Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.688
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Physiol Rev ; 102(4): 1991-2034, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35834774

RESUMO

Time-restricted eating (TRE) is a dietary intervention that limits food consumption to a specific time window each day. The effect of TRE on body weight and physiological functions has been extensively studied in rodent models, which have shown considerable therapeutic effects of TRE and important interactions among time of eating, circadian biology, and metabolic homeostasis. In contrast, it is difficult to make firm conclusions regarding the effect of TRE in people because of the heterogeneity in results, TRE regimens, and study populations. In this review, we 1) provide a background of the history of meal consumption in people and the normal physiology of eating and fasting; 2) discuss the interaction between circadian molecular metabolism and TRE; 3) integrate the results of preclinical and clinical studies that evaluated the effects of TRE on body weight and physiological functions; 4) summarize other time-related dietary interventions that have been studied in people; and 4) identify current gaps in knowledge and provide a framework for future research directions.


Assuntos
Ritmo Circadiano , Jejum , Peso Corporal , Ritmo Circadiano/fisiologia , Ingestão de Alimentos , Jejum/fisiologia , Humanos
2.
Nature ; 620(7972): 154-162, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37495689

RESUMO

Fasting initiates a multitude of adaptations to allow survival. Activation of the hypothalamic-pituitary-adrenal (HPA) axis and subsequent release of glucocorticoid hormones is a key response that mobilizes fuel stores to meet energy demands1-5. Despite the importance of the HPA axis response, the neural mechanisms that drive its activation during energy deficit are unknown. Here, we show that fasting-activated hypothalamic agouti-related peptide (AgRP)-expressing neurons trigger and are essential for fasting-induced HPA axis activation. AgRP neurons do so through projections to the paraventricular hypothalamus (PVH), where, in a mechanism not previously described for AgRP neurons, they presynaptically inhibit the terminals of tonically active GABAergic afferents from the bed nucleus of the stria terminalis (BNST) that otherwise restrain activity of corticotrophin-releasing hormone (CRH)-expressing neurons. This disinhibition of PVHCrh neurons requires γ-aminobutyric acid (GABA)/GABA-B receptor signalling and potently activates the HPA axis. Notably, stimulation of the HPA axis by AgRP neurons is independent of their induction of hunger, showing that these canonical 'hunger neurons' drive many distinctly different adaptations to the fasted state. Together, our findings identify the neural basis for fasting-induced HPA axis activation and uncover a unique means by which AgRP neurons activate downstream neurons: through presynaptic inhibition of GABAergic afferents. Given the potency of this disinhibition of tonically active BNST afferents, other activators of the HPA axis, such as psychological stress, may also work by reducing BNST inhibitory tone onto PVHCrh neurons.


Assuntos
Jejum , Sistema Hipotálamo-Hipofisário , Neurônios , Sistema Hipófise-Suprarrenal , Proteína Relacionada com Agouti/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Jejum/fisiologia , Neurônios GABAérgicos/metabolismo , Ácido gama-Aminobutírico/metabolismo , Sistema Hipotálamo-Hipofisário/citologia , Sistema Hipotálamo-Hipofisário/metabolismo , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/citologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Sistema Hipófise-Suprarrenal/citologia , Sistema Hipófise-Suprarrenal/inervação , Sistema Hipófise-Suprarrenal/metabolismo , Terminações Pré-Sinápticas/metabolismo , Núcleos Septais/citologia , Núcleos Septais/metabolismo
3.
Genes Dev ; 35(9-10): 635-657, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33888557

RESUMO

Mammals undergo regular cycles of fasting and feeding that engage dynamic transcriptional responses in metabolic tissues. Here we review advances in our understanding of the gene regulatory networks that contribute to hepatic responses to fasting and feeding. The advent of sequencing and -omics techniques have begun to facilitate a holistic understanding of the transcriptional landscape and its plasticity. We highlight transcription factors, their cofactors, and the pathways that they impact. We also discuss physiological factors that impinge on these responses, including circadian rhythms and sex differences. Finally, we review how dietary modifications modulate hepatic gene expression programs.


Assuntos
Ingestão de Alimentos/genética , Jejum/fisiologia , Regulação da Expressão Gênica/fisiologia , Fígado/metabolismo , Animais , Ritmo Circadiano , Redes Reguladoras de Genes/genética , Humanos , Fatores Sexuais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Genes Dev ; 35(3-4): 199-211, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33526586

RESUMO

Stem cells maintain tissues by balancing self-renewal with differentiation. A stem cell's local microenvironment, or niche, informs stem cell behavior and receives inputs at multiple levels. Increasingly, it is becoming clear that the overall metabolic status of an organism or metabolites themselves can function as integral members of the niche to alter stem cell fate. Macroscopic dietary interventions such as caloric restriction, the ketogenic diet, and a high-fat diet systemically alter an organism's metabolic state in different ways. Intriguingly, however, they all converge on a propensity to enhance self-renewal. Here, we highlight our current knowledge on how dietary changes feed into stem cell behavior across a wide variety of tissues and illuminate possible explanations for why diverse interventions can result in similar stem cell phenotypes. In so doing, we hope to inspire new avenues of inquiry into the importance of metabolism in stem cell homeostasis and disease.


Assuntos
Dieta , Células-Tronco/fisiologia , Animais , Dieta Hiperlipídica/efeitos adversos , Jejum/fisiologia , Glucose/metabolismo , Humanos , Metabolismo dos Lipídeos/fisiologia , Células-Tronco/microbiologia , Células-Tronco/parasitologia , Estresse Fisiológico/fisiologia
5.
Nature ; 579(7800): 507-517, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32214253

RESUMO

Tumours depend on nutrients supplied by the host for their growth and survival. Modifications to the host's diet can change nutrient availability in the tumour microenvironment, which might represent a promising strategy for inhibiting tumour growth. Dietary modifications can limit tumour-specific nutritional requirements, alter certain nutrients that target the metabolic vulnerabilities of the tumour, or enhance the cytotoxicity of anti-cancer drugs. Recent reports have suggested that modification of several nutrients in the diet can alter the efficacy of cancer therapies, and some of the newest developments in this quickly expanding field are reviewed here. The results discussed indicate that the dietary habits and nutritional state of a patient must be taken into account during cancer research and therapy.


Assuntos
Dieta , Neoplasias/dietoterapia , Neoplasias/terapia , Estado Nutricional , Aminoácidos/deficiência , Aminoácidos/metabolismo , Animais , Suplementos Nutricionais , Jejum/fisiologia , Ácidos Graxos/metabolismo , Ácido Fólico/metabolismo , Frutose/deficiência , Frutose/metabolismo , Glucose/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/patologia
6.
Nature ; 583(7817): 620-624, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32669709

RESUMO

Approximately 75% of all breast cancers express the oestrogen and/or progesterone receptors. Endocrine therapy is usually effective in these hormone-receptor-positive tumours, but primary and acquired resistance limits its long-term benefit1,2. Here we show that in mouse models of hormone-receptor-positive breast cancer, periodic fasting or a fasting-mimicking diet3-5 enhances the activity of the endocrine therapeutics tamoxifen and fulvestrant by lowering circulating IGF1, insulin and leptin and by inhibiting AKT-mTOR signalling via upregulation of EGR1 and PTEN. When fulvestrant is combined with palbociclib (a cyclin-dependent kinase 4/6 inhibitor), adding periodic cycles of a fasting-mimicking diet promotes long-lasting tumour regression and reverts acquired resistance to drug treatment. Moreover, both fasting and a fasting-mimicking diet prevent tamoxifen-induced endometrial hyperplasia. In patients with hormone-receptor-positive breast cancer receiving oestrogen therapy, cycles of a fasting-mimicking diet cause metabolic changes analogous to those observed in mice, including reduced levels of insulin, leptin and IGF1, with the last two remaining low for extended periods. In mice, these long-lasting effects are associated with long-term anti-cancer activity. These results support further clinical studies of a fasting-mimicking diet as an adjuvant to oestrogen therapy in hormone-receptor-positive breast cancer.


Assuntos
Neoplasias da Mama/dietoterapia , Neoplasias da Mama/tratamento farmacológico , Dietoterapia/métodos , Jejum/fisiologia , Fulvestranto/uso terapêutico , Animais , Fatores Biológicos/sangue , Neoplasias da Mama/patologia , Dieta Saudável/métodos , Modelos Animais de Doenças , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Feminino , Fulvestranto/administração & dosagem , Humanos , Insulina/sangue , Fator de Crescimento Insulin-Like I/metabolismo , Leptina/sangue , Células MCF-7 , Camundongos Endogâmicos NOD , Camundongos SCID , PTEN Fosfo-Hidrolase/metabolismo , Piperazinas/administração & dosagem , Piperazinas/uso terapêutico , Piridinas/administração & dosagem , Piridinas/uso terapêutico , Receptores de Estrogênio , Receptores de Progesterona , Tamoxifeno/efeitos adversos , Tamoxifeno/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
7.
J Biol Chem ; 300(1): 105563, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38101568

RESUMO

Intermediary metabolites and flux through various pathways have emerged as key determinants of post-translational modifications. Independently, dynamic fluctuations in their concentrations are known to drive cellular energetics in a bi-directional manner. Notably, intracellular fatty acid pools that drastically change during fed and fasted states act as precursors for both ATP production and fatty acylation of proteins. Protein fatty acylation is well regarded for its role in regulating structure and functions of diverse proteins; however, the effect of intracellular concentrations of fatty acids on protein modification is less understood. In this regard, we unequivocally demonstrate that metabolic contexts, viz. fed and fasted states, dictate the extent of global fatty acylation. Moreover, we show that presence or absence of glucose that influences cellular and mitochondrial uptake/utilization of fatty acids and affects palmitoylation and oleoylation, which is consistent with their intracellular abundance in fed and fasted states. Employing complementary approaches including click-chemistry, lipidomics, and imaging, we show the top-down control of cellular metabolic state. Importantly, our results establish the crucial role of mitochondria and retrograde signaling components like SIRT4, AMPK, and mTOR in orchestrating protein fatty acylation at a whole cell level. Specifically, pharmacogenetic perturbations that alter either mitochondrial functions and/or retrograde signaling affect protein fatty acylation. Besides illustrating the cross-talk between carbohydrate and lipid metabolism in mediating bulk post-translational modification, our findings also highlight the involvement of mitochondrial energetics.


Assuntos
Acilação , Ácidos Graxos , Metabolismo dos Lipídeos , Processamento de Proteína Pós-Traducional , Proteínas , Trifosfato de Adenosina/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Química Click , Jejum/fisiologia , Ácidos Graxos/metabolismo , Glucose/metabolismo , Lipidômica , Lipoilação , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas/química , Proteínas/metabolismo , Sirtuínas/metabolismo , Serina-Treonina Quinases TOR/metabolismo
8.
Stroke ; 55(8): 2139-2150, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38920050

RESUMO

BACKGROUND: Preconditioning by intermittent fasting is linked to improved cognition and motor function, and enhanced recovery after stroke. Although the duration of fasting was shown to elicit different levels of neuroprotection after ischemic stroke, the impact of time of fasting with respect to the circadian cycles remains unexplored. METHODS: Cohorts of mice were subjected to a daily 16-hour fast, either during the dark phase (active-phase intermittent fasting) or the light phase (inactive-phase intermittent fasting) or were fed ad libitum. Following a 6-week dietary regimen, mice were subjected to transient focal cerebral ischemia and underwent behavioral functional assessment. Brain samples were collected for RNA sequencing and histopathologic analyses. RESULTS: Active-phase intermittent fasting cohort exhibited better poststroke motor and cognitive recovery as well as reduced infarction, in contrast to inactive-phase intermittent fasting cohort, when compared with ad libitum cohort. In addition, protection of dendritic spine density/morphology and increased expression of postsynaptic density protein-95 were observed in the active-phase intermittent fasting. CONCLUSIONS: These findings indicate that the time of daily fasting is an important factor in inducing ischemic tolerance by intermittent fasting.


Assuntos
Ritmo Circadiano , Espinhas Dendríticas , Jejum , Animais , Jejum/fisiologia , Camundongos , Ritmo Circadiano/fisiologia , Espinhas Dendríticas/patologia , Masculino , Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Camundongos Endogâmicos C57BL , Recuperação de Função Fisiológica/fisiologia , Jejum Intermitente
9.
Am J Physiol Endocrinol Metab ; 327(2): E229-E240, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38958546

RESUMO

Monocytes are innate immune cells that are continuously produced in bone marrow which enter and circulate the vasculature. In response to nutrient scarcity, monocytes migrate back to bone marrow, where, upon refeeding, they are rereleased back into the bloodstream to replenish the circulation. In humans, the variability in monocyte behavior in response to fasting and refeeding has not been characterized. To investigate monocyte dynamics in humans, we measured blood monocyte fluctuations in 354 clinically healthy individuals after a 12-h overnight fast and at 3 and 6 h after consuming a mixed macronutrient challenge meal. Using cluster analysis, we identified three distinct monocyte behaviors. Group 1 was characterized by relatively low fasting monocyte counts that markedly increased after consuming the test meal. Group 2 was characterized by relatively high fasting monocyte counts that decreased after meal consumption. Group 3, like Group 1, was characterized by lower fasting monocyte counts but increased to a lesser extent after consuming the meal. Although monocyte fluctuations observed in Groups 1 and 3 align with the current paradigm of monocyte dynamics in response to fasting and refeeding, the atypical dynamic observed in Group 2 does not. Although generally younger in age, Group 2 subjects had lower whole body carbohydrate oxidation rates, lower HDL-cholesterol levels, delayed postprandial declines in salivary cortisol, and reduced postprandial peripheral microvascular endothelial function. These unique characteristics were not explained by group differences in age, sex, or body mass index (BMI). Taken together, these results highlight distinct patterns of monocyte responsiveness to natural fluctuations in dietary fuel availability.NEW & NOTEWORTHY Our study composed of adult volunteers revealed that monocyte dynamics exhibit a high degree of individual variation in response to fasting and refeeding. Although circulating monocytes in most volunteers behaved in ways that align with previous reports, many exhibited atypical dynamics demonstrated by elevated fasting blood monocyte counts that sharply decreased after meal consumption. This group was also distinguished by lower HDL levels, reduced postprandial endothelial function, and a delayed postprandial decline in salivary cortisol.


Assuntos
Jejum , Hidrocortisona , Monócitos , Período Pós-Prandial , Humanos , Período Pós-Prandial/fisiologia , Jejum/fisiologia , Masculino , Feminino , Adulto , Monócitos/metabolismo , Hidrocortisona/sangue , Hidrocortisona/metabolismo , Pessoa de Meia-Idade , Adulto Jovem , Voluntários Saudáveis , HDL-Colesterol/sangue , HDL-Colesterol/metabolismo , Idoso , Contagem de Leucócitos , Lipoproteínas HDL/sangue , Lipoproteínas HDL/metabolismo
10.
Am J Physiol Gastrointest Liver Physiol ; 326(5): G504-G524, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38349111

RESUMO

Genotoxic agents such as doxorubicin (DXR) can cause damage to the intestines that can be ameliorated by fasting. How fasting is protective and the optimal timing of fasting and refeeding remain unclear. Here, our analysis of fasting/refeeding-induced global intestinal transcriptional changes revealed metabolic shifts and implicated the cellular energetic hub mechanistic target of rapamycin complex 1 (mTORC1) in protecting from DXR-induced DNA damage. Our analysis of specific transcripts and proteins in intestinal tissue and tissue extracts showed that fasting followed by refeeding at the time of DXR administration reduced damage and caused a spike in mTORC1 activity. However, continued fasting after DXR prevented the mTORC1 spike and damage reduction. Surprisingly, the mTORC1 inhibitor, rapamycin, did not block fasting/refeeding-induced reduction in DNA damage, suggesting that increased mTORC1 is dispensable for protection against the initial DNA damage response. In Ddit4-/- mice [DDIT4 (DNA-damage-inducible transcript 4) functions to regulate mTORC1 activity], fasting reduced DNA damage and increased intestinal crypt viability vs. ad libitum-fed Ddit4-/- mice. Fasted/refed Ddit4-/- mice maintained body weight, with increased crypt proliferation by 5 days post-DXR, whereas ad libitum-fed Ddit4-/- mice continued to lose weight and displayed limited crypt proliferation. Genes encoding epithelial stem cell and DNA repair proteins were elevated in DXR-injured, fasted vs. ad libitum Ddit4-/- intestines. Thus, fasting strongly reduced intestinal damage when normal dynamic regulation of mTORC1 was lost. Overall, the results confirm that fasting protects the intestines against DXR and suggests that fasting works by pleiotropic - including both mTORC1-dependent and independent - mechanisms across the temporally dynamic injury response.NEW & NOTEWORTHY New findings are 1) DNA damage reduction following a 24-h fast depends on the timing of postfast refeeding in relation to chemotherapy initiation; 2) fasting/refeeding-induced upregulation of mTORC1 activity is not required for early (6 h) protection against DXR-induced DNA damage; and 3) fasting increases expression of intestinal stem cell and DNA damage repair genes, even when mTORC1 is dysregulated, highlighting fasting's crucial role in regulating mTORC1-dependent and independent mechanisms in the dynamic recovery process.


Assuntos
Doxorrubicina , Intestino Delgado , Intestinos , Camundongos , Animais , Intestinos/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Adutos de DNA , Jejum/fisiologia
11.
Am J Physiol Regul Integr Comp Physiol ; 326(4): R319-R329, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38314699

RESUMO

Breath-holding preceded by either an overnight fast or hyperventilation has been shown to potentiate the risk of a hypoxic blackout. However, no study has explored the combined effects of fasting and hyperventilation on apneic performance and associated physiological responses. Nine nondivers (8 males) attended the laboratory on two separate occasions (≥48 h apart), both after a 12-h overnight fast. During each visit, a hyperoxic rebreathing trial was performed followed by three repeated maximal static apneas preceded by either normal breathing (NORM) or a 30-s hyperventilation (HYPER). Splenic volume, hematology, cardiovascular, and respiratory variables were monitored. There were no interprotocol differences at rest or during hyperoxic rebreathing for any variable (P ≥ 0.09). On nine occasions (8 in HYPER), the subjects reached our safety threshold (oxygen saturation 65%) and were asked to abort their apneas, with the preponderance of these incidents (6 of 9) occurring during the third repetition. Across the sequential attempts, longer apneas were recorded in HYPER [median(range), 220(123-324) s vs. 185(78-296) s, P ≤ 0.001], with involuntary breathing movements occurring later [134(65-234) s vs. 97(42-200) s, P ≤ 0.001] and end-apneic partial end-tidal pressures of oxygen (PETO2) being lower (P ≤ 0.02). During the final repetition, partial end-tidal pressure of carbon dioxide [(PETCO2), 6.53 ± 0.46 kPa vs. 6.01 ± 0.45 kPa, P = 0.005] was lower in HYPER. Over the serial attempts, preapneic tidal volume was gradually elevated [from apnea 1 to 3, by 0.26 ± 0.24 L (HYPER) and 0.28 ± 0.30 L (NORM), P ≤ 0.025], with a correlation noted with preapneic PETCO2 (r = -0.57, P < 0.001) and PETO2 (r = 0.76, P < 0.001), respectively. In a fasted state, preapnea hyperventilation compared with normal breathing leads to longer apneas but may increase the susceptibility to a hypoxic blackout.NEW & NOTEWORTHY This study shows that breath-holds (apneas) preceded by a 12-h overnight fast coupled with a 30-s hyperventilation as opposed to normal breathing may increase the likelihood of a hypoxic blackout through delaying the excitation of hypercapnic ventilatory sensory chemoreflexes. Evidently, this risk is exacerbated over a series of repeated maximal attempts, possibly due to a shift in preapneic gas tensions facilitated by an unintentional increase in tidal volume breathing.


Assuntos
Apneia , Hiperóxia , Masculino , Humanos , Apneia/diagnóstico , Hiperventilação , Suspensão da Respiração , Respiração , Dióxido de Carbono , Hipóxia , Síncope , Jejum/fisiologia
12.
Mol Pharm ; 21(8): 3824-3837, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38958668

RESUMO

In vivo studies of formulation performance with in vitro and/or in silico simulations are often limited by significant gaps in our knowledge of the interaction between administered dosage forms and the human gastrointestinal tract. This work presents a novel approach for the investigation of gastric motility influence on dosage form performance, by combining biopredictive dissolution tests in an innovative PhysioCell apparatus with mechanistic physiology-based pharmacokinetic modeling. The methodology was based on the pharmacokinetic data from a large (n = 118) cohort of healthy volunteers who ingested a capsule containing a highly soluble and rapidly absorbed drug under fasted conditions. The developed dissolution tests included biorelevant media, varied fluid flows, and mechanical stress events of physiological timing and intensity. The dissolution results were used as inputs for pharmacokinetic modeling that led to the deduction of five patterns of gastric motility and their prevalence in the studied population. As these patterns significantly influenced the observed pharmacokinetic profiles, the proposed methodology is potentially useful to other in vitro-in vivo predictions involving immediate-release oral dosage forms.


Assuntos
Motilidade Gastrointestinal , Solubilidade , Humanos , Motilidade Gastrointestinal/fisiologia , Adulto , Masculino , Feminino , Modelos Biológicos , Administração Oral , Adulto Jovem , Voluntários Saudáveis , Simulação por Computador , Liberação Controlada de Fármacos/fisiologia , Pessoa de Meia-Idade , Jejum/fisiologia , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/fisiologia
13.
Toxicol Pathol ; 52(1): 21-34, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38379371

RESUMO

In nonclinical toxicology studies, lab animals are fasted typically overnight, to reduce variability in some clinical pathology parameters. However, fasting adds undue stress, and this is particularly concerning in rodents given their fast metabolic rates. Furthermore, as rodents are nocturnal animals, an overnight fasting may cause a protracted negative metabolic state even when the fasting has technically ended, given their minimal activity and food consumption during the day. Therefore, to evaluate the impacts of different fasting durations (±DietGel supplementation) on rats' welfare, we assessed the traditional and ancillary clinical pathology parameters in Sprague-Dawley rats, along with body weight, organ weight, and histopathology. Although most endpoints were comparable between the different fasting durations (±DietGel supplementation), the long fasting times (≥8 hr) without DietGel supplementation caused significant decreases in body weight, liver weight, liver glycogen content, serum glucose, triglyceride, and creatinine concentrations-all findings suggestive of a negative energy balance that could impact animal welfare and consequently, data quality; while the short fasting time (4 hr) and DietGel supplementation were associated with higher triglycerides variability. Hence, we propose that short fasting time should be adequate for most toxicology studies in rats, and long fasting times should only be accommodated with scientific justification.


Assuntos
Bem-Estar do Animal , Peso Corporal , Jejum , Ratos Sprague-Dawley , Animais , Jejum/fisiologia , Masculino , Ratos , Tamanho do Órgão , Fígado/metabolismo , Feminino , Suplementos Nutricionais , Glicemia
14.
Headache ; 64(4): 352-360, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38525797

RESUMO

BACKGROUND: Ramadan fasting is an obligatory religious practice for Muslims. However, research data on the effect of Ramadan on idiopathic intracranial hypertension (IIH) symptoms are lacking. This study aimed to study the effect of Ramadan fasting on the severity of headache and visual symptoms and related quality-of-life activities. METHODS: This prospective cohort study targeted females diagnosed with IIH (n = 102) who were eligible to fast for Ramadan in 2023. The patients were recruited from the Neurology Clinic in Beni-Suef University Hospital, Egypt. Body mass index (BMI), monthly headache days and intensity of headache attacks, six-item Headache Impact Test (HIT-6), and the 25-item National Eye Institute Visual Function Questionnaire (NEI-VFQ-25) scores during Ramadan were compared to those during the (non-fasting) month of Shaaban, the preceding month to Ramadan. RESULTS: There was a significant increase in the BMI of patients with IIH in Ramadan compared to the (non-fasting) month of Shaaban, at a median (interquartile range [IQR]) of 30.5 (26.6-35.8) kg/m2 and 30.1 (26.6-35.2) kg/m2, respectively (p = 0.002). The median (IQR) value of monthly headache days was significantly increased during Ramadan in comparison to the (non-fasting) month of Shaaban, at 20 (11.5-30) vs. 15 (10-25) (p < 0.001). There was a statistically significant worsening in the visual analog scale (VAS) scores (median [IQR] 7 [5-8] vs. 6.5 [5-8]), HIT-6 scores (median [IQR] 61 [58-67] vs. 59 [53-61.5]), and NEI-VFQ-25 total scores (median [IQR] 1312.5 [1238.8-1435] vs 1290 [1165-1417.5]) during Ramadan in comparison to the (non-fasting) month of Shaaban (p < 0.001 for all comparisons). The change in BMI in Ramadan was positively correlated with the change in monthly headache days (r = 0.24, p = 0.014), VAS (r = 0.20, p = 0.043), HIT-6 (r = 0.25, p = 0.010) and NEI-VFQ-25 scores (r = 0.24, p = 0.016). CONCLUSION: Ramadan fasting had an aggravating effect on headache, visual symptoms, and related quality-of-life activities, which might be attributed to weight gain during this month. Whether proper nutritional management to prevent weight gain during Ramadan may help mitigate this worsening effect is a mission of future studies.


Assuntos
Jejum , Cefaleia , Islamismo , Qualidade de Vida , Humanos , Feminino , Adulto , Jejum/fisiologia , Estudos Prospectivos , Cefaleia/fisiopatologia , Egito , Pseudotumor Cerebral/fisiopatologia , Pseudotumor Cerebral/complicações , Índice de Massa Corporal , Adulto Jovem , Pessoa de Meia-Idade
15.
Audiol Neurootol ; 29(4): 334-339, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38373409

RESUMO

INTRODUCTION: The aims of the present study were to evaluate postural balance performance of the subjects on the time-restricted feeding (TRF) and reveal the effect of TRF on the vestibular system by comparing the results to those of traditional daily dietary (DD) condition. METHODS: Sixteen adults (3 males, 13 females; mean age: 25.4 ± 4 years) who had experienced at least 1 month of TRF were included in the study. The Sensory Organization Test (SOT) and Head-Shake SOT (HS-SOT) - which evaluate proprioceptive, visual, and vestibular systems - were performed on TRF and DD conditions via the Computerized Dynamic Posturography system. RESULTS: Significant differences were obtained between TRF and DD situations in SOT-5 (p = 0.008), SOT-6 (p = 0.01), and HS-SOT5 (p = 0.007) conditions in which the vestibular system dominated. CONCLUSION: We revealed that TRF has an effect on postural balance in the absence of proprioceptive and visual systems. This feeding model is a negative stressor that has a substantial effect on the vestibular system, but this impact is minimal once the proprioceptive and visual systems are intact. To the best of our knowledge, it is the first study to evaluate postural balance utilizing vestibular parameters in TRF.


Assuntos
Equilíbrio Postural , Propriocepção , Vestíbulo do Labirinto , Humanos , Equilíbrio Postural/fisiologia , Feminino , Masculino , Adulto , Vestíbulo do Labirinto/fisiologia , Adulto Jovem , Propriocepção/fisiologia , Jejum/fisiologia , Testes de Função Vestibular
16.
BMC Geriatr ; 24(1): 401, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711010

RESUMO

BACKGROUND: Preoperative carbohydrate loading in Enhanced Recovery After Surgery is an independent predictor of postoperative outcomes. By reducing the impact of surgical stress response, fasting-induced insulin resistance is modulated. As a clear fluid, consuming carbohydrate drink is safe up to 2 h preoperatively. Widely practiced in abdominal surgeries, its implementation in hip fracture surgeries is yet to be recognized. This study aimed to identify the feasibility of preoperative carbohydrate loading in hip fracture surgery and assess its clinical effects. METHODS: This was a randomized controlled, open labelled trial. Patients ≥ 65 years old without diabetes mellitus, has hip fracture were recruited in a tertiary hospital between November 2020 and May 2021. The intervention was carbohydrate loading versus standard preoperative fasting. RESULTS: Thirty-four ASA I-III patients (carbohydrate loading and control, n = 17 each), mean age 78 years (SEM ± 1.5), mean body mass index 23.7 (SEM ± 0.6 kg/m2) were recruited. Analysis for feasibility of carbohydrate loading (n = 17) demonstrated attrition rate of 29% (n = 5). Otherwise, all recruited patients were compliant (100% compliance) with no adverse events reported. There was no significant difference among groups in the postoperative nausea and vomiting, pain score, fatigue level, muscle strength, postoperative infection and length of hospital stay assessed at 24-48 h postoperatively. CONCLUSION: The implementation of preoperative carbohydrate loading was found to be feasible preoperatively in hip fracture surgeries but requires careful coordination among multidisciplinary teams. An adequately powered randomized controlled study is needed to examine the full benefits of preoperative carbohydrate loading in this group of patients. TRIAL REGISTRATION: This study was registered in ClinicalTrial.gov (ClinicalTrials.gov identifier: NCT04614181, date of registration: 03/11/2020).


Assuntos
Dieta da Carga de Carboidratos , Estudos de Viabilidade , Fraturas do Quadril , Cuidados Pré-Operatórios , Humanos , Idoso , Masculino , Feminino , Fraturas do Quadril/cirurgia , Cuidados Pré-Operatórios/métodos , Dieta da Carga de Carboidratos/métodos , Idoso de 80 Anos ou mais , Jejum/fisiologia , Recuperação Pós-Cirúrgica Melhorada
17.
Appetite ; 196: 107259, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38341037

RESUMO

The role of ghrelin metabolism in anorexia of ageing is unclear. The aim of this study was to determine acyl-ghrelin, total ghrelin, and ghrelin O-acyltransferase concentrations when fasted and in responses to feeding in older adults exhibiting anorexia of ageing. Twenty-five older adults (OA; 15f, 74 ± 7 years, 24.5 kg·m-2) and twelve younger adults (YA; 6f, 21 ± 2 years, 24.4 kg·m-2) provided a fasted measure of subjective appetite and fasted blood sample (0 min) before consuming a standardised porridge breakfast meal (450 kcal). Appetite was measured every 30 min for 240 min and blood was sampled at 30, 60, 90, 120, 180 and 240 min while participants rested. At 240 min, an ad libitum pasta-based lunch meal was consumed. Older adults were identified as those with healthy appetite (HA-OA) or low appetite (LA-OA), based on habitual energy intake, self-report appetite, BMI, and ad libitum lunch intake. YA ate more at lunch (1108 ± 235 kcal) than HA-OA (653 ± 133 kcal, p = 0.007) and LA-OA (369 ± 168 kcal; p < 0.001). LA-OA, but not HA-OA, had higher fasted concentrations of acyl- and total ghrelin than YA (acyl-ghrelin: 621 ± 307 pg·mL-1 vs. 353 ± 166 pg·mL-1, p = 0.047; total ghrelin: 1333 ± 702 pg·mL-1 vs. 636 ± 251 pg·mL-1, p = 0.006). Acyl-ghrelin (60 min and 90 min) and total ghrelin (90 min) were suppressed to a greater extent for LA-OA than for YA (p < 0.05). No differences were observed in subjective appetite, acyl-to-total ghrelin ratio, or plasma GOAT content (p > 0.1). Higher fasting ghrelin and an augmented ghrelin response to feeding in LA-OA, but not HA-OA, suggests that alterations to ghrelin metabolism are not functions of ageing per se and may be independent causal mechanisms of anorexia of ageing.


Assuntos
Anorexia , Grelina , Humanos , Idoso , Glicemia/metabolismo , Apetite/fisiologia , Jejum/fisiologia , Envelhecimento , Ingestão de Energia , Aciltransferases , Estudos Cross-Over
18.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34161259

RESUMO

The quantity and quality of food intake have been considered crucial for peoples' wellness. Only recently has it become appreciated that the timing of food intake is also critical. Nondipping blood pressure (BP) is prevalent in diabetic patients and is associated with increased cardiovascular events. However, the causes and mechanisms of nondipping BP in diabetes are not fully understood. Here, we report that food intake and BP were arrhythmic in diabetic db/db mice fed a normal chow diet ad libitum. Imposing a food intake diurnal rhythm by time-restricted feeding (TRF; food was only available for 8 h during the active phase) prevented db/db mice from developing nondipping BP and effectively restored the already disrupted BP circadian rhythm in db/db mice. Interestingly, increasing the time of food availability from 8 h to 12 h during the active dark phase in db/db mice prompted isocaloric feeding and still provided robust protection of the BP circadian rhythm in db/db mice. In contrast, neither 8-h nor 12-h TRF affected BP dipping in wild-type mice. Mechanistically, we demonstrate that TRF protects the BP circadian rhythm in db/db mice via suppressing the sympathetic activity during the light phase when they are inactive and fasting. Collectively, these data reveal a potentially pivotal role of the timing of food intake in the prevention and treatment of nondipping BP in diabetes.


Assuntos
Pressão Sanguínea/fisiologia , Ritmo Circadiano/fisiologia , Diabetes Mellitus Experimental/fisiopatologia , Jejum/fisiologia , Animais , Ingestão de Energia , Camundongos , Sistema Nervoso Simpático/fisiopatologia , Fatores de Tempo
19.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34607947

RESUMO

Plasticity in multicellular organisms involves signaling pathways converting contexts-either natural environmental challenges or laboratory perturbations-into context-specific changes in gene expression. Congruently, the interactions between the signaling molecules and transcription factors (TF) regulating these responses are also context specific. However, when a target gene responds across contexts, the upstream TF identified in one context is often inferred to regulate it across contexts. Reconciling these stable TF-target gene pair inferences with the context-specific nature of homeostatic responses is therefore needed. The induction of the Caenorhabditis elegans genes lipl-3 and lipl-4 is observed in many genetic contexts and is essential to survival during fasting. We find DAF-16/FOXO mediating lipl-4 induction in all contexts tested; hence, lipl-4 regulation seems context independent and compatible with across-context inferences. In contrast, DAF-16-mediated regulation of lipl-3 is context specific. DAF-16 reduces the induction of lipl-3 during fasting, yet it promotes it during oxidative stress. Through discrete dynamic modeling and genetic epistasis, we define that DAF-16 represses HLH-30/TFEB-the main TF activating lipl-3 during fasting. Contrastingly, DAF-16 activates the stress-responsive TF HSF-1 during oxidative stress, which promotes C. elegans survival through induction of lipl-3 Furthermore, the TF MXL-3 contributes to the dominance of HSF-1 at the expense of HLH-30 during oxidative stress but not during fasting. This study shows how context-specific diverting of functional interactions within a molecular network allows cells to specifically respond to a large number of contexts with a limited number of molecular players, a mode of transcriptional regulation we name "contextualized transcription."


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Jejum/fisiologia , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica/genética , Lipase/metabolismo , Estresse Oxidativo/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/genética , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Lipase/genética , Lipólise/fisiologia , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética , Ativação Transcricional/fisiologia
20.
Artigo em Inglês | MEDLINE | ID: mdl-38703991

RESUMO

The pond loach (Misgurnus anguillicaudatus) is an important aquaculture freshwater species, used as an ornamental fish, food source for humans and angling bait. Pond loaches are resistant to fasting and extreme environmental conditions, including temperature and low oxygen levels. Little is known about how these factors affect the feeding physiology and the endocrine regulation of feeding of loaches. In this study, we examined the effects of fasting, as well as increased temperature and decreased oxygen levels on food intake and transcript levels of appetite regulators. Fasted fish had lower blood glucose levels, and lower expression levels of intestine CCK and PYY, and brain CART1, but had higher levels of brain orexin and ghrelin than fed fish. Fish held at 30 °C had higher food intake, glucose levels, and mRNA levels of intestine CCK and PYY, and brain CART2, but lower brain orexin levels than fish at 20 °C. Fish held at low oxygen levels had a lower food intake, higher intestine CCKa and ghrelin, and brain orexin, CART2 and ghrelin mRNA expression levels than fish held at high O2 levels. Our results suggest that fasting and high temperatures increase the expression of orexigenic and anorexigenic factors respectively, whereas the increase in expression of both orexigenic and anorexigenic factors in low O2 environments might not be related to their role in feeding, but possibly to protection from tissue damage. The results of our study might shed new light on how pond loaches are able to cope with extreme environmental conditions such as low food availability, extreme temperatures and hypoxia.


Assuntos
Cipriniformes , Jejum , Grelina , Animais , Jejum/fisiologia , Cipriniformes/fisiologia , Cipriniformes/genética , Cipriniformes/metabolismo , Grelina/metabolismo , Orexinas/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiologia , Colecistocinina/metabolismo , Regulação do Apetite/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Glicemia/metabolismo , Oxigênio/metabolismo , Peptídeo YY/metabolismo , Peptídeo YY/sangue , Ingestão de Alimentos/fisiologia , Temperatura , Comportamento Alimentar/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA