Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 44(8): 1873-1883, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38899472

RESUMO

BACKGROUND: Pathogenic variants in PLIN1-encoding PLIN1 (perilipin-1) are responsible for an autosomal dominant form of familial partial lipodystrophy (FPL) associated with severe insulin resistance, hepatic steatosis, and important hypertriglyceridemia. This study aims to decipher the mechanisms of hypertriglyceridemia associated with PLIN1-related FPL. METHODS: We performed an in vivo lipoprotein kinetic study in 6 affected patients compared with 13 healthy controls and 8 patients with type 2 diabetes. Glucose and lipid parameters, including plasma LPL (lipoprotein lipase) mass, were measured. LPL mRNA and protein expression were evaluated in abdominal subcutaneous adipose tissue from patients with 5 PLIN1-mutated FPL and 3 controls. RESULTS: Patients with PLIN1-mutated FPL presented with decreased fat mass, insulin resistance, and diabetes (glycated hemoglobin A1c, 6.68±0.70% versus 7.48±1.63% in patients with type 2 diabetes; mean±SD; P=0.27). Their plasma triglycerides were higher (5.96±3.08 mmol/L) than in controls (0.76±0.27 mmol/L; P<0.0001) and patients with type 2 diabetes (2.94±1.46 mmol/L, P=0.006). Compared with controls, patients with PLIN1-related FPL had a significant reduction of the indirect fractional catabolic rate of VLDL (very-low-density lipoprotein)-apoB100 toward IDL (intermediate-density lipoprotein)/LDL (low-density lipoprotein; 1.79±1.38 versus 5.34±2.45 pool/d; P=0.003) and the indirect fractional catabolic rate of IDL-apoB100 toward LDL (2.14±1.44 versus 7.51±4.07 pool/d; P=0.005). VLDL-apoB100 production was not different between patients with PLIN1-related FPL and controls. Compared with patients with type 2 diabetes, patients with PLIN1-related FPL also showed a significant reduction of the catabolism of both VLDL-apoB100 (P=0.031) and IDL-apoB100 (P=0.031). Plasma LPL mass was significantly lower in patients with PLIN1-related FPL than in controls (21.03±10.08 versus 55.76±13.10 ng/mL; P<0.0001), although the LPL protein expression in adipose tissue was similar. VLDL-apoB100 and IDL-apoB100 indirect fractional catabolic rates were negatively correlated with plasma triglycerides and positively correlated with LPL mass. CONCLUSIONS: We show that hypertriglyceridemia associated with PLIN1-related FPL results from a marked decrease in the catabolism of triglyceride-rich lipoproteins (VLDL and IDL). This could be due to a pronounced reduction in LPL availability, related to the decreased adipose tissue mass.


Assuntos
Diabetes Mellitus Tipo 2 , Hipertrigliceridemia , Resistência à Insulina , Lipodistrofia Parcial Familiar , Lipase Lipoproteica , Lipoproteínas , Perilipina-1 , Triglicerídeos , Humanos , Masculino , Perilipina-1/genética , Perilipina-1/metabolismo , Perilipina-1/sangue , Triglicerídeos/sangue , Hipertrigliceridemia/sangue , Hipertrigliceridemia/genética , Feminino , Adulto , Pessoa de Meia-Idade , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/complicações , Lipoproteínas/sangue , Lipase Lipoproteica/sangue , Lipase Lipoproteica/metabolismo , Lipase Lipoproteica/genética , Lipodistrofia Parcial Familiar/genética , Lipodistrofia Parcial Familiar/sangue , Lipodistrofia Parcial Familiar/metabolismo , Mutação , Glicemia/metabolismo , Lipoproteínas VLDL/sangue , Lipoproteínas VLDL/metabolismo , Biomarcadores/sangue , Fenótipo , Predisposição Genética para Doença , Lipólise , RNA Mensageiro/metabolismo , RNA Mensageiro/genética
2.
Am J Physiol Endocrinol Metab ; 327(3): E357-E370, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39017680

RESUMO

Familial partial lipodystrophy 3 (FPLD3) is a rare genetic disorder caused by loss-of-function mutations in the PPARG gene, characterized by a selective absence of subcutaneous fat and associated metabolic complications. However, the molecular mechanisms of FPLD3 remain unclear. In this study, we recruited a 17-yr-old Chinese female with FPLD3 and her family, identifying a novel PPARG frameshift mutation (exon 4: c.418dup: p.R140Kfs*7) that truncates the PPARγ protein at the seventh amino acid, significantly expanding the genetic landscape of FPLD3. By performing next-generation sequencing of circular RNAs (circRNAs), microRNAs (miRNAs), and mRNAs in plasma exosomes, we discovered 59 circRNAs, 57 miRNAs, and 299 mRNAs were significantly altered in the mutation carriers compared with the healthy controls. Integration analysis highlighted that the circ_0001597-miR-671-5p pair and 18 mRNAs might be incorporated into the metabolic regulatory networks of the FPLD3 induced by the novel PPARG mutation. Functional annotation suggested that these genes were significantly enriched in glucose- and lipid metabolism-related pathways. Among the circRNA-miRNA-mRNA network, we identified two critical regulators, early growth response-1 (EGR1), a key transcription factor known for its role in insulin signaling pathways and lipid metabolism, and 1-acylglycerol-3-phosphate O-acyltransferase 3 (AGPAT3), which gets involved in the biosynthesis of triglycerides and lipolysis. Circ_0001597 regulates the expression of these genes through miR-671-5p, potentially contributing to the pathophysiology of FPLD3. Overall, this study clarified a circulating exosomal circRNA-miRNA-mRNA network in a FPLD3 family with a novel PPARG mutation, providing evidence for exploring promising biomarkers and developing novel therapeutic strategies for this rare genetic disorder.NEW & NOTEWORTHY Through the establishment of a ceRNA regulatory networks in a novel PPARG frameshift mutation c.418dup-induced FPLD3 pedigree, this study reveals that circ_0001597 may contribute to the pathophysiology of FPLD3 by sequestering miR-671-5p to regulate the expression of EGR1 and AGPAT3, pivotal genes situated in the triglyceride (TG) synthesis and lipolysis pathways. Current findings expand our molecular understanding of adipose tissue dysfunction, providing potential blood biomarkers and therapeutic avenues for lipodystrophy and associated metabolic complications.


Assuntos
Exossomos , Mutação da Fase de Leitura , Lipodistrofia Parcial Familiar , MicroRNAs , PPAR gama , RNA Circular , RNA Mensageiro , Humanos , Feminino , MicroRNAs/genética , MicroRNAs/sangue , PPAR gama/genética , RNA Circular/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Adolescente , Lipodistrofia Parcial Familiar/genética , Exossomos/genética , Exossomos/metabolismo , Linhagem , Redes Reguladoras de Genes
3.
Diabetes Obes Metab ; 26(11): 4875-4886, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39171574

RESUMO

AIM: To assess the disease burden of familial partial lipodystrophy (FPLD) caused by LMNA (FPLD2) and PPARG (FPLD3) variants to augment the knowledge of these rare disorders characterized by selective fat loss and metabolic complications. MATERIALS AND METHODS: An observational longitudinal study, including 157 patients (FPLD2: 139 patients, mean age 46 ± 17 years, 70% women; FPLD3: 18 patients, mean age: 44 ± 17 years, 78% women) from 66 independent families in two countries (83 from Turkey and 74 from Spain), was conducted. RESULTS: Patients were diagnosed at a mean age of 39 ± 19 years, 20 ± 16 years after the first clinical signs appeared. Men reported symptoms later than women. Symptom onset was earlier in FPLD2. Fat loss was less prominent in FPLD3. In total, 92 subjects (59%) had diabetes (age at diagnosis: 34 ± 1 years). Retinopathy was more commonly detected in FPLD3 (P < .05). Severe hypertriglyceridaemia was more frequent among patients with FPLD3 (44% vs. 17%, P = .01). Hepatic steatosis was detected in 100 subjects (66%) (age at diagnosis: 36 ± 2 years). Coronary artery disease developed in 26 patients (17%) and 17 (11%) suffered from a myocardial infarction. Turkish patients had a lower body mass index, a higher prevalence of hepatic steatosis, greater triglyceride levels and a tendency towards a higher prevalence of coronary artery disease. A total of 17 patients died, with a mean time to death of 75 ± 3 years, which was shorter in the Turkish cohort (68 ± 2 vs. 83 ± 4 years, P = .01). Cardiovascular events were a major cause of death. CONCLUSIONS: Our analysis highlights severe organ complications in patients with FPLD, showing differences between genotypes and Mediterranean countries. FPLD3 presents a milder phenotype than FPLD2, but with comparable or even greater severity of metabolic disturbances.


Assuntos
Lipodistrofia Parcial Familiar , Humanos , Feminino , Masculino , Lipodistrofia Parcial Familiar/genética , Lipodistrofia Parcial Familiar/epidemiologia , Lipodistrofia Parcial Familiar/complicações , Pessoa de Meia-Idade , Adulto , Espanha/epidemiologia , Turquia/epidemiologia , Estudos Longitudinais , Lamina Tipo A/genética , Estudos de Coortes , Hipertrigliceridemia/complicações , Hipertrigliceridemia/epidemiologia
4.
Int J Mol Sci ; 25(2)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38279282

RESUMO

The accumulation of farnesylated prelamin A has been suggested as one of the mechanisms responsible for the loss of fat in type 2 familial partial lipodystrophy due to variants in the LMNA gene. In this rare disease, fat loss appears in women after puberty, affecting sex-hormone-dependent anatomical areas. This study investigated the impact of 17-ß-estradiol on adipogenesis in murine preadipocytes subjected to a pharmacologically induced accumulation of farnesylated and non-farnesylated prelamin A. To induce the accumulation of non-farnesylated or farnesylated prelamin A, 3T3-L1 cells were treated with the farnesyltransferase inhibitor 277 or the methyltransferase inhibitor N-acetyl-S-farnesyl-l-cysteine methylester. Subsequently, the cells were induced to undergo adipocyte differentiation in the presence or absence of 17-ß-estradiol. Prelamin A accumulation was assessed through immunofluorescence, while real-time PCR and Western blot techniques were used to quantify several adipogenic genes and evaluate protein levels, respectively. The results showed that 17-ß-estradiol increased adipogenesis, although the combination of this hormone plus farnesylated prelamin A led to a reduction in the number of mature adipocytes and the expression of the different genes involved in adipogenesis. In conclusion, the influence of farnesylated prelamin A accumulation on adipogenesis manifested only in the presence of estradiol. These in vitro findings suggest a potential mechanism that could explain the characteristic phenotype in women suffering type 2 familial partial lipodystrophy.


Assuntos
Lamina Tipo A , Lipodistrofia Parcial Familiar , Humanos , Feminino , Camundongos , Animais , Lipodistrofia Parcial Familiar/genética , Lipodistrofia Parcial Familiar/metabolismo , Adipogenia , Células 3T3-L1 , Proteínas Nucleares/genética , Estradiol/farmacologia
5.
Int J Mol Sci ; 25(15)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39125589

RESUMO

Recent research into laminopathic lipodystrophies-rare genetic disorders caused by mutations in the LMNA gene-has greatly expanded our knowledge of their complex pathology and metabolic implications. These disorders, including Hutchinson-Gilford progeria syndrome (HGPS), Mandibuloacral Dysplasia (MAD), and Familial Partial Lipodystrophy (FPLD), serve as crucial models for studying accelerated aging and metabolic dysfunction, enhancing our understanding of the cellular and molecular mechanisms involved. Research on laminopathies has highlighted how LMNA mutations disrupt adipose tissue function and metabolic regulation, leading to altered fat distribution and metabolic pathway dysfunctions. Such insights improve our understanding of the pathophysiological interactions between genetic anomalies and metabolic processes. This review merges current knowledge on the phenotypic classifications of these diseases and their associated metabolic complications, such as insulin resistance, hypertriglyceridemia, hepatic steatosis, and metabolic syndrome, all of which elevate the risk of cardiovascular disease, stroke, and diabetes. Additionally, a range of published therapeutic strategies, including gene editing, antisense oligonucleotides, and novel pharmacological interventions aimed at addressing defective adipocyte differentiation and lipid metabolism, will be explored. These therapies target the core dysfunctional lamin A protein, aiming to mitigate symptoms and provide a foundation for addressing similar metabolic and genetic disorders.


Assuntos
Lamina Tipo A , Lipodistrofia , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Lipodistrofia/genética , Lipodistrofia/metabolismo , Lipodistrofia/terapia , Animais , Laminopatias/genética , Laminopatias/metabolismo , Progéria/genética , Progéria/metabolismo , Progéria/patologia , Mutação , Lipodistrofia Parcial Familiar/genética , Lipodistrofia Parcial Familiar/metabolismo , Lipodistrofia Parcial Familiar/terapia , Metabolismo dos Lipídeos/genética , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Resistência à Insulina/genética , Edição de Genes
6.
Endocr J ; 70(1): 69-76, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36171144

RESUMO

Familial partial lipodystrophy (FPLD) 3 is a rare genetic disorder caused by peroxisome proliferator-activated receptor γ gene (PPARG) mutations. Most cases have been reported in Western patients. Here, we describe a first pedigree of FPLD 3 in Japanese. The proband was a 51-year-old woman. She was diagnosed with fatty liver at age 32 years, dyslipidemia at age 37 years, and diabetes mellitus at age 41 years. Her body mass index was 18.5 kg/m2, and body fat percentage was 19.2%. On physical examination, she had less subcutaneous fat in the upper limbs than in other sites. On magnetic resonance imaging, atrophy of subcutaneous adipose tissue was seen in the upper limbs and lower legs. Fasting serum C-peptide immunoreactivity was high (3.4 ng/mL), and the plasma glucose disappearance rate was low (2.07%/min) on an insulin tolerance test, both suggesting apparent insulin resistance. The serum total adiponectin level was low (2.3 µg/mL). Mild fatty liver was seen on abdominal computed tomography. On genetic analysis, a P495L mutation in PPARG was identified. The same mutation was also seen in her father, who had non-obese diabetes mellitus, and FPLD 3 was diagnosed. Modest increases in body fat and serum total adiponectin were seen with pioglitazone treatment. Attention should be paid to avoid overlooking lipodystrophy syndromes even in non-obese diabetic patients if they show features of insulin resistance.


Assuntos
Diabetes Mellitus , Resistência à Insulina , Lipodistrofia Parcial Familiar , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Lipodistrofia Parcial Familiar/tratamento farmacológico , Lipodistrofia Parcial Familiar/genética , Lipodistrofia Parcial Familiar/diagnóstico , PPAR gama/genética , Pioglitazona/uso terapêutico , Resistência à Insulina/genética , Adiponectina , População do Leste Asiático , Mutação
7.
Int J Mol Sci ; 24(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37569420

RESUMO

Familial partial lipodystrophy (FPLD) is a rare syndrome in which a patient's phenotype is not merely dependent on the specific genetic mutation, but it is also defined by a combination of other demographic, environmental and genetic factors. In this prospective observational study in a Greek referral center, we enrolled 39 patients who fulfilled the clinical criteria of FPLD. A genetic analysis was conducted, which included sequence and deletion/duplication analyses of the LMNA and PPRARG genes, along with anthropometric and metabolic parameters. The treatment responses of patients who were eligible for treatment with metreleptin were evaluated at 3 and 12 months. In most of the patients, no significant changes were detected at the exon level, and any mutations that led to changes at the protein level were not associated with the lipodystrophic phenotype. On the contrary, various changes were detected at the intron level, especially in introns 7 and 10, whose clinical significance is considered unknown. In addition, treatment with metreleptin in specific FPLD patients significantly improved glycemic and lipidemic control, an effect which was sustained at the 12-month follow-up. More large-scale studies are necessary to clarify the genetic and allelic heterogeneity of the disease, along with other parameters which could predict treatment response.


Assuntos
Lipodistrofia Parcial Familiar , Humanos , Lipodistrofia Parcial Familiar/genética , Grécia , Lamina Tipo A/genética , Mutação , Fenótipo
8.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36835312

RESUMO

Peroxisome proliferator-activated receptor γ (PPARγ) gene mutations in humans and mice lead to whole-body insulin resistance and partial lipodystrophy. It is unclear whether preserved fat depots in partial lipodystrophy are beneficial for whole-body metabolic homeostasis. We analyzed the insulin response and expression of metabolic genes in the preserved fat depots of PpargC/- mice, a familial partial lipodystrophy type 3 (FPLD3) mouse model resulting from a 75% decrease in Pparg transcripts. Perigonadal fat of PpargC/- mice in the basal state showed dramatic decreases in adipose tissue mass and insulin sensitivity, whereas inguinal fat showed compensatory increases. Preservation of inguinal fat metabolic ability and flexibility was reflected by the normal expression of metabolic genes in the basal or fasting/refeeding states. The high nutrient load further increased insulin sensitivity in inguinal fat, but the expression of metabolic genes became dysregulated. Inguinal fat removal resulted in further impairment of whole-body insulin sensitivity in PpargC/- mice. Conversely, the compensatory increase in insulin sensitivity of the inguinal fat in PpargC/- mice diminished as activation of PPARγ by its agonists restored insulin sensitivity and metabolic ability of perigonadal fat. Together, we demonstrated that inguinal fat of PpargC/- mice plays a compensatory role in combating perigonadal fat abnormalities.


Assuntos
Resistência à Insulina , Lipodistrofia Parcial Familiar , PPAR gama , Animais , Humanos , Camundongos , Insulina/metabolismo , Insulina/farmacologia , Resistência à Insulina/genética , Lipodistrofia Parcial Familiar/genética , Mutação , PPAR gama/genética , PPAR gama/metabolismo
9.
Clin Endocrinol (Oxf) ; 97(6): 755-762, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35920656

RESUMO

CONTEXT: Familial partial lipodystrophy type 2 (FPLD2) results from autosomal dominant mutations in the LMNA gene, causing lack of subcutaneous fat deposition and excess ectopic fat accumulation, leading to metabolic complications and reduced life expectancy. The rarity of the condition means that the natural history of FPLD2 throughout childhood is not well understood. We report outcomes in a cohort of 12 (5M) children with a genetic diagnosis of FPLD2, under the care of the UK National Severe Insulin Resistance Service (NSIRS) which offers multidisciplinary input including dietetic, in addition to screening for comorbidities. OBJECTIVE: To describe the natural history of clinical, biochemical and radiological outcomes of children with FPLD2. DESIGN: A retrospective case note review of children with a genetic diagnosis of FPLD2 who had been seen in the paediatric NSIRS was performed. PATIENTS: Twelve (5M) individuals diagnosed with FPLD2 via genetic testing before age 18 and who attended the NSIRS clinic were included. MEASUREMENTS: Relationships between metabolic variables (HbA1c, triglycerides, fasting insulin, fasting glucose and alanine transaminase [ALT]) across time, from first visit to most recent, were explored using a multivariate model, adjusted for age and gender. The age of development of comorbidities was recorded. RESULTS: Three patients (all female) developed diabetes between 12 and 19 years and were treated with Metformin. One female has hypertrophic cardiomyopathy and four (1M) patients developed mild hepatic steatosis at a median [range] age of 14(12-15) years. Three (1M) patients reported mental health problems related to lipodystrophy. There was no relationship between biochemical results and age. Patients with diabetes had higher concentrations of ALT than patients who did not have diabetes, adjusted for age, gender and body mass index standard deviation scores. CONCLUSIONS: Despite dietetic input, some patients, more commonly females, developed comorbidities after the age of 10. The absence of relationships between biochemical results and age likely reflects a small cohort size. We propose that, while clinical review and dietetic support are beneficial for children with FPLD2, formal screening for comorbidities before age 10 may not be of benefit. Clinical input from an multidisciplinary team including dietician, psychologist and clinician should be offered after diagnosis.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Lipodistrofia Parcial Familiar , Criança , Humanos , Feminino , Adolescente , Lipodistrofia Parcial Familiar/genética , Lipodistrofia Parcial Familiar/metabolismo , Estudos Retrospectivos , Lamina Tipo A/genética , Gordura Subcutânea/metabolismo
10.
Int J Mol Sci ; 23(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35955791

RESUMO

LMNA mutation is associated with type-2 familial partial lipodystrophy (FPLD2). The disease causes a disorder characterized by anomalous accumulation of body fat in humans. The dysfunction at the molecular level is triggered by a lamin A/C mutation, impairing the cell metabolism. In human fibroblasts and preadipocytes, a trend for ATP production, mainly supported by mitochondrial oxidative metabolism, is detected. Moreover, primary cell lines with FPLD2 mutation decrease the mitochondrial ATP production if compared with the control, even if no differences are observed in the oxygen consumption rate of bioenergetic parameters (i.e., basal and maximal respiration, spare respiratory capacity, and ATP turnover). Conversely, glycolysis is only inhibited in FPLD2 fibroblast cell lines. We notice that the amount of ATP produced in the fibroblasts is higher than in the preadipocytes, and likewise in the control, with respect to FPLD2, due to a more active oxidative phosphorylation (OXPHOS) and glycolysis. Moreover, the proton leak parameter, which characterizes the transformation of white adipose tissue to brown/beige adipose tissue, is unaffected by FPLD2 mutation. The metabolic profile of fibroblasts and preadipocytes is confirmed by the ability of these cell lines to increase the metabolic potential of both OXPHOS and glycolysis under energy required independently by the FPLD2 mutation.


Assuntos
Lipodistrofia Parcial Familiar , Trifosfato de Adenosina/metabolismo , Tecido Adiposo Marrom/metabolismo , Metabolismo Energético , Fibroblastos/metabolismo , Humanos , Lamina Tipo A/genética , Lipodistrofia Parcial Familiar/genética , Lipodistrofia Parcial Familiar/metabolismo
11.
Clin Endocrinol (Oxf) ; 94(6): 1043-1053, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33502018

RESUMO

OBJECTIVES: LMNA variants have been previously associated with cardiac abnormalities independent of lipodystrophy. We aimed to assess cardiac impact of familial partial lipodystrophy (FPLD) to understand the role of laminopathy in cardiac manifestations. STUDY DESIGN: Retrospective cohort study. METHODS: Clinical data from 122 patients (age range: 13-77, 101 females) with FPLD were analysed. Mature human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from a patient with an LMNA variant were studied as proof-of-concept for future studies. RESULTS: Subjects with LMNA variants had a higher prevalence of overall cardiac events than others. The likelihood of having an arrhythmia was significantly higher in patients with LMNA variants (OR: 3.77, 95% CI: 1.45-9.83). These patients were at higher risk for atrial fibrillation or flutter (OR: 5.78, 95% CI: 1.04-32.16). The time to the first arrhythmia was significantly shorter in the LMNA group, with a higher HR of 3.52 (95% CI: 1.34-9.27). Non-codon 482 LMNA variants were more likely to be associated with cardiac events (vs. 482 LMNA: OR: 4.74, 95% CI: 1.41-15.98 for arrhythmia; OR: 17.67, 95% CI: 2.45-127.68 for atrial fibrillation or flutter; OR: 5.71, 95% CI: 1.37-23.76 for conduction disease). LMNA mutant hiPSC-CMs showed a higher frequency of spontaneous activity and shorter action potential duration. Functional syncytia of hiPSC-CMs displayed several rhythm alterations such as early afterdepolarizations, spontaneous quiescence and spontaneous tachyarrhythmia, and significantly slower recovery in chronotropic changes induced by isoproterenol exposure. CONCLUSIONS: Our results highlight the need for vigilant cardiac monitoring in FPLD, especially in patients with LMNA variants who have an increased risk of developing cardiac arrhythmias. In addition, hiPSC-CMs can be studied to understand the basic mechanisms for the arrhythmias in patients with lipodystrophy to understand the impact of specific mutations.


Assuntos
Células-Tronco Pluripotentes Induzidas , Lipodistrofia Parcial Familiar , Lipodistrofia , Adolescente , Adulto , Idoso , Feminino , Humanos , Lamina Tipo A/genética , Lipodistrofia Parcial Familiar/genética , Pessoa de Meia-Idade , Mutação , Fenótipo , Estudos Retrospectivos , Adulto Jovem
12.
J Cell Mol Med ; 24(13): 7660-7669, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32519441

RESUMO

The transcription factor peroxisome proliferator-activated receptor gamma (PPARG) is essential for placental development, and alterations in its expression and/or activity are associated with human placental pathologies such as pre-eclampsia or IUGR. However, the molecular regulation of PPARG in cytotrophoblast differentiation and in the underlying mesenchyme remains poorly understood. Our main goal was to study the impact of mutations in the ligand-binding domain (LBD) of the PPARG gene on cytotrophoblast fusion (PPARGE352Q ) and on fibroblast cell migration (PPARGR262G /PPARGL319X ). Our results showed that, compared to cells with reconstituted PPARGWT , transfection with PPARGE352Q led to significantly lower PPARG activity and lower restoration of trophoblast fusion. Likewise, compared to PPARGWT fibroblasts, PPARGR262G /PPARGL319X fibroblasts demonstrated significantly inhibited cell migration. In conclusion, we report that single missense or nonsense mutations in the LBD of PPARG significantly inhibit cell fusion and migration processes.


Assuntos
Movimento Celular , Fibroblastos/patologia , Lipodistrofia Parcial Familiar/genética , Mutação/genética , PPAR gama/química , PPAR gama/genética , Trofoblastos/patologia , Animais , Fusão Celular , Fibroblastos/metabolismo , Humanos , Ligantes , Lipodistrofia Parcial Familiar/patologia , Camundongos , Modelos Moleculares , Células NIH 3T3 , PPAR gama/metabolismo , Domínios Proteicos , Trofoblastos/metabolismo
13.
Hum Mol Genet ; 27(8): 1447-1459, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29438482

RESUMO

The p.R482W hotspot mutation in A-type nuclear lamins causes familial partial lipodystrophy of Dunnigan-type (FPLD2), a lipodystrophic syndrome complicated by early onset atherosclerosis. Molecular mechanisms underlying endothelial cell dysfunction conferred by the lamin A mutation remain elusive. However, lamin A regulates epigenetic developmental pathways and mutations could perturb these functions. Here, we demonstrate that lamin A R482W elicits endothelial differentiation defects in a developmental model of FPLD2. Genome modeling in fibroblasts from patients with FPLD2 caused by the lamin A R482W mutation reveals repositioning of the mesodermal regulator T/Brachyury locus towards the nuclear center relative to normal fibroblasts, suggesting enhanced activation propensity of the locus in a developmental model of FPLD2. Addressing this issue, we report phenotypic and transcriptional alterations in mesodermal and endothelial differentiation of induced pluripotent stem cells we generated from a patient with R482W-associated FPLD2. Correction of the LMNA mutation ameliorates R482W-associated phenotypes and gene expression. Transcriptomics links endothelial differentiation defects to decreased Polycomb-mediated repression of the T/Brachyury locus and over-activation of T target genes. Binding of the Polycomb repressor complex 2 to T/Brachyury is impaired by the mutated lamin A network, which is unable to properly associate with the locus. This leads to a deregulation of vascular gene expression over time. By connecting a lipodystrophic hotspot lamin A mutation to a disruption of early mesodermal gene expression and defective endothelial differentiation, we propose that the mutation rewires the fate of several lineages, resulting in multi-tissue pathogenic phenotypes.


Assuntos
Células Endoteliais/metabolismo , Proteínas Fetais/genética , Regulação da Expressão Gênica no Desenvolvimento , Lamina Tipo A/genética , Lipodistrofia Parcial Familiar/genética , Proteínas do Grupo Polycomb/genética , Proteínas com Domínio T/genética , Adolescente , Adulto , Estudos de Casos e Controles , Diferenciação Celular/genética , Linhagem da Célula/genética , Células Endoteliais/patologia , Feminino , Proteínas Fetais/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Redes Reguladoras de Genes , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Lamina Tipo A/metabolismo , Lipodistrofia Parcial Familiar/metabolismo , Lipodistrofia Parcial Familiar/patologia , Masculino , Mesoderma/metabolismo , Mesoderma/patologia , Pessoa de Meia-Idade , Mutação , Proteínas do Grupo Polycomb/metabolismo , Cultura Primária de Células , Ligação Proteica , Transdução de Sinais , Proteínas com Domínio T/metabolismo
14.
J Hepatol ; 70(6): 1214-1221, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31000363

RESUMO

BACKGROUND & AIMS: Adult patients suffering from liver disease of unknown cause represent an understudied and underserved population. The use of whole-exome sequencing (WES) for the assessment of a broader spectrum of non-oncological diseases, among adults, remains poorly studied. We assessed the utility of WES in the diagnosis and management of adults with unexplained liver disease despite comprehensive evaluation by a hepatologist and with no history of alcohol overuse. METHODS: We performed WES and deep phenotyping of 19 unrelated adult patients with idiopathic liver disease recruited at a tertiary academic health care center in the US. RESULTS: Analysis of the exome in 19 cases identified 4 monogenic disorders in 5 unrelated adults. Patient 1 suffered for 18 years from devastating complications of undiagnosed type 3 familial partial lipodystrophy due to a deleterious heterozygous variant in PPARG. Molecular diagnosis enabled initiation of leptin replacement therapy with subsequent normalization of liver aminotransferases, amelioration of dyslipidemia, and decreases in daily insulin requirements. Patients 2 and 3 were diagnosed with MDR3 deficiency due to recessive mutations in ABCB4. Patient 4 with a prior diagnosis of non-alcoholic steatohepatitis was found to harbor a mitochondrial disorder due to a homozygous pathogenic variant in NDUFB3; this finding enabled initiation of disease preventive measures including supplementation with antioxidants. Patient 5 is a lean patient with hepatic steatosis of unknown etiology who was found to have a damaging heterozygous variant in APOB. CONCLUSIONS: Genomic analysis yielded an actionable diagnosis in a substantial number (∼25%) of selected adult patients with chronic liver disease of unknown etiology. This study supports the use of WES in the evaluation and management of adults with idiopathic liver disease in clinical practice. LAY SUMMARY: We performed whole-exome sequencing in 19 adult patients with unexplained liver disease after an unrevealing conventional work-up performed by a hepatologist. In 5 cases, genomic analysis led to a diagnosis and informed treatment and management of the disease. Therefore, we suggest using whole-exome sequencing in the evaluation and management of adults with unexplained liver disease.


Assuntos
Sequenciamento do Exoma , Hepatopatias/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/deficiência , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Adulto , Idoso , Colestase Intra-Hepática/genética , Feminino , Genômica , Humanos , Lipodistrofia Parcial Familiar/genética , Masculino , Pessoa de Meia-Idade , PPAR gama/genética
15.
Biochem Biophys Res Commun ; 512(1): 22-28, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30853177

RESUMO

The C-terminal Ig-domain of lamin A plays critical roles in cell function via interaction with proteins, DNA, and chromatin. Mutations in this domain are known to cause various diseases including Emery-Dreifuss muscular dystrophy (EDMD) and familial partial lipodystrophy (FPLD). Here we examined the biophysical and biochemical properties of mutant Ig-domains identified in patients with EDMD and FPLD. EDMD-related mutant Ig-domain showed decreased stability to heat and denaturant. This result was also confirmed by experiments using full-length mutant lamin A, although the decrease in melting temperature was much less than that of the mutant Ig-domain alone. The unstable EDMD Ig-domain disrupted the proper assembly of lamin A, resulting in abnormal paracrystal formation and decreased viscosity. In contrast, FPLD-related mutant Ig-domains were thermally stable, although they lost DNA binding function. Alanine substitution experiments revealed a functional domain of DNA binding in the Ig-domain. Thus, the overall biophysical property of Ig-domains is closely associated with clinical phenotype.


Assuntos
Lamina Tipo A/química , Distrofia Muscular de Emery-Dreifuss/metabolismo , Substituição de Aminoácidos , Fenômenos Biofísicos , DNA/química , DNA/metabolismo , Humanos , Técnicas In Vitro , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Lipodistrofia Parcial Familiar/genética , Lipodistrofia Parcial Familiar/metabolismo , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Distrofia Muscular de Emery-Dreifuss/genética , Mutação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Domínios Proteicos , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
16.
Clin Endocrinol (Oxf) ; 91(1): 94-103, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30954027

RESUMO

Familial partial lipodystrophy type 2 (FPLD2) is characterized by insulin resistance, adipose atrophy of the extremities and central obesity. Due to the resemblance with Cushing's syndrome, we hypothesized a putative role of glucocorticoid in the pathogenesis of metabolic abnormalities in FPLD2. OBJECTIVE: To evaluate the phenotypic heterogeneity and glucocorticoid sensitivity in FPLD2 patients exhibiting the p.R482W or p.R644C LMNA mutations. DESIGN, PATIENTS AND MEASUREMENTS: Prospective study with FPLD2 patients (n = 24) and controls (n = 24), who underwent anthropometric, body composition, metabolic profile and adipokines/cytokine plasma measurements. Plasma and salivary cortisol were measured in basal conditions and after 0.25, 0.5 and 1.0 mg of dexamethasone (DEX) given at 23:00 hours. Glucocorticoid receptor (GR) and 11ßHSD isoforms expression were assessed by qPCR. RESULTS: Familial partial lipodystrophy type 2 individuals presented increased waist and neck circumferences, decreased hip circumference, peripheral skinfold thickness and fat mass. Patients presented increased HOMA-IR, triglycerides, TNF-α, IL-1ß, IL-6 and IL-10, and decreased adiponectin and leptin plasma levels. FPLD2 patients showed decreased ability to suppress the HPA axis compared with controls after 0.5 mg DEX. The phenotype was more pronounced in patients harbouring the p.R482W LMNA mutation. GRß overexpression in PBMC was observed in female patients compared with female controls. CONCLUSIONS: Familial partial lipodystrophy type 2 patients exhibited anthropometric, clinical and biochemical phenotypic heterogeneity related to LMNA mutation sites and to gender. LMNA mutations affecting both lamin A and lamin C lead to more severe phenotype. FPLD2 patients also showed blunted HPA axis response to DEX, probably due to the association of increased levels of proinflammatory cytokines with GRß overexpression leading to a more severe phenotype in female.


Assuntos
Glucocorticoides/farmacologia , Lipodistrofia Parcial Familiar/sangue , Lipodistrofia Parcial Familiar/metabolismo , Adiponectina/sangue , Composição Corporal/efeitos dos fármacos , Composição Corporal/fisiologia , Dexametasona/farmacologia , Feminino , Humanos , Hidrocortisona/sangue , Resistência à Insulina/genética , Interleucina-10/sangue , Interleucina-1beta/sangue , Interleucina-6/sangue , Lamina Tipo A/genética , Leptina/sangue , Lipodistrofia Parcial Familiar/genética , Masculino , Mutação/genética , Estudos Prospectivos , Isoformas de Proteínas/genética , Receptores de Glucocorticoides/genética , Fator de Necrose Tumoral alfa/sangue
17.
Biochem Biophys Res Commun ; 495(1): 254-260, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29108996

RESUMO

Lipodystrophies are disorders that directly affect lipid metabolism and storage. Familial partial lipodystrophy type 2 (FPLD2) is caused by an autosomal dominant mutation in the LMNA gene. FPLD2 is characterized by abnormal adipose tissue distribution. This leads to metabolic deficiencies, such as insulin-resistant diabetes mellitus and hypertriglyceridemia. Here we have derived iPSC lines from two individuals diagnosed with FPLD2, and differentiated these cells into adipocytes. Adipogenesis and certain adipocyte functions are impaired in FPLD2-adipocytes. Consistent with the lipodystrophic phenotype, FPLD2-adipocytes appear to accumulate markers of autophagy and catabolize triglycerides at higher levels than control adipocytes. These data are suggestive of a mechanism causing the lack of adipose tissue in FPLD2 patients.


Assuntos
Adipócitos/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Lamina Tipo A/genética , Metabolismo dos Lipídeos , Lipodistrofia Parcial Familiar/genética , Mutação Puntual , Adipócitos/metabolismo , Adipogenia , Autofagia , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Resistência à Insulina , Lipodistrofia Parcial Familiar/metabolismo , Lipodistrofia Parcial Familiar/patologia , Triglicerídeos/metabolismo
18.
J Med Genet ; 54(6): 413-416, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28408391

RESUMO

BACKGROUND: Type-2 familial partial lipodystrophy (FPLD2) is a rare autosomal dominant lipodystrophic disorder due to mutations in LMNA encoding lamin A/C, a key epigenetic regulator. FPLD2 severity is determined by the occurrence of metabolic complications, especially diabetes and hypertriglyceridaemia. We evaluated the disease history and severity over generations. METHODS: This retrospective study of the largest cohort of patients with FPLD2 reported to date investigates 85 patients from 24 families comprising three generations (G1: n=39; G2: n=41; G3: n=5). RESULTS: Lipodystrophy appears with the same characteristics and at the same age in first generation (G1;18.6±1.5 years) and second generation (G2;15.9±0.8 years). Despite similar body mass index (23.7±0.6 vs 23.8±0.6 kg/m2), the mean delay between the onset of lipodystrophy and diabetes was far shorter in G2 (10.5±2.4 years) than in G1 (29.0±3.5 years) (p=0.0002). The same is true for the delay preceding hypertriglyceridaemia (G2: 4.5±1.4; G1: 19.3±3.2 years) (p=0.002), revealing an anticipation phenomenon. Observations in G3, and analysis within each family of disease history and diagnostic procedures, confirmed this result. CONCLUSIONS: This study is a rare example of anticipation unrelated to a trinucleotide expansion. Discovery of this early occurrence of metabolic complications in young generations underlines the utility of presymptomatic genetic diagnosis, with careful metabolic screening and preventive lifestyle in all at-risk individuals.


Assuntos
Lamina Tipo A/genética , Lipodistrofia Parcial Familiar/genética , Lipodistrofia/genética , Adolescente , Índice de Massa Corporal , Diabetes Mellitus/genética , Feminino , Humanos , Hipertrigliceridemia/genética , Masculino , Mutação/genética , Fenótipo , Estudos Retrospectivos
19.
BMC Nephrol ; 19(1): 111, 2018 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-29747582

RESUMO

BACKGROUND: Lipodystrophy syndromes are rare disorders of variable body fat loss associated with potentially serious metabolic complications. Familial partial lipodystrophy (FPLD) is mostly inherited as an autosomal dominant disorder. Renal involvement has only been reported in a limited number of cases of FPLD. Herein, we present a rare case of proteinuria associated with type 4 FPLD, which is characterized by a heterozygous mutation in PLIN1 and has not been reported with renal involvement until now. CASE PRESENTATION: A 15-year-old girl presented with insulin resistance, hypertriglyceridaemia, hepatic steatosis and proteinuria. Her glucose and glycated haemoglobin levels were within normal laboratory reference ranges. A novel heterozygous frameshift mutation in PLIN1 was identified in the patient and her mother. The kidney biopsy showed glomerular enlargement and focal segmental glomerulosclerosis under light microscopy; the electron microscopy results fit with segmental thickening of the glomerular basement membrane. Treatment with an angiotensin-converting enzyme inhibitor (ACEI) decreased 24-h protein excretion. CONCLUSIONS: We report the first case of proteinuria and renal biopsy in a patient with FPLD4. Gene analysis demonstrated a novel heterozygous frameshift mutation in PLIN1 in this patient and her mother. Treatment with ACEI proved to be beneficial.


Assuntos
Lipodistrofia Parcial Familiar/diagnóstico por imagem , Lipodistrofia Parcial Familiar/genética , Proteinúria/diagnóstico por imagem , Proteinúria/genética , Adolescente , Feminino , Mutação da Fase de Leitura/genética , Humanos , Resistência à Insulina/fisiologia , Lipodistrofia Parcial Familiar/sangue , Proteinúria/sangue
20.
Endocr Res ; 43(4): 258-263, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29733702

RESUMO

PURPOSE: To describe an interesting subtype of familial partial lipodystrophy (FPLD). METHODS: The phenotype of this distinctive FPLD subtype was studied in three Turkish female siblings. RESULTS: Mutation testing was negative for the genes associated with lipodystrophy syndromes. In MRI studies, fat loss was prominent in the posterior aspects of the proximal lower limbs, whilst some fat was preserved in the anterior, medial and lateral aspects. Remarkably, fat tissue was preserved in the distal part of the limbs. Local fat accumulation was observed in the mons pubis area. Asymmetrical fat loss was also remarkable in the upper extremities. All three patients had severe insulin resistance associated with diabetes mellitus, acanthosis nigricans, hypertriglyceridemia and hepatic steatosis. Abnormal amounts of proteinuria were detected in all three subjects. Renal biopsy showed mild tubular atrophy, interstitial fibrosis, irregular thickening and wrinkling of glomerular basal membranes, small areas of segmental sclerosis and pedicel effacement. CONCLUSIONS: We reported a form of FPLD characterized by a striking pattern of highly selective partial fat loss and proteinuria.


Assuntos
Tecido Adiposo/diagnóstico por imagem , Adiposidade/fisiologia , Lipodistrofia Parcial Familiar/diagnóstico , Proteinúria/diagnóstico , Adulto , Análise Mutacional de DNA , Feminino , Humanos , Resistência à Insulina/fisiologia , Lipodistrofia Parcial Familiar/genética , Pessoa de Meia-Idade , Mutação , Linhagem , Fenótipo , Proteinúria/genética , Turquia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA