3+ acts as a bridging ion in the system. This can be used as a new strategy to enhance the energy transfer in Cr3+, Yb3+ co-doped phosphors, and these phosphors have potential applications in NIR spectroscopy regulation.


Assuntos
Espectroscopia de Luz Próxima ao Infravermelho , Itérbio , Transferência de Energia , Íons
18.
Inorg Chem ; 61(29): 11442-11453, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35820203

RESUMO

To ameliorate the inherent thermal quenching behaviors of upconverting materials, a series of Ho3+/Yb3+-codoped Al2Mo3O12 (i.e., Al2Mo3O12:Ho3+/2xYb3+) microparticles were developed. Upon excitation at 980 nm, intense upconversion (i.e., UC) emissions arising from Ho3+ are observed, and their optimal states occur at x = 0.09. Besides, the UC mechanisms of these generated emissions from 5F4/5S2 and 5F5 levels all pertain to a two-photon absorption process. Furthermore, modified thermal quenching performances are realized in the resultant microparticles, in which the intensities of the UC emissions arising from 5F4/5S2 levels decrease as the temperature increases, while that of the UC emission from the 5F5 level increases and then decreases with the increase of temperature. The coexistence of nonradiative transition promoted crossrelaxation, and energy transfer routes can be responsible for the above phenomenon. By studying the diverse UC emission characteristics at high temperatures, we revealed the thermometric properties of Al2Mo3O12:Ho3+/2xYb3+ microparticles, where their sensitivities can be regulated by selecting the spectral mode and dopant contents. According to the intensity ratio of the UC emissions originating from 5F5 → 5I8 to (5F4,5S2) → 5I7 transitions at different temperatures, one obtains that the relative and absolute sensitivities of the developed compounds reach up to 0.464% and 0.1739 K-1, respectively. Additionally, by the analysis of the thermochromic performances of final products, their thermometric characteristics were also investigated. Note that the environmental temperature is able to be facilely read out by distinguishing the emitting color. These results verify that the Al2Mo3O12:Ho3+/2xYb3+ microparticles are promising luminescent materials for multimode visual optical thermometry.


Assuntos
Termometria , Itérbio , Transferência de Energia , Hólmio , Luminescência
19.
Inorg Chem ; 61(51): 20860-20865, 2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36493422

RESUMO

An interesting 48-metal Zn(II)-Yb(III) nanocluster (1) with a size of about 1.3 × 2.8 × 3.1 nm was constructed by carbonate templates from a Schiff base ligand. It exhibits ligand-centered emission and near-infrared (NIR) luminescence of Yb(III), which are used in the dual-emissive detection of rutin (Rut) with high sensitivity even in the presence of other interferences. The response behavior can be expressed by the second-order equation I980 nm/I510 nm = A*[Rut]2 + B*[Rut] + C, and the limits of detection to Rut for the emissions of 1 are 2.23 µM and 0.20 nM.


Assuntos
Elementos da Série dos Lantanídeos , Luminescência , Ligantes , Itérbio , Zinco
20.
Biotechnol Appl Biochem ; 69(3): 920-929, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33830536

RESUMO

Ex vivo interaction of NaYF4 :Yb,Er nanophosphors with isolated mitochondria has been investigated. The nanophosphors were synthesized using the hydrothermal method. The synthesized NaYF4 :Yb,Er nanophosphors were characterized for physicochemical properties. The NaYF4 :Yb,Er nanophosphors showed successful upconversion with excitation wavelength lying in the near-infrared region. The effect of synthesized NaYF4 :Yb,Er nanophosphors on mitochondria isolated from the chicken heart tissue was examined through ROS generation capacity, membrane fluidity, and complex II activity. The exposer of NaYF4 :Yb,Er nanophosphors to isolated mitochondria inhibits ROS generation activity as compared to control. The mitochondria membrane fluidity of the lipid bilayer and complex-II activity of mitochondria was observed to be unaltered after the interaction with NaYF4 :Yb,Er nanoparticles. The results confirm that synthesized NaYF4 :Yb,Er nanoparticles can be used as a safe contrast agent.


Assuntos
Érbio , Itérbio , Érbio/química , Fluoretos/química , Fluoretos/farmacologia , Mitocôndrias , Espécies Reativas de Oxigênio , Itérbio/química , Ítrio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA