Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37895159

RESUMO

Diabetes mellitus is a metabolic disorder associated with various complications encompassing male reproductive dysfunction. The present study aimed to investigate the therapeutic potential of biologically active Lepidium sativum seed oil (LSO) against the testicular dysfunction associated with streptozotocin (STZ)-induced diabetes. Male adults (n = 24) were divided into four groups: control, LSO-administered, diabetic (D), and LSO-treated diabetic (D+LSO) groups. LSO was extracted from L. sativum seeds, and its chemical composition was determined using GC-MS. Serum testosterone levels, testicular enzymatic antioxidants (catalase (CAT) and superoxide dismutase (SOD)), an oxidative stress (OS) biomarker, malondialdehyde (MDA), pro-inflammatory markers (NF-kB, IL-1, IL-6, and TNF-α), and the expression level of NF-kB were assessed. In addition, histopathological changes were evaluated in testicular tissues. The results obtained showed that the chemical composition of LSO indicated its enrichment mainly with γ-tocopherol (62.1%), followed by 2-methylhexacosane (8.12%), butylated hydroxytoluene (8.04%), 10-Methylnonadecane (4.81%), and δ-tocopherol (3.91%). Moreover, LSO administration in the D+LSO mice significantly increased testosterone levels and ameliorated the observed testicular oxidative damage, inflammatory response, and reduced NF-kB expression compared to the diabetic mice. Biochemical and molecular analyses confirmed the histological results. In conclusion, LSO may prevent the progression of diabetes-induced impairment in the testes through inhibition of the OS- and NF-kB-mediated inflammatory response.


Assuntos
Diabetes Mellitus Experimental , Doenças Testiculares , Humanos , Camundongos , Masculino , Animais , Testículo/metabolismo , Lepidium sativum/metabolismo , NF-kappa B/metabolismo , Diabetes Mellitus Experimental/metabolismo , Estresse Oxidativo , Antioxidantes/metabolismo , Doenças Testiculares/metabolismo , Inflamação/metabolismo , Testosterona/metabolismo , Óleos de Plantas/farmacologia , Óleos de Plantas/uso terapêutico , Óleos de Plantas/metabolismo
2.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35563008

RESUMO

Molecular responses of plants to natural phytotoxins comprise more general and compound-specific mechanisms. How phytotoxic chalcones and other flavonoids inhibit seedling growth was widely studied, but how they interfere with seed germination is largely unknown. The dihydrochalcone and putative allelochemical myrigalone A (MyA) inhibits seed germination and seedling growth. Transcriptome (RNAseq) and hormone analyses of Lepidium sativum seed responses to MyA were compared to other bioactive and inactive compounds. MyA treatment of imbibed seeds triggered the phased induction of a detoxification programme, altered gibberellin, cis-(+)-12-oxophytodienoic acid and jasmonate metabolism, and affected the expression of hormone transporter genes. The MyA-mediated inhibition involved interference with the antioxidant system, oxidative signalling, aquaporins and water uptake, but not uncoupling of oxidative phosphorylation or p-hydroxyphenylpyruvate dioxygenase expression/activity. MyA specifically affected the expression of auxin-related signalling genes, and various transporter genes, including for auxin transport (PIN7, ABCG37, ABCG4, WAT1). Responses to auxin-specific inhibitors further supported the conclusion that MyA interferes with auxin homeostasis during seed germination. Comparative analysis of MyA and other phytotoxins revealed differences in the specific regulatory mechanisms and auxin transporter genes targeted to interfere with auxin homestasis. We conclude that MyA exerts its phytotoxic activity by multiple auxin-dependent and independent molecular mechanisms.


Assuntos
Germinação , Lepidium sativum , Chalconas , Regulação da Expressão Gênica de Plantas , Germinação/genética , Homeostase , Hormônios/metabolismo , Ácidos Indolacéticos/metabolismo , Lepidium sativum/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Plântula/metabolismo , Sementes/genética
3.
Ecotoxicol Environ Saf ; 208: 111718, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396049

RESUMO

Plastics enter in terrestrial natural system primarily by agricultural purposes, while acid rain is the result of anthropogenic activities. The synergistic effects of microplastics and acid rain on plant growth are not known. In this study, different sizes of polyethylene terephthalate (PET) and acid rain are tested on Lepidium sativum, in two separate experimental sets. In the first one we treated plants only with PET, in the second one we used PET and acid rain together. In both experimentations we analyzed: i) plant biometrical parameters (shoot height, leaf number, percentage inhibition of seed germination, fresh biomass), and ii) oxidative stress responses (hydrogen peroxide; ascorbic acid and glutathione). Results carried out from our experiments highlighted that different sizes of polyethylene terephthalate are able to affect plant growth and physiological responses, with or without acid rain supplied during acute toxicity (6 days). SHORT DESCRIPTION: This study showed that different sizes of PET microplastics affect physiological and biometrical responses of Lepidum sativum seedlings, with or without acid rain; roots and leaves responded differently.


Assuntos
Chuva Ácida/toxicidade , Lepidium sativum/efeitos dos fármacos , Microplásticos/toxicidade , Polietilenotereftalatos/toxicidade , Poluentes Químicos da Água/toxicidade , Lepidium sativum/crescimento & desenvolvimento , Lepidium sativum/metabolismo , Lepidium sativum/fisiologia , Microplásticos/química , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Folhas de Planta/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Polietilenotereftalatos/química , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Poluentes Químicos da Água/química
4.
Molecules ; 26(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34833934

RESUMO

The aim of this study was to evaluate the bioremoval of anthracycline antibiotics (daunomycin-DNR, doxorubicin-DOX, and mitoxantrone-MTX) by immobilized mycelium of B. adusta CCBAS 930. The activity of oxidoreductases: versatile peroxidases (VP), superoxide dismutase (SOD), catalase (CAT), and glucose oxidase (GOX), and the levels of phenolic compounds (PhC) and free radicals (SOR) were determined during the biotransformation of anthracyclines by B. adusta strain CCBAS 930. Moreover, the phytotoxicity (Lepidium sativum L.), biotoxicity (MARA assay), and genotoxicity of anthracyclines were evaluated after biological treatment. After 120 h, more than 90% of anthracyclines were removed by the immobilized mycelium of B. adusta CCBAS 930. The effective biotransformation of anthracyclines was correlated with detoxification and reduced genotoxicity.


Assuntos
Antraciclinas/metabolismo , Coriolaceae/metabolismo , Citostáticos/metabolismo , Micélio/metabolismo , Biotransformação/fisiologia , Radicais Livres/metabolismo , Lepidium sativum/metabolismo , Oxirredutases/metabolismo , Fenóis/metabolismo
5.
Ecotoxicol Environ Saf ; 194: 110409, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32155481

RESUMO

Phytoremediation is a promising "green technique" used to purify contaminated soils. The performed phytoremediation experiments assisted by the fertilization process involving pots of F.arundinacea grown on soils with diverse concentrations and types of contaminations produced the following decreased percentages after 6 months: Pb (25.4-34.1%), Ni (18.7-23.8%), Cd (26.3-46.7%), TPH (49.4-60.1%). Primarily, TPH biodegradation was occurring as a result of basic bioremediation stimulated by adding optimal volumes of biogenic substances and corrections in the soil reaction, while phytoremediation improved this process by 17.4 - 23.1%. The highest drop in a range of 45.6 - 55.5% was recorded for the group of C12-C18 hydrocarbons, with the lowest one for C25-C36, amounting to 9.1-17.4%. Translocation factor values were: TF<1 and ranged, respectively, for: Pb (0.46-0.53), Ni (0.29-0.33), and Cd (0.21-0.25), which indicate that heavy metals absorbed by Festuca arundinacea they mainly accumulated in the root of the tissue in descending order: Cd

Assuntos
Festuca/metabolismo , Metais Pesados/análise , Petróleo/análise , Poluentes do Solo/análise , Solo/química , Biodegradação Ambiental , Cádmio/análise , Cádmio/metabolismo , Festuca/efeitos dos fármacos , Germinação/efeitos dos fármacos , Chumbo/análise , Chumbo/metabolismo , Lepidium sativum/metabolismo , Metais Pesados/metabolismo , Níquel/análise , Níquel/metabolismo , Petróleo/metabolismo , Poluentes do Solo/metabolismo
6.
Bull Environ Contam Toxicol ; 104(2): 200-205, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31781814

RESUMO

Phenoxy acid 2,4-D (2,4-dichlorophenoxy acid) is one of the most commonly-used herbicide in agriculture. Biodegradation of 2,4-D can be stimulated by structurally-related plant secondary metabolites such as ferulic acid (FA). The aim of this study is to: (1) assess the potential of indigenous soil bacteria to degrade 2,4-D in the presence of FA by PCR analysis of functional tfdA genes, (2) to determine the influence of 2,4-D and FA on samples ecotoxicity using Phytotoxkit® and Microtox® biotests. The detection of tfdA genes varied depending on the enrichment of samples with FA. FA suppressed detection of the tfdA genes, 100 µM 2,4-D induced higher detection of studied amplicons, while 500 µM 2,4-D delayed their detection. The ecotoxicity response was specific and differed between plants (PE% Lepidium sativum > Sinapis alba > Sorghum saccharatum) and bacteria (PE% up to 99% for Vibrio fischeri). Our findings confirm that 2,4-D and FA had a toxic influence on the used organisms.


Assuntos
Ácido 2,4-Diclorofenoxiacético/análise , Biodegradação Ambiental , Ácidos Cumáricos/análise , Herbicidas/análise , Poluentes do Solo/análise , Ácido 2,4-Diclorofenoxiacético/metabolismo , Aliivibrio fischeri/metabolismo , Ácidos Cumáricos/metabolismo , DNA Ribossômico/química , Genes Bacterianos , Herbicidas/metabolismo , Lepidium sativum/metabolismo , Extratos Vegetais , Sinapis/metabolismo , Solo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Sorghum/metabolismo
7.
J Appl Microbiol ; 127(5): 1454-1467, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31330070

RESUMO

AIMS: This study aims to evaluate the impact of solid-state fermentation (SSF) by Trichoderma reesei on the phenolic content, antioxidant and antimicrobial activities of garden cress seeds (GCS). METHODS AND RESULTS: The factorial statistical design was employed to optimize the SSF conditions, incubation time, pH, temperature and moisture, for maximum production of the phenolic content and microbial carbohydrate-cleaving enzymes from GCS. The total phenolic content significantly increased from unfermented GCS (401 mg gallic acid equivalent (GAE) 100 g-1 ) to fermented GCS (3600 mg GAE 100 g-1 ) by ninefold. The total antioxidant activity significantly increased in fermented GCS. Fifteen phenolic compounds were detected in fermented GCS with high concentrations compared to 14 in unfermented GCS using high-performance liquid chromatography. A strong correlation between the production of the carbohydrate-cleaving enzymes and the phenolic content of fermented GCS was observed. The phenolic compounds of fermented GCS showed higher antimicrobial activity. CONCLUSIONS: The fermented GCS is a powerful source of phenolic compounds with high antioxidant potentials, which can be used as dietary supplement and antimicrobial agent. SIGNIFICANCE AND IMPACT OF THE STUDY: Solid-state fermentation is a promising technique used for production of added-value bioactive compounds. SSF increased the total phenolic content and antioxidant activity of GCS several folds compared to germination process, which recently studied.


Assuntos
Antioxidantes/farmacologia , Lepidium sativum/química , Lepidium sativum/microbiologia , Fenóis/química , Extratos Vegetais/farmacologia , Trichoderma/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Cromatografia Líquida de Alta Pressão , Fermentação , Lepidium sativum/metabolismo , Fenóis/metabolismo , Fenóis/farmacologia , Extratos Vegetais/química , Sementes/química , Sementes/metabolismo , Sementes/microbiologia
8.
Int J Mol Sci ; 20(7)2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30978911

RESUMO

Lepidium sativum L. is a rich source of polyphenols that have huge medicinal and pharmaceutical applications. In the current study, an effective abiotic elicitation strategy was designed for enhanced biosynthesis of polyphenols in callus culture of L. sativum. Callus was exposed to UV-C radiations for different time intervals and various concentrations of melatonin. Secondary metabolites were quantified by using high-performance liquid chromatography (HPLC). Results indicated the total secondary metabolite accumulation of nine quantified compounds was almost three fold higher (36.36 mg/g dry weight (DW)) in melatonin (20 µM) treated cultures, whereas, in response to UV-C (60 min), a 2.5 fold increase (32.33 mg/g DW) was recorded compared to control (13.94 mg/g DW). Metabolic profiling revealed the presence of three major phytochemicals, i.e., chlorogenic acid, kaemferol, and quercetin, in callus culture of L. sativum. Furthermore, antioxidant, antidiabetic, and enzymatic activities of callus cultures were significantly enhanced. Maximum antidiabetic activities (α-glucosidase: 57.84%; α-amylase: 62.66%) were recorded in melatonin (20 µM) treated callus cultures. Overall, melatonin proved to be an effect elicitor compared to UV-C and a positive correlation in these biological activities and phytochemical accumulation was observed. The present study provides a better comparison of both elicitors and their role in the initiation of physiological pathways for enhanced metabolites biosynthesis in vitro callus culture of L. sativum.


Assuntos
Antioxidantes/metabolismo , Vias Biossintéticas/efeitos da radiação , Hipoglicemiantes/metabolismo , Lepidium sativum/metabolismo , Lepidium sativum/efeitos da radiação , Melatonina/metabolismo , Flavonoides/metabolismo , Lepidium sativum/enzimologia , Metaboloma/efeitos da radiação , Fenóis/metabolismo , Proteínas de Plantas/metabolismo , Metabolismo Secundário/efeitos da radiação , Raios Ultravioleta
9.
Electrophoresis ; 39(9-10): 1294-1300, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29251773

RESUMO

The metabolization of four non-steroidal anti-inflammatory drugs by cress (Lepidium sativum) was investigated using a HPLC-MS2 method. Cress was grown hydroponically in water containing 0.1 mg/L of each drug for investigations on the kinetics of drug uptake and metabolization over a growing period of 12 days. It could be shown that the parent drugs are metabolized and the abundance of both the parent drug and the metabolites formed, varies over time. Furthermore the distribution of the investigated substances within the different plant parts changed throughout the duration of the experiment due to translocation. Finally cress was cultivated in a solution containing the four drugs in concentrations as low as 0.001 mg/L to resemble the situation in real reclaimed wastewaters. Employing a QuEChERS approach for sample extraction and HPLC-MS2 in the multiple reaction monitoring mode allowed detecting nine metabolites in this cress sample.


Assuntos
Anti-Inflamatórios não Esteroides/metabolismo , Lepidium sativum/metabolismo , Extratos Vegetais/análise , Espectrometria de Massas em Tandem/métodos , Anti-Inflamatórios não Esteroides/análise , Cromatografia Líquida de Alta Pressão , Cinética , Metaboloma , Extratos Vegetais/metabolismo , Sementes/química
10.
Electrophoresis ; 39(9-10): 1301-1308, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29427324

RESUMO

Environmental contamination with pharmaceuticals has received growing attention in recent years. Several studies describe the presence of traces of drugs in water bodies and soils and their impacts on nontarget organisms including plants. Due to these facts investigations of the uptake and metabolism of pharmaceuticals in organisms is an emerging research area. The present study demonstrates the analysis of three selected antidepressants (sertraline, clomipramine, and trazodone) as well as metabolites and transformation products in a cress model (Lepidium sativum). Cress was treated with tap water containing 10 mg/L of the parent drugs. Employing an analytical approach based on high performance liquid chromatography coupled with quadrupole time of flight or Orbitrap mass spectrometry in MS and MS² modes, in total 14 substances were identified in the cress extracts. All three parent drugs were taken up by the cress and translocated from the roots to the leaves in specific patterns. In addition to this, eleven metabolite species were identified. They were generated by hydroxylation, demethylation, conjugation with amino acids, or combinations of these mechanisms. Finally, the inclusion of control cultures in the experimental setup allowed for a differentiation of "true" metabolites generated by the cress and transformation products generated by plant-independent mechanisms.


Assuntos
Clomipramina/metabolismo , Lepidium sativum/metabolismo , Sertralina/metabolismo , Espectrometria de Massas em Tandem/métodos , Trazodona/metabolismo , Antidepressivos/análise , Antidepressivos/metabolismo , Cromatografia Líquida de Alta Pressão , Clomipramina/análise , Metaboloma , Folhas de Planta/química , Folhas de Planta/metabolismo , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Sertralina/análise , Trazodona/análise
11.
Ann Bot ; 120(4): 511-520, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28981578

RESUMO

Background and Aims: Imbibed cress ( Lepidium sativum L.) seeds exude 'allelochemicals' that promote excessive hypocotyl elongation and inhibit root growth in neighbouring competitors, e.g. amaranth ( Amaranthus caudatus L.) seedlings. The major hypocotyl promoter has recently been shown not to be the previously suggested acidic disaccharide, lepidimoic acid (LMA), a fragment of the pectic polysaccharide domain rhamnogalacturonan-I. The nature of the hypocotyl promoter has now been re-assessed. Methods: Low-molecular weight cress-seed exudate (LCSE) was fractionated by high-voltage electrophoresis, and components with different charge:mass ratios were tested for effects on dark-grown amaranth seedlings. Further samples of LCSE were size-fractionated by gel permeation chromatography, and active fractions were analysed electrophoretically. Key Results: The LCSE strongly promoted amaranth hypocotyl elongation. The active principle was hydrophilic and, unlike LMA, stable to hot acid. After electrophoresis at pH 6·5, the only fractions that strongly promoted hypocotyl elongation were those with a very high positive charge:mass ratio, migrating towards the cathode 3-4 times faster than glucosamine. Among numerous naturally occurring cations tested, the only one with such a high mobility was potassium. K + was present in LCSE at approx. 4 m m , and pure KCl (1-10 m m ) strongly promoted amaranth hypocotyl elongation. No other cation tested (including Na + , spermidine and putrescine) had this effect. The peak of bioactivity from a gel permeation chromatography column exactly coincided with the peak of K + . Conclusions: The major 'allelopathic' substance present in cress-seed exudate that stimulates hypocotyl elongation in neighbouring seedlings is the inorganic cation, K + , not the oligosaccharin LMA.


Assuntos
Amaranthus/crescimento & desenvolvimento , Dissacarídeos/fisiologia , Exsudatos e Transudatos/fisiologia , Hipocótilo/crescimento & desenvolvimento , Lepidium sativum/fisiologia , Potássio/fisiologia , Sementes/metabolismo , Amaranthus/metabolismo , Cromatografia em Gel , Eletroforese/métodos , Exsudatos e Transudatos/química , Hipocótilo/metabolismo , Lepidium sativum/metabolismo , Sementes/fisiologia
12.
Int J Phytoremediation ; 19(8): 765-773, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28448157

RESUMO

Some investigations have been carried out in this study to find the best technique of soil reclamation in mercurypolluted soil. In this study, we examined Lepidium sativum L. as a plant useful for Hg phytoextraction. The simultaneous application of compost and thiosulfate was explored as a possible method of enhancing the process of phytoextraction. The results of the investigations of plant protein changes during assisted Hg phytoextraction were also provided. The results of the study show that combined use of compost and thiosulfate significantly increased both the total Hg accumulation and its translocation to aerial plant tissues. Plant protein analysis showed that L. sativum L. has the ability to respond to environmental stress condition by the activation of additional proteins. The additional proteins, like homocysteine methyltransferase, ribulose bisphosphate carboxylases (long and short chains), 14-3-3-like protein, and biosynthesis-related 40S ribosomal protein S15, were activated in plant shoots only in experiments carried out in Hg-polluted soil. There were no protein changes observed in plants exposed to compost and thiosulfate. It suggests that the combined use of compost and thiosulfate decreased Hg toxicity.


Assuntos
Lepidium sativum/metabolismo , Mercúrio/toxicidade , Proteínas de Plantas/metabolismo , Poluentes do Solo/toxicidade , Biodegradação Ambiental , Lepidium sativum/química , Solo
13.
Ecotoxicol Environ Saf ; 123: 65-71, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26256248

RESUMO

Chloramphenicol sodium succinate (CAP, C15H15Cl2N2 Na2O8) is a broad-spectrum antibiotic exhibiting activity against both Gram-positive and Gram-negative bacteria as well as other groups of microorganisms only partially removed by conventional activated sludge wastewater treatment plants. Thus, CAP and its metabolites can be found in effluents. The present work deals with the photocatalytic degradation of CAP using TiO2 as photocatalyst. We investigated the optimization of reaction contact time and concentration of TiO2 considering CAP and its by-products removal as well as effluent ecotoxicity elimination. Considering a CAP real concentration of 25mgL(-1), kinetic degradation curves were determined at 0.1, 0.2, 0.4, 0.8, 1.6 and 3.2gL(-1) TiO2 after 5, 10, 30, 60 and 120min reaction time. Treated samples were checked for the presence of by-products and residual toxicity (V. fischeri, P. subcapitata, L. sativum and D. magna). Results evidenced that the best combination for CAP and its by-products removal could be set at 1.6gL(-1) of TiO2 for 120min with an average residual toxicity of approximately 10%, that is the threshold set for negative controls in most toxicity tests for blank and general toxicity test acceptability.


Assuntos
Antibacterianos/química , Cloranfenicol/análogos & derivados , Poluentes Químicos da Água/química , Aliivibrio fischeri/efeitos dos fármacos , Aliivibrio fischeri/metabolismo , Animais , Antibacterianos/toxicidade , Biodegradação Ambiental , Catálise , Cloranfenicol/química , Cloranfenicol/toxicidade , Clorófitas/efeitos dos fármacos , Clorófitas/metabolismo , Daphnia/efeitos dos fármacos , Daphnia/metabolismo , Lepidium sativum/efeitos dos fármacos , Lepidium sativum/metabolismo , Esgotos/química , Titânio/química , Testes de Toxicidade Aguda , Testes de Toxicidade Crônica , Poluentes Químicos da Água/toxicidade
14.
J Environ Manage ; 150: 499-507, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25560659

RESUMO

This study focuses on the influence of adding iodide (KI) and compost in different soil/compost ratios on the efficiency of Hg phytoextraction by Lepidium sativum L. Plant growth and non-enzymatic antioxidants are studied to understand metabolic plant adaptations to Hg stress during soil reclamation and their relations to Hg accumulation. Due to the use of relatively high chelant dosages in current plant-based soil remediation techniques and associated environmental risks, it is necessary to explore alternative approaches to the phytoextraction of Hg from contaminated soils. The results show a coordinated increase in non-enzymatic antioxidants in plants cultivated in growing media containing polluted soil, compost and KI. This indicates that the non-enzymatic antioxidative defence system of L. sativum L. is involved in its strategy to survive conditions of mercury-induced stress. Adding compost and iodide to Hg polluted soil also increases the total accumulation of Hg by L. sativum L. and the translocation of pollutants to aerial plant tissues. Simultaneous application of compost and KI promoted the Hg accumulation by L. sativum L. in a pot experiment.


Assuntos
Iodetos/química , Lepidium sativum/metabolismo , Mercúrio/metabolismo , Poluentes do Solo/química , Solo , Biodegradação Ambiental , Humanos , Lepidium sativum/crescimento & desenvolvimento
15.
BMC Complement Med Ther ; 24(1): 104, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413963

RESUMO

BACKGROUND: Hepatocyte death and a systemic inflammatory response are the outcome of a complex chain of events mediated by numerous inflammatory cells and chemical mediators. The point of this study was to find out if tadalafil and/or Lepidium sativum (L. sativum) could help people who have been exposed to carbon tetrachloride (CCL4) and are experiencing acute moderate liver failure. This was especially true when the two were used together. METHOD AND MATERIALS: To cause mild liver failure 24 h before sacrifice, a single oral dosage of CCL4 (2.5 mL/kg b.w.) (50% in olive oil) was utilized. Furthermore, immunohistochemical expression of nuclear factor kappa B (NF-κB) as well as histological abnormalities were performed on liver tissue. RESULTS: The results showed that tadalafil and/or L. sativum, especially in combination, performed well to cure acute mild liver failure caused by CCL4. This was demonstrated by a decrease in NF-κB expression in the liver tissue and an improvement in organ damage markers observed in the blood and liver tissues. Furthermore, such therapy reduced interleukin1 beta (IL-1ß) and tumor necrosis factor-alpha (TNF-α) levels in the liver tissue. It's worth noting that the tested combination resulted in greater liver improvement. CONCLUSIONS: According to the findings, tadalafil and L. sativum, particularly in combination, have the ability to protect the liver from the negative effects of CCL4 exposure. Because of its capacity to improve liver function, restore redox equilibrium, and decrease inflammatory mediators, it is a prospective option for mitigating the negative effects of common environmental pollutants such as CCL4.


Assuntos
Falência Hepática Aguda , NF-kappa B , Humanos , Ratos , Animais , NF-kappa B/metabolismo , Lepidium sativum/metabolismo , Tadalafila/farmacologia , Estudos Prospectivos , Estresse Oxidativo
16.
Environ Sci Technol ; 47(13): 6806-11, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-22849576

RESUMO

For many chiral pesticides, little information is available on the properties and fate of individual stereoisomers. A basic data set would, first of all, include stereoisomer-specific analytical methods and data on the biological activity of stereoisomers. The herbicide beflubutamid, which acts as an inhibitor of carotenoid biosynthesis, is currently marketed as racemate against dicotyledonous weeds in cereals. Here, we present analytical methods for enantiomer separation of beflubutamid and two metabolites based on chiral HPLC. These methods were used to assign the optical rotation and to prepare milligram quantities of the pure enantiomers for further characterization with respect to herbicidal activity. In addition, sensitive analytical methods were developed for enantiomer separation and quantification of beflubutamid and its metabolites at trace level, using chiral GC-MS. In miniaturized biotests with garden cress, (-)-beflubutamid showed at least 1000× higher herbicidal activity (EC50, 0.50 µM) than (+)-beflubutamid, as determined by analysis of chlorophyll a in 5-day-old leaves. The agricultural use of enantiopure (-)-beflubutamid rather than the racemic compound may therefore be advantageous from an environmental perspective. In further biotests, the (+)-enantiomer of the phenoxybutanoic acid metabolite showed effects on root growth, possibly via an auxin-type mode of action, but at 100× higher concentrations than the structurally related herbicide (+)-mecoprop.


Assuntos
Amidas/química , Herbicidas/química , Amidas/análise , Amidas/toxicidade , Clorofila/metabolismo , Clorofila A , Cromatografia Líquida de Alta Pressão , Cromatografia Gasosa-Espectrometria de Massas , Herbicidas/análise , Herbicidas/toxicidade , Lepidium sativum/efeitos dos fármacos , Lepidium sativum/crescimento & desenvolvimento , Lepidium sativum/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Estereoisomerismo
17.
Anal Bioanal Chem ; 405(7): 2397-404, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23322354

RESUMO

In the present work, application of the previously established reversed-phase liquid chromatography procedure based on fluorescent labeling of cytosine and methylcytosine moieties with 2-bromoacetophenone (HPLC-FLD) is presented for simultaneous evaluation of global DNA and total RNA methylation at cytosine carbon 5. The need for such analysis was comprehended from the recent advances in the field of epigenetics that highlight the importance of non-coding RNAs in DNA methylation and suggest that RNA methylation might play a similar role in the modulation of genetic information, as previously demonstrated for DNA. In order to adopt HPLC-FLD procedure for DNA and RNA methylation analysis in a single biomass extract, two extraction procedures with different selectivity toward nucleic acids were examined, and a simplified calibration was designed allowing for evaluation of methylation percentage based on the ratio of chromatographic peak areas: cytidine/5-methylcytidine for RNA and 2'-deoxycytidine/5-methyl-2'-deoxycytidine for DNA. As a proof of concept, global DNA and total RNA methylation were determined in Lepidium sativum hydroponically grown in the presence of different Cd(II) or Se(IV) concentrations, expecting that plant exposure to abiotic stress might affect not only global DNA but also total RNA methylation. The results obtained showed the increase of DNA methylation in the treated plants up to concentration levels 2 mg L(-1) Cd and 1 mg L(-1) Se in the growth medium. For higher stressors' concentration, global DNA methylation tended to decrease. Most importantly, an inverse correlation was found between DNA and RNA methylation levels (r = -0.6788, p = 0.031), calling for further studies of this particular modification of nucleic acids in epigenetic context.


Assuntos
Cloreto de Cádmio/farmacologia , Cromatografia de Fase Reversa/métodos , DNA de Plantas/análise , Fluorometria/métodos , Lepidium sativum/química , RNA de Plantas/análise , Selenito de Sódio/farmacologia , Cromatografia de Fase Reversa/instrumentação , Metilação de DNA , DNA de Plantas/genética , DNA de Plantas/metabolismo , Lepidium sativum/efeitos dos fármacos , Lepidium sativum/genética , Lepidium sativum/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo
18.
Plant Cell Physiol ; 53(1): 81-95, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21908442

RESUMO

Myrica gale L. (sweet gale) fruit leachate contains myrigalone A (MyA), a rare C-methylated dihydrochalcone and putative allelochemical, which is known to be a phytotoxin impeding seedling growth. We found that MyA inhibited Lepidium sativum L. seed germination in a dose-dependent manner. MyA did not affect testa rupture, but inhibited endosperm rupture and the transition to subsequent seedling growth. MyA inhibited micropylar endosperm cap (CAP) weakening and the increase in the growth potential of the radical/hypocotyl region (RAD) of the embryo, both being key processes required for endosperm rupture. We compared the contents of abscisic acid (ABA) and gibberellins in the tissues and found that the major bioactive forms of gibberellin in L. sativum seed tissues were GA(4) and GA(6), while GA(8) and GA(13) were abundant inactive metabolites. MyA did not appreciably affect the ABA contents, but severely interfered with gibberellin metabolism and signaling by inhibiting important steps catalyzed by GA3 oxidase, as well as by interfering with the GID1-type gibberellin signaling pathway. The hormonally and developmentally regulated formation of apoplastic superoxide radicals is important for embryo growth. Specific zones within the RAD were associated with accumulation of apoplastic superoxide radicals and endoreduplication indicative of embryo cell extension. MyA negatively affected both of these processes and acted as a scavenger of apoplastic reactive oxygen species. We propose that MyA is an allelochemical with a novel mode of action on seed germination.


Assuntos
Chalconas/farmacologia , Cicloexanonas/farmacologia , Endosperma/embriologia , Germinação/efeitos dos fármacos , Giberelinas/metabolismo , Lepidium sativum/efeitos dos fármacos , Lepidium sativum/embriologia , Superóxidos/metabolismo , Ácido Abscísico/farmacologia , Chalconas/química , Cicloexanonas/química , Endosperma/efeitos dos fármacos , Endosperma/genética , Etilenos/farmacologia , Frutas/efeitos dos fármacos , Frutas/metabolismo , Duplicação Gênica/efeitos dos fármacos , Duplicação Gênica/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Germinação/genética , Giberelinas/farmacologia , Lepidium sativum/genética , Lepidium sativum/metabolismo , Especificidade de Órgãos/efeitos dos fármacos , Especificidade de Órgãos/genética , Exsudatos de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento
19.
Plant Physiol ; 155(4): 1851-70, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21321254

RESUMO

The completion of germination in Lepidium sativum and other endospermic seeds (e.g. Arabidopsis [Arabidopsis thaliana]) is regulated by two opposing forces, the growth potential of the radicle (RAD) and the resistance to this growth from the micropylar endosperm cap (CAP) surrounding it. We show by puncture force measurement that the CAP progressively weakens during germination, and we have conducted a time-course transcript analysis of RAD and CAP tissues throughout this process. We have also used specific inhibitors to investigate the importance of transcription, translation, and posttranslation levels of regulation of endosperm weakening in isolated CAPs. Although the impact of inhibiting translation is greater, both transcription and translation are required for the completion of endosperm weakening in the whole seed population. The majority of genes expressed during this process occur in both tissues, but where they are uniquely expressed, or significantly differentially expressed between tissues, this relates to the functions of the RAD as growing tissue and the CAP as a regulator of germination through weakening. More detailed analysis showed that putative orthologs of cell wall-remodeling genes are expressed in a complex manner during CAP weakening, suggesting distinct roles in the RAD and CAP. Expression patterns are also consistent with the CAP being a receptor for environmental signals influencing germination. Inhibitors of the aspartic, serine, and cysteine proteases reduced the number of isolated CAPs in which weakening developed, and inhibition of the 26S proteasome resulted in its complete cessation. This indicates that targeted protein degradation is a major control point for endosperm weakening.


Assuntos
Endosperma/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Germinação , Lepidium sativum/genética , Ácido Abscísico/metabolismo , Parede Celular/metabolismo , Endosperma/genética , Endosperma/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Giberelinas/metabolismo , Lepidium sativum/crescimento & desenvolvimento , Lepidium sativum/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Reguladores de Crescimento de Plantas/metabolismo , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , RNA de Plantas/genética , Transcrição Gênica
20.
J Exp Bot ; 63(14): 5337-50, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22821938

RESUMO

Myrigalone A (MyA) is a rare flavonoid in fruit leachates of Myrica gale, a deciduous shrub adapted to flood-prone habitats. As a putative allelochemical it inhibits seed germination and seedling growth. Using Lepidium sativum as a model target species, experiments were conducted to investigate how environmental cues modulate MyA's interference with key processes of seed germination. Time course analyses of L. sativum testa and endosperm rupture under different light conditions and water potentials were combined with quantifying testa permeability, endosperm weakening, tissue-specific gibberellin (GA) and abscisic acid (ABA) contents, as well as embryo growth and apoplastic superoxide production important for cell expansion growth. Lepidium sativum testa permeability and early water uptake by imbibition is enhanced by MyA. During late germination, MyA inhibits endosperm weakening and embryo growth, both processes required for endosperm rupture. Inhibition of embryo cell expansion by MyA depends on environmental cues, which is evident from the light-modulated severity of the MyA-mediated inhibition of apoplastic superoxide accumulation. Several important key weakening and growth processes during early and late germination are targets for MyA. These effects are modulated by light conditions and ambient water potential. It is speculated that MyA is a soil seed bank-destroying allelochemical that secures the persistence of M. gale in its flood-prone environment.


Assuntos
Chalconas/farmacologia , Processamento de Imagem Assistida por Computador/métodos , Lepidium sativum/efeitos dos fármacos , Lepidium sativum/embriologia , Luz , Água/metabolismo , Ácido Abscísico/metabolismo , Endosperma/efeitos dos fármacos , Endosperma/embriologia , Endosperma/genética , Germinação/efeitos dos fármacos , Giberelinas/metabolismo , Lepidium sativum/metabolismo , Myrica/química , Sementes/química , Sais de Tetrazólio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA