Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 353
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Microvasc Res ; 153: 104667, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38307406

RESUMO

Extracellular signal-regulated kinase (Erk)-5 is a key mediator of endothelial cell homeostasis, and its inhibition causes loss of critical endothelial markers leading to endothelial dysfunction (ED). Circulating oxidized low-density lipoprotein (oxLDL) has been identified as an underlying cause of ED and atherosclerosis in metabolic disorders. Silymarin (Sym), a flavonolignan, possesses various pharmacological activities however its preventive mechanism in ED warrants further investigation. Here, we have examined the effects of Sym in regulating the expression of Erk-5 and ameliorating ED using in vitro and in vivo models. Primary human umbilical vein endothelial cells (pHUVECs) viability was measured by MTT assay; mRNA and protein expression by RT-qPCR and Western blotting; tube-formation assay was performed to examine endothelialness. In in-vivo experiments, normal chow-fed mice (control) or high-fat diet (HFD)-fed mice were administered Sym or Erk-5 inhibitor (BIX02189) and body weight, blood glucose, plasma-LDL, oxLDL levels, and expression of EC markers in the aorta were examined. Sym (5 µg/ml) maintained the viability and tube-formation ability of oxLDL exposed pHUVECs. Sym increased the expression of Erk-5, vWF, and eNOS and decreased ICAM-1 at transcription and translation levels in oxLDL-exposed pHUVECs. In HFD-fed mice, Sym reduced the body weight, blood glucose, LDL-cholesterol, and oxLDL levels, and increased the levels of vWF and eNOS along with Erk-5 and decreased the level of ICAM-1 in the aorta. These data suggest that Sym could be a potent anti-atherosclerotic agent that could elevate Erk-5 level in the ECs and prevent ED caused by oxidized LDL during HFD-induced obesity in mice.


Assuntos
Aterosclerose , Silimarina , Humanos , Animais , Camundongos , Molécula 1 de Adesão Intercelular , Transdução de Sinais , Células Cultivadas , Silimarina/efeitos adversos , Glicemia , Fator de von Willebrand , Lipoproteínas LDL/toxicidade , Lipoproteínas LDL/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Aterosclerose/induzido quimicamente , Peso Corporal
2.
BMC Cardiovasc Disord ; 24(1): 231, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38679696

RESUMO

BACKGROUND: Oxidized low-density lipoprotein (ox-LDL) can initiate and affect almost all atherosclerotic events including endothelial dysfunction. In this text, the role and underlying molecular basis of procyanidin B2 (PCB2) with potential anti-oxidant and anti-inflammatory activities in ox-LDL-induced HUVEC injury were examined. METHODS: HUVECs were treated with ox-LDL in the presence or absence of PCB2. Cell viability and apoptotic rate were examined by CCK-8 assay and flow cytometry, respectively. The mRNA and protein levels of genes were tested by RT-qPCR and western blot assays, respectively. Potential downstream targets and pathways of apple procyanidin oligomers were examined by bioinformatics analysis for the GSE9647 dataset. The effect of PCB2 on THP-1 cell migration was examined by recruitment assay. The effect of PCB2 on oxidative stress was assessed by reactive oxygen species (ROS) level, malondialdehyde (MDA) content, and mitochondrial membrane potential (MMP). RESULTS: ox-LDL reduced cell viability, induced cell apoptosis, and facilitated the expression of oxidized low-density lipoprotein receptor 1 (LOX-1), C-C motif chemokine ligand 2 (MCP-1), vascular cell adhesion protein 1 (VCAM-1) in HUVECs. PCB2 alleviated ox-LDL-induced cell injury in HUVECs. Apple procyanidin oligomers triggered the differential expression of 592 genes in HUVECs (|log2fold-change| > 0.58 and adjusted p-value < 0.05). These dysregulated genes might be implicated in apoptosis, endothelial cell proliferation, inflammation, and monocyte chemotaxis. PCB2 inhibited C-X-C motif chemokine ligand 1/8 (CXCL1/8) expression and THP-1 cell recruitment in ox-LDL-stimulated HUVECs. PCB2 inhibited ox-LDL-induced oxidative stress and nuclear factor kappa-B (NF-κB) activation in HUVECs. CONCLUSION: PCB2 weakened ox-LDL-induced cell injury, inflammation, monocyte recruitment, and oxidative stress by inhibiting the NF-κB pathway in HUVECs.


Assuntos
Anti-Inflamatórios , Apoptose , Biflavonoides , Catequina , Células Endoteliais da Veia Umbilical Humana , Lipoproteínas LDL , NF-kappa B , Estresse Oxidativo , Proantocianidinas , Transdução de Sinais , Humanos , Lipoproteínas LDL/toxicidade , Catequina/farmacologia , Proantocianidinas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Biflavonoides/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Transdução de Sinais/efeitos dos fármacos , NF-kappa B/metabolismo , Apoptose/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Monócitos/patologia , Antioxidantes/farmacologia , Células THP-1 , Quimiotaxia de Leucócito/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Receptores Depuradores Classe E/metabolismo , Receptores Depuradores Classe E/genética
3.
Cardiovasc Drugs Ther ; 37(6): 1-12, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35084579

RESUMO

BACKGROUND: Aberrant expression of circular RNA (circRNA) has been demonstrated to be related to atherosclerosis (AS) formation. However, the mechanism of circCHMP5 (also known as hsa_circ_0003575) in AS formation remains unclear. METHODS: Oxidized low-density lipoprotein (ox-LDL) was used to treat human umbilical vein endothelial cells (HUVECs) to construct a cell injury model. The expression level of circCHMP5, miR-532-5p, and Rho-associated protein kinase 2 (ROCK2) was measured using quantitative real-time PCR. Cell cycle, apoptosis, proliferation, and angiogenesis were determined by flow cytometry, 5-ethynyl-2'-deoxyuridine (EdU) assay, and tube formation assay. In addition, the protein expression of apoptosis markers, inflammation factors, and ROCK2 was detected by western blot analysis. The interaction between miR-532-5p and circCHMP5 or ROCK2 was assessed by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. RESULTS: Our results indicated that circCHMP5 was overexpressed in ox-LDL-induced HUVECs. CircCHMP5 knockdown promoted cell cycle, proliferation, and angiogenesis while inhibiting apoptosis and inflammation in ox-LDL-induced HUVECs. MiR-532-5p could be sponged by circCHMP5, and its inhibitor reversed the negative regulation of si-circCHMP5 on ox-LDL-induced HUVECs injury. ROCK2, a target of miR-532-5p, reversed the inhibition effect of miR-532-5p on ox-LDL-induced HUVECs injury. Furthermore, we confirmed that circCHMP5 upregulated ROCK2 by sponging miR-532-5p. CONCLUSION: To sum up, our data showed that circCHMP5 regulated the miR-532-5p/ROCK2 axis to accelerate ox-LDL-induced HUVECs injury, confirming that circCHMP5 might be a potential target for AS treatment.


Assuntos
Aterosclerose , MicroRNAs , Humanos , Lipoproteínas LDL/toxicidade , Células Endoteliais da Veia Umbilical Humana , Apoptose , Aterosclerose/genética , Inflamação , MicroRNAs/genética , Proliferação de Células , Quinases Associadas a rho
4.
BMC Cardiovasc Disord ; 23(1): 521, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891465

RESUMO

BACKGROUND: In light of the abnormal expression of microRNA (miR-483-5p) in patients with atherosclerosis (AS), its role in vascular endothelial cell injury was explored. And the mechanisms related to autophagy were also elucidated. METHODS: Human umbilical vein endothelial cells (HUVECs) were given 100 mg/L ox-LDL to induce endothelial injury. Cell transfection was done to regulate miR-483-5p levels. Cell viability and apoptosis were detected. qRT-PCR was employed for the mRNA levels' detection. RESULTS: Autophagic flux impairment of HUVECs was detected after ox-LDL treatment, along with the upregulation of miR-483-5p. Ox-LDL inhibited cell viability and promoted cell apoptosis, but these influences were changed by miR-483-5p downregulation. MiR-483-5p downregulation decreased the mRNA levels of IL-1ß, IL-6, ICAM-1 and VCAM-1. 3-MA, the autophagy inhibitor, reversed the beneficial role of miR-483-5p downregulation in ox-LDL-induced HUVECs' injury. TIMP2 acts as a target gene of miR-483-5p, and was downregulated in HUVEC models. CONCLUSION: MiR-483-5p downregulation alleviated ox-LDL-induced endothelial injury via activating autophagy, this might be related to TIMP2.


Assuntos
Aterosclerose , MicroRNAs , Humanos , Regulação para Baixo , MicroRNAs/genética , MicroRNAs/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Lipoproteínas LDL/toxicidade , RNA Mensageiro/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Apoptose
5.
Vascular ; 31(3): 608-618, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35226569

RESUMO

OBJECTIVE: Atherosclerosis is a chronic cardiovascular disease associated with oxidative stress damage, which is caused by excessive oxidation of low-density lipoprotein (ox-LDL). The role of microRNA miR-34a-5p on oxidative stress in ox-LDL-treated macrophages was investigated in this study. METHODS: Flow cytometry was prepared for assessing THP1-derived macrophage apoptosis. The protein and expression levels of miR-34a-5p and MDM4 were examined by Western blot and RT-qPCR, respectively. We also measured the levels of total cholesterol (TC) and triglyceride to determine the lipid accumulation. Subsequently, the activities of superoxide dismutase, malondialdehyde, and reactive oxygen species revealed the level of oxidative stress injury after miR-34a-5p and MDM4 knockdown. RESULTS: After ox-LDL treatment, cell apoptosis of macrophages increased in a dose-dependent and time-dependent manner. With the increase of ox-LDL treatment and the prolongation of treatment time, the expression level of miR-34a-5p was upregulated. Next, interfering with miR-34a-5p inhibited lipid accumulation and oxidative stress injury in ox-LDL-stimulated macrophages. MDM4 was a target gene of miR-34a-5p and was upregulated in ox-LDL-stimulated macrophages. With the increase of ox-LDL treatment and the prolongation of treatment time, the expression level of MDM4 was downregulated. Importantly, MDM4 knockdown partially counteracted the inhibitory effect of miR-34a-5p on oxidative stress injury. CONCLUSION: MicroRNA miR-34a-5p knockdown suppressed oxidative stress injury via MDM4 in ox-LDL-treated macrophages.


Assuntos
MicroRNAs , Humanos , MicroRNAs/genética , Estresse Oxidativo , Macrófagos/metabolismo , Apoptose , Lipídeos , Lipoproteínas LDL/toxicidade , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/farmacologia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/farmacologia
6.
Pharm Biol ; 61(1): 1454-1461, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37674320

RESUMO

CONTEXT: Paeoniflorin (PF) contributes to improving coronary artery disease (CAD). OBJECTIVE: This study clarified the efficiency of PF in CAD and the molecular mechanism. MATERIALS AND METHODS: Human coronary artery endothelial cells (HCAECs) were treated with oxidized low-density lipoprotein (ox-LDL; 20, 40, 80 and 160 µg/mL) and PF (0.05, 0.1 0.2 and 0.4 mM). To study cell phenotypes, HCAECs were treated with 80 µg/mL ox-LDL with or without 0.1 mM PF for 24 h, and cell viability and apoptosis were evaluated using the methyl thiazolyl tetrazolium (MTT) assay and flow cytometry, respectively. In addition, inflammatory cytokines levels were measured by enzyme-linked immunosorbent assay (ELISA). Western blot evaluated the Wnt/ß-catenin pathway-related factors. RESULTS: ox-LDL and PF (0.2 and 0.4 mM) suppressed cell viability in a dose-dependent manner. The IC50 value of PF was 722.9 nM. PF facilitated cell viability (115.76%), inhibited apoptosis (46.28%), reduced IL-6 (63.43%) and IL-8 (66.70%) levels and increased IL-10 levels (181.15%) of ox-LDL-treated HCAECs. Additionally, PF inactivated the Wnt/ß-catenin pathway, and XAV939 treatment further promoted cell viability (120.54%), suppressed apoptosis (56.92%), reduced the levels of IL-6 (76.16%) and IL-8 (86.82%) and increased the IL-10 levels (120.22%) of ox-LDL-induced HCAECs after PF treatment. Moreover, PF alleviated plaque lesions of the aorta and aorta root and serum lipid of ApoE-/- mice with a high-fat diet. DISCUSSION AND CONCLUSIONS: This study first revealed that PF inhibited ox-LDL-induced HCAECs apoptosis and inflammation via the Wnt/ß-catenin pathway and alleviated CAD, suggesting the potential of PF as a drug for CAD treatment.


Assuntos
Células Endoteliais , Interleucina-10 , Humanos , Animais , Camundongos , beta Catenina , Vasos Coronários , Interleucina-6 , Interleucina-8 , Lipoproteínas LDL/toxicidade , Inflamação/tratamento farmacológico , Apoptose
7.
Microvasc Res ; 139: 104236, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34464666

RESUMO

BACKGROUND: Atherosclerosis (AS) is a lipid-driven inflammatory disease of the arterial intima. Evidence is growing that dysregulation of lncRNAs is implicated in the pathogenesis of AS. In this research, the role of lncRNA KCNQ1OT1 in AS was investigated. METHODS: ApoE-/- mice were fed on a high fat diet to establish mouse models of AS. Macrophages (THP-1) were treated with oxidized low-density lipoprotein (ox-LDL) to establish cell models of AS. Atherosclerotic lesions of AS mice were determined by performing Oil red O staining. Lipid metabolic disorders and inflammatory were detected using specific assay kits. KCNQ1OT1 and miR-145-5p expression was measured using RT-qPCR. Levels of PPARα and CPT1 were measured using western blot. RESULTS: KCNQ1OT1 expression was upregulated and miR-145-5p was downregulated in atherosclerotic plaques of AS mice and ox-LDL-treated THP-1 cells. Lipid metabolic disorders and inflammation in vivo and in vitro were attenuated by either KCNQ1OT1 knockdown or miR-145-5p overexpression. Additionally, KCNQ1OT1 acted as a molecular sponge of miR-145-5p and downregulated miR-145-5p expression. Furthermore, silencing miR-145-5p abolished the effect of KCNQ1OT1 knockdown. CONCLUSION: Silencing KCNQ1OT1 attenuates AS progression by sponging miR-145-5p.


Assuntos
Aorta , Doenças da Aorta , Aterosclerose , Inflamação , Macrófagos , MicroRNAs , RNA Longo não Codificante , Animais , Humanos , Masculino , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Doenças da Aorta/prevenção & controle , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Modelos Animais de Doenças , Progressão da Doença , Regulação da Expressão Gênica , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Inflamação/prevenção & controle , Lipoproteínas LDL/toxicidade , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , MicroRNAs/genética , MicroRNAs/metabolismo , Placa Aterosclerótica , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Interferência de RNA , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais , Células THP-1
8.
Microvasc Res ; 139: 104252, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34520772

RESUMO

Soluble fms-like tyrosine kinase-1 (sFlt-1), a circulating antiangiogenic protein, is involved in the pathogenesis of atherosclerosis (AS), and the underlying mechanism is still unclear. Here, we attempted to investigate the mechanism of action of sFlt-1 in AS. Human umbilical vein endothelial cells (HUVECs) were treated with oxidized low density lipoprotein (ox-LDL) to induce cell injury. ox-LDL treatment increased LC3-II/LC3-I ratio, Beclin-1 expression and GFP-LC3 puncta in HUVECs, suggesting that ox-LDL may induce autophagic flux impairment in HUVECs. ox-LDL-treated HUVECs displayed a decrease of sFlt-1 levels. Moreover, ox-LDL treatment reduced cell proliferation and elevated apoptosis in HUVECs, which was abrogated by sFlt-1 overexpression. Up-regulation of sFlt-1 repressed the activity of PI3K/AKT/mTOR signaling pathway and enhanced autophagy in HUVECs following ox-LDL treatment. Additionally, sFlt-1 overexpression-mediated increase of autophagy in ox-LDL-treated HUVECs was abolished by 3-methyladenine (autophagy inhibitor). 3-methyladenine abrogated the impact of sFlt-1 overexpression on proliferation and apoptosis in ox-LDL-treated HUVECs. This work confirmed that overexpression of sFlt-1 activated autophagy by repressing PI3K/Akt/mTOR signaling pathway, and thus alleviated ox-LDL-induced injury of HUVECs. Therefore, this study suggests that sFlt-1 may be a potential target for AS treatment.


Assuntos
Aterosclerose/enzimologia , Autofagia/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/enzimologia , Lipoproteínas LDL/toxicidade , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Apoptose/efeitos dos fármacos , Aterosclerose/genética , Aterosclerose/patologia , Proteína Beclina-1/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Transdução de Sinais , Regulação para Cima , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética
9.
Arterioscler Thromb Vasc Biol ; 41(2): e82-e96, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33356389

RESUMO

OBJECTIVE: Atherosclerotic lesions are often characterized by accumulation of OxLDL (oxidized low-density lipoprotein), which is associated with vascular inflammation and lesion vulnerability to rupture. Extracellular AIBP (apolipoprotein A-I binding protein; encoded by APOA1BP gene), when secreted, promotes cholesterol efflux and regulates lipid rafts dynamics, but its role as an intracellular protein in mammalian cells remains unknown. The aim of this work was to determine the function of intracellular AIBP in macrophages exposed to OxLDL and in atherosclerotic lesions. Approach and Results: Using a novel monoclonal antibody against human and mouse AIBP, which are highly homologous, we demonstrated robust AIBP expression in human and mouse atherosclerotic lesions. We observed significantly reduced autophagy in bone marrow-derived macrophages, isolated from Apoa1bp-/- compared with wild-type mice, which were exposed to OxLDL. In atherosclerotic lesions from Apoa1bp-/- mice subjected to Ldlr knockdown and fed a Western diet, autophagy was reduced, whereas apoptosis was increased, when compared with that in wild-type mice. AIBP expression was necessary for efficient control of reactive oxygen species and cell death and for mitochondria quality control in macrophages exposed to OxLDL. Mitochondria-localized AIBP, via its N-terminal domain, associated with E3 ubiquitin-protein ligase PARK2 (Parkin), MFN (mitofusin)1, and MFN2, but not BNIP3 (Bcl2/adenovirus E1B 19-kDa-interacting protein-3), and regulated ubiquitination of MFN1 and MFN2, key components of mitophagy. CONCLUSIONS: These data suggest that intracellular AIBP is a new regulator of autophagy in macrophages. Mitochondria-localized AIBP augments mitophagy and participates in mitochondria quality control, protecting macrophages against cell death in the context of atherosclerosis.


Assuntos
Doenças da Aorta/metabolismo , Aterosclerose/metabolismo , Lipoproteínas LDL/toxicidade , Macrófagos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Fosfoproteínas/metabolismo , Racemases e Epimerases/metabolismo , Animais , Doenças da Aorta/genética , Doenças da Aorta/patologia , Apoptose/efeitos dos fármacos , Aterosclerose/genética , Aterosclerose/patologia , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagossomos/patologia , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Doenças das Artérias Carótidas/metabolismo , Doenças das Artérias Carótidas/patologia , Modelos Animais de Doenças , Células HEK293 , Células Hep G2 , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fosfoproteínas/genética , Racemases e Epimerases/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
10.
J Cardiovasc Pharmacol ; 80(6): 861-868, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35881896

RESUMO

ABSTRACT: Atherosclerosis (AS) is a common cardiovascular disease with high morbidity and mortality. The pathogenesis of AS is closely related to endothelial dysfunction, which is mainly induced by oxidative stress, inflammation, and enhanced adhesion of monocytes to endothelial cells on the vessel wall. Febuxostat is a novel antigout agent recently reported to exert protective effects on endothelial dysfunction. This study aims to investigate the protective capacity of febuxostat against oxidized low-density lipoprotein (ox-LDL)-induced injury and monocyte attachment to endothelial cells. Human aortic valve endothelial cells (HAVECs) were stimulated with ox-LDL in the presence or absence of febuxostat (5 and 10 µM) for 6 hours. Mitochondrial reactive oxygen species were measured using MitoSox red staining, and the level of protein carbonyl was detected using enzyme-linked immunosorbent assay (ELISA). The expressions of IL-6, TNF-α, tissue factor (TF), VCAM-1, and ICAM-1 were evaluated with qRT-PCR assay and ELISA. Calcein-AM staining was used to determine the attachment of U937 monocytes to HAVECs. quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) and Western blot were used to measure the expression level of early growth response 1 (Egr-1) in HAVECs. First, the elevated expression of LOX-1, activated oxidative stress, excessive secreted inflammatory factors, and promoted expression of TF induced by stimulation with ox-LDL were significantly reversed by febuxostat, indicating a protective effect of febuxostat against endothelial dysfunction. Second, the upregulated VCAM-1 and ICAM-1, as well as the increased proportion of adhered monocytes to HAVECs induced by ox-LDL, were significantly alleviated by febuxostat. Finally, the promoted expression level of Egr-1 induced by ox-LDL was pronouncedly suppressed by febuxostat. We conclude that febuxostat protected HAVECs from ox-LDL-induced injury and monocyte attachment.


Assuntos
Células Endoteliais , Monócitos , Humanos , Febuxostat/farmacologia , Valva Aórtica , Lipoproteínas LDL/toxicidade
11.
BMC Cardiovasc Disord ; 22(1): 517, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36460954

RESUMO

BACKGROUND: Cardiovascular disease was the most common disease among the elderly with high morbidity and mortality. Circ_0004104 was demonstrated to be involved in the regulation of atherosclerosis. METHODS: Quantitative real-time polymerase chain reaction was employed to measure the expression of circ_0004104, miR-942-5p and Rho associated coiled-coil containing protein kinase 2 (ROCK2). Cell proliferation was tested by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay. Cell apoptosis was measured by flow cytometry, and tube formation assay was used to detect the angiogenesis ability of cells. Western blot assay was performed to assess protein levels. Enzyme­linked immunosorbent assay was used to detect the release of IL-1ß and TNF-α. The relationship between miR-942-5p and circ_0004104 or ROCK2 was identified by dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay, and RNA pull-down assay. RESULTS: Oxidized low-density lipoprotein (ox-LDL) inhibited the proliferation of human umbilical vein endothelial cells (HUVECs) and promoted apoptosis in a dose-dependent manner. Circ_0004104 was increased in serum of atherosclerosis patients and ox-LDL-treated HUVECs, and silence of circ_0004104 promoted the proliferation of ox-LDL-exposed HUVECs and inhibited cell apoptosis. MiR-942-5p downregulation reversed si-circ_0004104-mediated influences in HUVECs upon ox-LDL exposure. ROCK2 was the target of miR-942-5p and circ_0004104 regulated the expression of ROCK2 through sponging miR-942-5p. ROCK2 abated the influences of miR-942-5p in ox-LDL-stimulated HUVECs. Circ_0004104 was increased in the exosomes derived from ox-LDL-exposed HUVECs, and the expression of circ_0004104 was promoted in HUVECs after stimulation with ox-LDL-treated HUVECs cells-derived exosomes. CONCLUSION: Circ_0004104 downregulation receded ox-LDL-induced injury in HUVECs through miR-942-5p and ROCK2.


Assuntos
Aterosclerose , MicroRNAs , RNA Circular , Idoso , Humanos , Aterosclerose/genética , Células Endoteliais da Veia Umbilical Humana , Lipoproteínas LDL/toxicidade , MicroRNAs/genética , Quinases Associadas a rho/genética , RNA Circular/metabolismo
12.
J Cell Mol Med ; 25(16): 8028-8038, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34169652

RESUMO

Atherosclerosis can result in multiple cardiovascular diseases. Circular RNAs (CircRNAs) have been reported as significant non-coding RNAs in atherosclerosis progression. Dysfunction of vascular smooth muscle cells (VSMCs) is involved in atherosclerosis. However, up to now, the effect of circ_0002984 in atherosclerosis is still unknown. Currently, we aimed to investigate the function of circ_0002984 in VSMCs incubated by oxidized low-density lipoprotein (ox-LDL). Firstly, our findings indicated that the expression levels of circ_0002984 were significantly up-regulated in the serum of atherosclerosis patients and ox-LDL-incubated VSMCs. Loss of circ_0002984 suppressed VSMC viability, cell cycle distribution and migration capacity. Then, we carried out ELISA assay to determine TNF-α and IL-6 levels. The data implied that lack of circ_0002984 obviously repressed ox-LDL-stimulated VSMC inflammation. Meanwhile, miR-326-3p, which was predicted as a target of circ_0002984, was obviously down-regulated in VSMCs treated by ox-LDL. Additionally, after overexpression circ_0002984 in VSMCs, a decrease in miR-326-3p was observed. Subsequently, miR-326-3p was demonstrated to target vesicle-associated membrane protein 3 (VAMP3). Therefore, we hypothesized that circ_0002984 could modulate expression of VAMP3 through sponging miR-326-3p. Furthermore, we confirmed that up-regulation of miR-326-3p rescued the circ_0002984 overexpressing-mediated effects on VMSC viability, migration and inflammation. Additionally, miR-326-3p inhibitor-mediated functions on VSMCs were reversed by knockdown of VAMP3. In conclusion, circ_0002984 mediated cell proliferation, migration and inflammation through modulating miR-326-3p and VAMP3 in VSMCs, which suggested that circ_0002984 might hold great promise as a therapeutic strategy for atherosclerosis.


Assuntos
Aterosclerose/patologia , Inflamação/patologia , Lipoproteínas LDL/toxicidade , MicroRNAs/genética , Músculo Liso Vascular/patologia , RNA Circular/genética , Proteína 3 Associada à Membrana da Vesícula/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Feminino , Humanos , Inflamação/induzido quimicamente , Inflamação/imunologia , Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/imunologia , Músculo Liso Vascular/metabolismo , Transdução de Sinais , Proteína 3 Associada à Membrana da Vesícula/genética
13.
Microvasc Res ; 134: 104118, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33278458

RESUMO

EndMT is an active contributor to atherosclerosis pathology, and lncRNAs is widely involved in the occurrence and development of atherosclerosis. The purpose of this study was to investigate the regulatory mechanisms of ZFAS1 in EndMT of atherosclerosis. Here, the ApoE-/- mice were feed with high-fat diet to establish the atherosclerosis model, and HUVECs was stimulated with ox-LDL to induce EndMT. RT-PCR and western blot were used to detect the mRNA and protein expression, respectively. The expression of EndMT markers were detected by immune-fluorescence. The relationships among ZFAS1, miR-150-5p and Notch3 were evaluated by luciferase reporter assay. The role of ZFAS1 in EndMT and its dependence on miR-150-5p/Notch3 axis was further detected by knocking down or over-expressing ZFAS1. We found that ZFAS1 and Notch3 were upregulated while miR-150-5p was downregulated in atherosclerosis mice and ox-LDL-treated HUVECs. The expression of CD31 and vWF were significant decreased, while the α-SMA and vimentin were significant increased in ox-LDL-treated HUVECs, and overexpression of ZFAS1 enhanced the effect of ox-LDL on HUVECs. Further, ZFAS1 functions as a ceRNA to increase Notch3 expression through sponging miR-150-5p, and miR-150-5p mimic or si-Notch3 could reverse LV-ZFAS1-mediated EndMT. In summary, lncRNA ZFAS1 promotes ox-LDL induced HUVECs EndMT through regulating miR-150-5p/Notch3 axis.


Assuntos
Aterosclerose/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Lipoproteínas LDL/toxicidade , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Receptor Notch3/metabolismo , Animais , Aterosclerose/genética , Aterosclerose/patologia , Células Cultivadas , Dieta Hiperlipídica , Modelos Animais de Doenças , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Masculino , Camundongos Knockout para ApoE , MicroRNAs/genética , RNA Longo não Codificante/genética , Receptor Notch3/genética , Transdução de Sinais
14.
Toxicol Appl Pharmacol ; 431: 115733, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34599948

RESUMO

The formation of fat-laden foam cells plays an important role in the initiation and progression of atherosclerosis (AS). Amentoflavone (AF) is found in various traditional Chinese medicines, such as ginkgo biloba, which are used to treat cardiovascular diseases (CVDs). We aimed to explore the potential effects and mechanisms of AF on lipid accumulation, and its possible application in atherosclerotic cardiovascular disease (ASCVD). Cellular models of lipid accumulation were established by treatment of HUASMCs and THP-1 cells with oxidized low-density lipoprotein (ox-LDL). Cell viability, lipid accumulation, and ox-LDL uptake were assessed. Small interfering RNAs (siRNAs) and overexpression plasmids were used to reveal the hierarchical correlations of regulatory pathways. AF reduced the lipid accumulation and ox-LDL uptake induced by ox-LDL, and reduced the expression levels of cluster of differentiation 36 (CD36) and peroxisome proliferator-activated receptor gamma (PPARγ) proteins, while the expression level of ATP binding cassette subfamily A member 1 (ABCA1) increased. Knockdown of PPARγ or CD36 with siRNAs prevented ox-LDL-induced lipid accumulation. Overexpression of CD36 or PPARγ promoted the lipid accumulation induced by ox-LDL and eliminated the effect of AF on ox-LDL-induced lipid accumulation. Overall, AF prevents ox-LDL-induced lipid accumulation by suppressing the PPARγ/CD36 signaling pathway.


Assuntos
Aterosclerose/prevenção & controle , Biflavonoides/farmacologia , Antígenos CD36/metabolismo , Células Espumosas/efeitos dos fármacos , Hipolipemiantes/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipoproteínas LDL/toxicidade , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , PPAR gama/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Antígenos CD36/genética , Células Espumosas/metabolismo , Células Espumosas/patologia , Humanos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , PPAR gama/genética , Placa Aterosclerótica , Transdução de Sinais , Células THP-1
15.
Neurochem Res ; 46(11): 2885-2896, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34226983

RESUMO

Brain microvascular endothelial cells (BMECs) injury is one of the main causes of cerebrovascular diseases. Circular RNA (circRNA) has been found to be involved in the regulation of cerebrovascular diseases progression. However, the role and mechanism of circ_0003423 in cerebrovascular diseases is still unclear. In our study, oxidized low density lipoprotein (ox-LDL)-induced HBMEC-IM cells were used to construct cerebrovascular cell injury model in vitro. Quantitative real-time PCR was used to determine the expression levels of circ_0003423, miR-589-5p and Ten-eleven translocation 2 (TET2). The interactions between miR-589-5p and circ_0003423 or TET2 were confirmed by dual-luciferase reporter assay, RIP assay and RNA pull-down assay. Cell viability, angiogenesis and apoptosis were measured using cell counting kit 8 assay, tube formation assay and flow cytometry. Cell oxidative stress was evaluated by detecting the levels of reactive oxygen species and lactate dehydrogenase. The protein levels were examined by western blot analysis. Our results showed that circ_0003423 was a downregulated circRNA in ox-LDL-induced HBMEC-IM cells. In the terms of mechanism, circ_0003423 was found to be a sponge of miR-589-5p. Function analysis showed that circ_0003423 overexpression could relieve ox-LDL-induced HBMEC-IM cell injury, and this effect could be reversed by miR-589-5p mimic. In addition, TET2 was confirmed to be a target of miR-589-5p, and its overexpression could alleviate ox-LDL-induced HBMEC-IM cell injury. Moreover, the rescue experiments also confirmed that TET2 silencing could abolish the inhibition effect of anti-miR-589-5p on ox-LDL-induced HBMEC-IM cell injury. In summary, our data showed that circ_0003423 alleviated ox-LDL-induced HBMEC-IM cells injury through regulating the miR-589-5p/TET2 axis.


Assuntos
Encéfalo/metabolismo , Proteínas de Ligação a DNA/biossíntese , Dioxigenases/biossíntese , Lipoproteínas LDL/toxicidade , MicroRNAs/biossíntese , Microvasos/metabolismo , RNA Circular/biossíntese , Encéfalo/irrigação sanguínea , Encéfalo/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Microvasos/efeitos dos fármacos
16.
Pharmacol Res ; 168: 105599, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33838291

RESUMO

Atherosclerosis, a chronic multifactorial disease, is closely related to the development of cardiovascular diseases and is one of the predominant causes of death worldwide. Normal vascular endothelial cells play an important role in maintaining vascular homeostasis and inhibiting atherosclerosis by regulating vascular tension, preventing thrombosis and regulating inflammation. Currently, accumulating evidence has revealed that endothelial cell apoptosis is the first step of atherosclerosis. Excess apoptosis of endothelial cells induced by risk factors for atherosclerosis is a preliminary event in atherosclerosis development and might be a target for preventing and treating atherosclerosis. Interestingly, accumulating evidence shows that natural medicines have great potential to treat atherosclerosis by inhibiting endothelial cell apoptosis. Therefore, this paper reviewed current studies on the inhibitory effect of natural medicines on endothelial cell apoptosis and summarized the risk factors that may induce endothelial cell apoptosis, including oxidized low-density lipoprotein (ox-LDL), reactive oxygen species (ROS), angiotensin II (Ang II), tumor necrosis factor-α (TNF-α), homocysteine (Hcy) and lipopolysaccharide (LPS). We expect this review to highlight the importance of natural medicines, including extracts and monomers, in the treatment of atherosclerosis by inhibiting endothelial cell apoptosis and provide a foundation for the development of potential antiatherosclerotic drugs from natural medicines.


Assuntos
Apoptose/efeitos dos fármacos , Aterosclerose/tratamento farmacológico , Células Endoteliais/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Ensaios Clínicos como Assunto , Células Endoteliais/patologia , Humanos , Lipoproteínas LDL/toxicidade , Extratos Vegetais/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
17.
J Cardiovasc Pharmacol ; 78(5): e729-e737, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34173812

RESUMO

ABSTRACT: Foam cell formation is an important event in atherosclerosis. Fisetin, a bioflavonoid, has been identified to possess anti-inflammatory, antilipidemic, and anticancerous properties; however, its role as a lipid homeostasis regulator in macrophages, specifically in the presence of metabolic stressors such as oxidized low-density lipoprotein (oxLDL) is not well understood. In this study, we have investigated the role of fisetin in preventing oxLDL-induced macrophage foam cell formation. U937-derived macrophages were stimulated with oxLDL with or without fisetin for varied time points, and various parameters were assessed including cell viability by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay; reactive oxygen species (ROS) by dichlorofluorescin diacetate assay; lipid accumulation by Oil Red O staining; and expression of NLR family pyrin domain containing 3 (NLRP3), sterol regulatory element-binding protein (SREBP)-1, and associated downstream proteins 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR) and fatty acid synthase (FAS) by quantitative reverse transcription polymerase chain reaction (RT-qPCR) and immunoblotting. Functionality of FAS enzyme was determined using enzyme activity assay. Docking studies were performed to determine the in silico interaction between NLRP3 and fisetin. The results showed that fisetin up to the dose of 10 µM did not alter cell viability but at the same dose could decrease the accumulation of lipids in macrophages and prevented foam cell formation. Fisetin could also ameliorate and reduce oxLDL-induced upregulation of SREBP-1 and thereby the expression of its downstream lipid synthesis genes HMGCR and FAS and inhibited ROS-induced NLRP3 inflammasome activation. In conclusion, fisetin could inhibit foam cell formation by blocking oxLDL-induced ROS formation and subsequent NLRP3 activation, thereby inhibiting SREBP-1 and its downstream genes including FAS and HMGCR.


Assuntos
Flavonóis/farmacologia , Células Espumosas/efeitos dos fármacos , Hipolipemiantes/farmacologia , Lipoproteínas LDL/toxicidade , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Ácido Graxo Sintase Tipo I/genética , Ácido Graxo Sintase Tipo I/metabolismo , Células Espumosas/metabolismo , Células Espumosas/patologia , Regulação Enzimológica da Expressão Gênica , Humanos , Hidroximetilglutaril-CoA Redutases/genética , Hidroximetilglutaril-CoA Redutases/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Células U937
18.
J Cardiovasc Pharmacol ; 78(6): 809-818, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34882112

RESUMO

ABSTRACT: There is evidence that the development of atherosclerosis (AS) involves the dysregulation of circular RNAs. This study aimed to investigate the role of circular ubiquitin-specific peptidase 9 X-linked (circUSP9X) in AS cell models. Human umbilical vein endothelial cells (HUVECs) treated with oxidized low-density lipoprotein (ox-LDL) were used as cell models of AS. The expression of circUSP9X, miR-148b-3p, and Kruppel-like factor 5 (KLF5) messenger RNA was measured using quantitative polymerase chain reaction. Cell viability was assessed by Cell Counting Kit-8 assay. Lactate dehydrogenase leakage, malonaldehyde content, and superoxide dismutase activity were investigated using matched commercial kits. Cell apoptosis was detected using flow cytometry assay. The protein levels of apoptosis-related markers and KLF5 were detected by western blot. The release of proinflammatory factors was monitored by enzyme-linked immunosorbent assay. The predicted relationship between miR-148b-3p and circUSP9X or KLF5 was confirmed by dual-luciferase reporter assay or RNA immunoprecipitation assay. CircUSP9X was highly expressed in ox-LDL-treated HUVECs. CircUSP9X knockdown inhibited ox-LDL-induced lactate dehydrogenase leakage, apoptosis, inflammation, and oxidative stress in HUVECs. CircUSP9X directly bound to miR-148b-3p, and KLF5 was a target of miR-148b-3p. CircUSP9X could regulate KLF5 expression by competitively targeting miR-148b-3p. Rescue experiments indicated that circUSP9X knockdown inhibited ox-LDL-induced HUVEC injuries by enriching miR-148b-3p, and miR-148b-3p restoration alleviated ox-LDL-induced HUVEC injuries by degrading KLF5. In conclusion, circUSP9X knockdown relieved ox-LDL-triggered HUVEC injuries during AS progression partly by mediating the miR-148b-3p/KLF5 network.


Assuntos
Aterosclerose/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Fatores de Transcrição Kruppel-Like/metabolismo , Lipoproteínas LDL/toxicidade , MicroRNAs/metabolismo , RNA Circular/metabolismo , Regiões 3' não Traduzidas , Apoptose/efeitos dos fármacos , Aterosclerose/genética , Aterosclerose/patologia , Sítios de Ligação , Ligação Competitiva , Células Cultivadas , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Fatores de Transcrição Kruppel-Like/genética , MicroRNAs/genética , RNA Circular/genética , Transdução de Sinais
19.
J Cardiovasc Pharmacol ; 78(2): 235-246, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34554676

RESUMO

ABSTRACT: Long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) was reported to be related to atherosclerosis (AS) progression. However, the underlying mechanism of MALAT1 in AS remains unknown. Quantitative real-time polymerase chain reaction was performed to detect the expression of MALAT1 and miR-330-5p. Western blot was applied to assess the protein levels of cluster of differentiation 36, interleukin-1ß, interleukin-6 and tumor necrosis factor-α, phosphorylation of nuclear factor kappa-B inhibitor alpha and phosphorylation of p65. Flow cytometry assay, cell counting kit 8 assay, triglyceride, and total cholesterol detection assays were used to detect the apoptosis, viability, and lipid indexes of THP-1 macrophages-derived foam cells. Online database starbasev2.0 was used to predict the binding sequences between MALAT1 and miR-330-5p and it was verified by dual-luciferase reporter system and RNA immunoprecipitation assay. Besides, an AS mice model was used to evaluate the effect of MALAT1 in vivo. As a result, MALAT1 was overexpressed, whereas miR-330-5p was downregulated in THP-1 macrophages-derived foam cells. MiR-330-5p was a target of MALAT1. MALAT1 depletion inhibited cell formation, apoptosis, and inflammation in THP-1 macrophages-derived foam cells. Besides, MALAT1 overexpression promoted the inflammation in AS mice model, which promoted the pathogenesis of AS. Furthermore, miR-330-5p regulated the nuclear factor kappa light chain enhancer of activated B cells (NF-κB) pathway in THP-1 macrophages-derived foam cells. Moreover, MALAT1 regulated NF-κB signal pathway to mediate the pathogenesis of AS by sponging miR-330-5p. MALAT1 sponges miR-330-5p to activate NF-κB signal pathway in THP-1 macrophages-derived foam cells. This finding may provide a novel biomarker for AS diagnosis.


Assuntos
Aterosclerose/metabolismo , Células Espumosas/metabolismo , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Placa Aterosclerótica , RNA Longo não Codificante/metabolismo , Animais , Aterosclerose/genética , Aterosclerose/patologia , Bases de Dados Genéticas , Modelos Animais de Doenças , Progressão da Doença , Células Espumosas/efeitos dos fármacos , Células Espumosas/patologia , Regulação da Expressão Gênica , Humanos , Lipoproteínas LDL/toxicidade , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , MicroRNAs/genética , RNA Longo não Codificante/genética , Transdução de Sinais , Células THP-1
20.
J Cardiovasc Pharmacol ; 77(5): 603-613, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33951697

RESUMO

ABSTRACT: Circular RNAs have shown regulatory functions in atherosclerosis (AS) progression. Here, we explored the role and working mechanism of circ_0000345 in the AS cell model in vitro. Quantitative real-time polymerase chain reaction was applied to measure the enrichment of circ_0000345, microRNA-129-5p (miR-129-5p), and ten-eleven translocation-2 (TET2) messenger RNA. Cell Counting Kit 8 assay was used to analyze cell viability of human umbilical vein endothelial cells (HUVECs). Flow cytometry was conducted to assess cell apoptosis and cell cycle progression. The target relationship between miR-129-5p and circ_0000345 or TET2 was verified by the dual-luciferase reporter assay. The Western blot assay was used to analyze the protein level of TET2. Circ_0000345 abundance was reduced in serum samples of AS patients and AS cell model compared with their matching counterparts. Circ_0000345 overexpression promoted cell viability and cell cycle progression and hampered cell apoptosis in HUVECs induced by oxidized low-density lipoprotein. MiR-129-5p was a target of circ_0000345 and circ_0000345 attenuated ox-LDL-induced damage in HUVECs through sponging miR-129-5p. MiR-129-5p bound to the 3' untranslated region (3'UTR) of TET2, and miR-129-5p functioned in ox-LDL-induced HUVECs by targeting TET2. Circ_0000345 enhanced TET2 messenger RNA and protein expression through sponging miR-129-5p in HUVECs. Circ_0000345 attenuated ox-LDL-mediated injury in HUVECs through targeting miR-129-5p/TET2 axis. Increasing the levels of circ_0000345 and TET2 might be a novel insight into AS treatment.


Assuntos
Aterosclerose/metabolismo , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Lipoproteínas LDL/toxicidade , MicroRNAs/metabolismo , RNA Circular/metabolismo , Idoso , Apoptose , Aterosclerose/patologia , Estudos de Casos e Controles , Células Cultivadas , Proteínas de Ligação a DNA/genética , Dioxigenases/genética , Feminino , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , RNA Circular/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA