Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Br J Cancer ; 131(5): 918-930, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38969867

RESUMO

BACKGROUND: Resistance to chemotherapy is a major problem in the treatment of patients with triple-negative breast cancer (TNBC). Preclinical data suggest that TNBC is dependent on proteasomes; however, clinical observations indicate that the efficacy of proteasome inhibitors in TNBC may be limited, suggesting the need for combination therapies. METHODS: We compared bortezomib and carfilzomib and their combinations with nelfinavir and lopinavir in TNBC cell lines and primary cells with regard to their cytotoxic activity, functional proteasome inhibition, and induction of the unfolded protein response (UPR). Furthermore, we evaluated the involvement of sXBP1, ABCB1, and ABCG2 in the cytotoxic activity of drug combinations. RESULTS: Carfilzomib, via proteasome ß5 + ß2 inhibition, is more cytotoxic in TNBC than bortezomib, which inhibits ß5 + ß1 proteasome subunits. The cytotoxicity of carfilzomib was significantly potentiated by nelfinavir or lopinavir. Carfilzomib with lopinavir induced endoplasmic reticulum stress and pro-apoptotic UPR through the accumulation of excess proteasomal substrate protein in TNBC in vitro. Moreover, lopinavir increased the intracellular availability of carfilzomib by inhibiting carfilzomib export from cells that express high levels and activity of ABCB1, but not ABCG2. CONCLUSION: Proteasome inhibition by carfilzomib combined with nelfinavir/lopinavir represents a potential treatment option for TNBC, warranting further investigation.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Bortezomib , Sinergismo Farmacológico , Inibidores da Protease de HIV , Lopinavir , Nelfinavir , Oligopeptídeos , Neoplasias de Mama Triplo Negativas , Resposta a Proteínas não Dobradas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Oligopeptídeos/farmacologia , Inibidores da Protease de HIV/farmacologia , Nelfinavir/farmacologia , Linhagem Celular Tumoral , Lopinavir/farmacologia , Feminino , Bortezomib/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Inibidores de Proteassoma/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Proteína 1 de Ligação a X-Box/metabolismo , Proteína 1 de Ligação a X-Box/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos
2.
J Antimicrob Chemother ; 79(2): 339-348, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38153241

RESUMO

BACKGROUND: Maintenance monotherapy with ritonavir-boosted darunavir has yielded variable outcomes and is not recommended. Trial samples offer valuable opportunities for detailed studies. We analysed samples from a 48 week trial in Cameroon to obtain a detailed characterization of drug resistance. METHODS: Following failure of NNRTI-based therapy and virological suppression on PI-based therapy, participants were randomized to ritonavir-boosted darunavir (n = 81) or tenofovir disoproxil fumarate/lamivudine +ritonavir-boosted lopinavir (n = 39). At study entry, PBMC-derived HIV-1 DNA underwent bulk Protease and Reverse Transcriptase (RT) sequencing. At virological rebound (confirmed or last available HIV-1 RNA ≥ 60 copies/mL), plasma HIV-1 RNA underwent ultradeep Protease and RT sequencing and bulk Gag-Protease sequencing. The site-directed mutant T375A (p2/p7) was characterized phenotypically using a single-cycle assay. RESULTS: NRTI and NNRTI resistance-associated mutations (RAMs) were detected in 52/90 (57.8%) and 53/90 (58.9%) HIV-1 DNA samples, respectively. Prevalence in rebound HIV-1 RNA (ritonavir-boosted darunavir, n = 21; ritonavir-boosted lopinavir, n = 2) was 9/23 (39.1%) and 10/23 (43.5%), respectively, with most RAMs detected at frequencies ≥15%. The resistance patterns of paired HIV-1 DNA and RNA sequences were partially consistent. No darunavir RAMs were found. Among eight participants experiencing virological rebound on ritonavir-boosted darunavir (n = 12 samples), all had Gag mutations associated with PI exposure, including T375N, T375A (p2/p7), K436R (p7/p1) and substitutions in p17, p24, p2 and p6. T375A conferred 10-fold darunavir resistance and increased replication capacity. CONCLUSIONS: The study highlights the high resistance barrier of ritonavir-boosted darunavir while identifying alternative pathways of resistance through Gag substitutions. During virological suppression, resistance patterns in HIV-1 DNA reflect treatment history, but due to technical and biological considerations, cautious interpretation is warranted.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Inibidores da Protease de HIV , Humanos , Darunavir/farmacologia , Darunavir/uso terapêutico , Ritonavir/farmacologia , Ritonavir/uso terapêutico , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Lopinavir/farmacologia , Lopinavir/uso terapêutico , Peptídeo Hidrolases/uso terapêutico , Leucócitos Mononucleares , Infecções por HIV/tratamento farmacológico , Inibidores da Protease de HIV/farmacologia , Inibidores da Protease de HIV/uso terapêutico , Mutação , RNA/uso terapêutico , DNA/uso terapêutico , Resistência a Medicamentos , Carga Viral
3.
J Virol ; 97(4): e0042523, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37039659

RESUMO

Enterovirus D68 (EV-D68), which causes severe respiratory diseases and irreversible central nervous system damage, has become a serious public health problem worldwide. However, the mechanisms by which EV-D68 exerts neurotoxicity remain unclear. Thus, we aimed to analyze the effects of EV-D68 infection on the cleavage, subcellular translocation, and pathogenic aggregation of TAR DNA-binding protein 43 kDa (TDP-43) in respiratory or neural cells. The results showed that EV-D68-encoded proteases 2A and 3C induced TDP-43 translocation and cleavage, respectively. Specifically, 3C cleaved residue 327Q of TDP-43. The 3C-mediated cleaved TDP-43 fragments had substantially decreased protein solubility compared with the wild-type TDP-43. Hence, 3C activity promoted TDP-43 aggregation, which exerted cytotoxicity to diverse human cells, including glioblastoma T98G cells. The effects of commercially available antiviral drugs on 3C-mediated TDP-43 cleavage were screened, and the results revealed lopinavir as a potent inhibitor of EV-D68 3C protease. Overall, these results suggested TDP-43 as a conserved host target of EV-D68 3C. This study is the first to provide evidence on the involvement of TDP-43 dysregulation in EV-D68 pathogenesis. IMPORTANCE Over the past decade, the incidence of enterovirus D68 (EV-D68) infection has increased worldwide. EV-D68 infection can cause different respiratory symptoms and severe neurological complications, including acute flaccid myelitis. Thus, elucidating the mechanisms underlying EV-D68 toxicity is important to develop novel methods to prevent EV-D68 infection-associated diseases. This study shows that EV-D68 infection triggers the translocalization, cleavage, and aggregation of TDP-43, an intracellular protein closely related to degenerative neurological disorders. The viral protease 3C decreased TDP-43 solubility, thereby exerting cytotoxicity to host cells, including human glioblastoma cells. Thus, counteracting 3C activity is an effective strategy to relieve EV-D68-triggered cell death. Cytoplasmic aggregation of TDP-43 is a hallmark of degenerative diseases, contributing to neural cell damage and central nervous system (CNS) disorders. The findings of this study on EV-D68-induced TDP-43 formation extend our understanding of virus-mediated cytotoxicity and the potential risks of TDP-43 dysfunction-related cognitive impairment and neurological symptoms in infected patients.


Assuntos
Proteínas de Ligação a DNA , Infecções por Enterovirus , Humanos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/farmacologia , Enterovirus Humano D , Infecções por Enterovirus/fisiopatologia , Infecções por Enterovirus/virologia , Linhagem Celular Tumoral , Proteases Virais 3C/metabolismo , Agregação Patológica de Proteínas/genética , Lopinavir/farmacologia , Proteólise/efeitos dos fármacos , Inativação Gênica , Inibidores de Proteases/farmacologia
4.
Chem Senses ; 482023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37625013

RESUMO

Lopinavir and ritonavir (LPV/r) are the primary anti-human immunodeficiency virus (HIV) drugs recommended by the World Health Organization for treating children aged 3 years and above who are infected with the HIV. These drugs are typically available in liquid formulations to aid in dosing for children who cannot swallow tablets. However, the strong bitter taste associated with these medications can be a significant obstacle to adherence, particularly in young children, and can jeopardize the effectiveness of the treatment. Studies have shown that poor palatability can affect the survival rate of HIV-infected children. Therefore, developing more child-friendly protease inhibitor formulations, particularly those with improved taste, is critical for children with HIV. The molecular mechanism by which lopinavir and ritonavir activate bitter taste receptors, TAS2Rs, is not yet clear. In this study, we utilized a calcium mobilization assay to characterize the activation of bitter taste receptors by lopinavir and ritonavir. We discovered that lopinavir activates TAS2R1 and TAS2R13, while ritonavir activates TAS2R1, TAS2R8, TAS2R13, and TAS2R14. The development of bitter taste blockers that target these receptors with a safe profile would be highly desirable in eliminating the unpleasant bitter taste of these anti-HIV drugs.


Assuntos
Fármacos Anti-HIV , Paladar , Humanos , Pré-Escolar , Ritonavir/farmacologia , Lopinavir/farmacologia , Receptores Acoplados a Proteínas G
5.
J Cell Biochem ; 123(2): 347-358, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34741481

RESUMO

As per the World Health Organization report, around 226 844 344 confirmed positive cases and 4 666 334 deaths are reported till September 17, 2021 due to the recent viral outbreak. A novel coronavirus (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) is responsible for the associated coronavirus disease (COVID-19), which causes serious or even fatal respiratory tract infection and yet no approved therapeutics or effective treatment is currently available to combat the outbreak. Due to the emergency, the drug repurposing approach is being explored for COVID-19. In this study, we attempt to understand the potential mechanism and also the effect of the approved antiviral drugs against the SARS-CoV-2 main protease (Mpro). To understand the mechanism of inhibition of the malaria drug hydroxychloroquine (HCQ) against SARS-CoV-2, we performed molecular interaction studies. The studies revealed that HCQ docked at the active site of the Human ACE2 receptor as a possible way of inhibition. Our in silico analysis revealed that the three drugs Lopinavir, Ritonavir, and Remdesivir showed interaction with the active site residues of Mpro. During molecular dynamics simulation, based on the binding free energy contributions, Lopinavir showed better results than Ritonavir and Remdesivir.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/antagonistas & inibidores , Hidroxicloroquina/farmacologia , Lopinavir/farmacologia , Receptores Virais/efeitos dos fármacos , Ritonavir/farmacologia , SARS-CoV-2/efeitos dos fármacos , Monofosfato de Adenosina/farmacologia , Monofosfato de Adenosina/uso terapêutico , Alanina/farmacologia , Alanina/uso terapêutico , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/fisiologia , Antivirais/uso terapêutico , Sítios de Ligação , Domínio Catalítico/efeitos dos fármacos , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/fisiologia , Conjuntos de Dados como Assunto , Reposicionamento de Medicamentos , Transferência de Energia , Humanos , Hidroxicloroquina/uso terapêutico , Lopinavir/uso terapêutico , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Receptores Virais/fisiologia , Ritonavir/uso terapêutico
6.
PLoS Comput Biol ; 17(9): e1008363, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34491984

RESUMO

Although combination antiretroviral therapies seem to be effective at controlling HIV-1 infections regardless of the viral subtype, there is increasing evidence for subtype-specific drug resistance mutations. The order and rates at which resistance mutations accumulate in different subtypes also remain poorly understood. Most of this knowledge is derived from studies of subtype B genotypes, despite not being the most abundant subtype worldwide. Here, we present a methodology for the comparison of mutational networks in different HIV-1 subtypes, based on Hidden Conjunctive Bayesian Networks (H-CBN), a probabilistic model for inferring mutational networks from cross-sectional genotype data. We introduce a Monte Carlo sampling scheme for learning H-CBN models for a larger number of resistance mutations and develop a statistical test to assess differences in the inferred mutational networks between two groups. We apply this method to infer the temporal progression of mutations conferring resistance to the protease inhibitor lopinavir in a large cross-sectional cohort of HIV-1 subtype C genotypes from South Africa, as well as to a data set of subtype B genotypes obtained from the Stanford HIV Drug Resistance Database and the Swiss HIV Cohort Study. We find strong support for different initial mutational events in the protease, namely at residue 46 in subtype B and at residue 82 in subtype C. The inferred mutational networks for subtype B versus C are significantly different sharing only five constraints on the order of accumulating mutations with mutation at residue 54 as the parental event. The results also suggest that mutations can accumulate along various alternative paths within subtypes, as opposed to a unique total temporal ordering. Beyond HIV drug resistance, the statistical methodology is applicable more generally for the comparison of inferred mutational networks between any two groups.


Assuntos
Farmacorresistência Viral/genética , Inibidores da Protease de HIV/farmacologia , HIV-1/efeitos dos fármacos , Lopinavir/farmacologia , Mutação , Teorema de Bayes , Estudos de Coortes , Infecções por HIV/virologia , HIV-1/classificação , Humanos
7.
Int J Mol Sci ; 23(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35563409

RESUMO

Connexin43 (Cx43) hemichannels form a pathway for cellular communication between the cell and its extracellular environment. Under pathological conditions, Cx43 hemichannels release adenosine triphosphate (ATP), which triggers inflammation. Over the past two years, azithromycin, chloroquine, dexamethasone, favipiravir, hydroxychloroquine, lopinavir, remdesivir, ribavirin, and ritonavir have been proposed as drugs for the treatment of the coronavirus disease 2019 (COVID-19), which is associated with prominent systemic inflammation. The current study aimed to investigate if Cx43 hemichannels, being key players in inflammation, could be affected by these drugs which were formerly designated as COVID-19 drugs. For this purpose, Cx43-transduced cells were exposed to these drugs. The effects on Cx43 hemichannel activity were assessed by measuring extracellular ATP release, while the effects at the transcriptional and translational levels were monitored by means of real-time quantitative reverse transcriptase polymerase chain reaction analysis and immunoblot analysis, respectively. Exposure to lopinavir and ritonavir combined (4:1 ratio), as well as to remdesivir, reduced Cx43 mRNA levels. None of the tested drugs affected Cx43 protein expression.


Assuntos
Tratamento Farmacológico da COVID-19 , Conexina 43 , Trifosfato de Adenosina/metabolismo , Conexina 43/efeitos dos fármacos , Conexina 43/genética , Conexina 43/metabolismo , Humanos , Inflamação , Lopinavir/farmacologia , Lopinavir/uso terapêutico , Ritonavir/farmacologia
8.
Int J Mol Sci ; 23(10)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35628472

RESUMO

Although many efforts have been made to elucidate the pathogenesis of COVID-19, the underlying mechanisms are yet to be fully uncovered. However, it is known that a dysfunctional immune response and the accompanying uncontrollable inflammation lead to troublesome outcomes in COVID-19 patients. Pannexin1 channels are put forward as interesting drug targets for the treatment of COVID-19 due to their key role in inflammation and their link to other viral infections. In the present study, we selected a panel of drugs previously tested in clinical trials as potential candidates for the treatment of COVID-19 early on in the pandemic, including hydroxychloroquine, chloroquine, azithromycin, dexamethasone, ribavirin, remdesivir, favipiravir, lopinavir, and ritonavir. The effect of the drugs on pannexin1 channels was assessed at a functional level by means of measurement of extracellular ATP release. Immunoblot analysis and real-time quantitative reversetranscription polymerase chain reaction analysis were used to study the potential of the drugs to alter pannexin1 protein and mRNA expression levels, respectively. Favipiravir, hydroxychloroquine, lopinavir, and the combination of lopinavir with ritonavir were found to inhibit pannexin1 channel activity without affecting pannexin1 protein or mRNA levels. Thusthree new inhibitors of pannexin1 channels were identified that, though currently not being used anymore for the treatment of COVID-19 patients, could be potential drug candidates for other pannexin1-related diseases.


Assuntos
Tratamento Farmacológico da COVID-19 , Conexinas , Conexinas/genética , Conexinas/metabolismo , Reposicionamento de Medicamentos , Humanos , Hidroxicloroquina/farmacologia , Hidroxicloroquina/uso terapêutico , Inflamação , Lopinavir/farmacologia , Lopinavir/uso terapêutico , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , RNA Mensageiro , Ritonavir
9.
Int J Mol Sci ; 23(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36293006

RESUMO

The human immunodeficiency virus type 1 (HIV-1) has continued to be a global concern. With the new HIV incidence, the emergence of multi-drug resistance and the untoward side effects of currently used anti-HIV drugs, there is an urgent need to discover more efficient anti-HIV drugs. Modern computational tools have played vital roles in facilitating the drug discovery process. This research focuses on a pharmacophore-based similarity search to screen 111,566,735 unique compounds in the PubChem database to discover novel HIV-1 protease inhibitors (PIs). We used an in silico approach involving a 3D-similarity search, physicochemical and ADMET evaluations, HIV protease-inhibitor prediction (IC50/percent inhibition), rigid receptor-molecular docking studies, binding free energy calculations and molecular dynamics (MD) simulations. The 10 FDA-approved HIV PIs (saquinavir, lopinavir, ritonavir, amprenavir, fosamprenavir, atazanavir, nelfinavir, darunavir, tipranavir and indinavir) were used as reference. The in silico analysis revealed that fourteen out of the twenty-eight selected optimized hit molecules were within the acceptable range of all the parameters investigated. The hit molecules demonstrated significant binding affinity to the HIV protease (PR) when compared to the reference drugs. The important amino acid residues involved in hydrogen bonding and п-п stacked interactions include ASP25, GLY27, ASP29, ASP30 and ILE50. These interactions help to stabilize the optimized hit molecules in the active binding site of the HIV-1 PR (PDB ID: 2Q5K). HPS/002 and HPS/004 have been found to be most promising in terms of IC50/percent inhibition (90.15%) of HIV-1 PR, in addition to their drug metabolism and safety profile. These hit candidates should be investigated further as possible HIV-1 PIs with improved efficacy and low toxicity through in vitro experiments and clinical trial investigations.


Assuntos
Fármacos Anti-HIV , Inibidores da Protease de HIV , HIV-1 , Humanos , Inibidores da Protease de HIV/química , Protease de HIV/química , Darunavir/farmacologia , Indinavir/química , Indinavir/metabolismo , Indinavir/farmacologia , Nelfinavir/química , Nelfinavir/metabolismo , Nelfinavir/farmacologia , Ritonavir/química , Saquinavir/metabolismo , Saquinavir/farmacologia , Lopinavir/farmacologia , Sulfato de Atazanavir/farmacologia , Simulação de Acoplamento Molecular , Fármacos Anti-HIV/farmacologia , Aminoácidos/farmacologia
10.
Pharm Dev Technol ; 27(9): 956-964, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36227222

RESUMO

Lopinavir is effective in treatment of HIV infection but experiences low oral bioavailability due to poor solubility, pre-systemic metabolism, and P-gp intestinal efflux. Co-processing with menthol enhanced its dissolution and intestinal permeability. Niosomes comprising Span 60, cholesterol, and poloxamer 407 were formulated in absence and presence of menthol. These were evaluated for size, morphology, entrapment efficiency (EE%), lopinavir release, and intestinal absorption. The later employed in situ rabbit intestinal absorption model. Niosomes were spherical with vesicle size of 140.2 ± 23 and 148.2 ± 27 nm for standard and menthol containing niosomes, respectively. The EE% values were 94.4% and 96.3% for both formulations, respectively. Niosomes underwent slow release during the time course of absorption with menthol hastening lopinavir release, but the release did not exceed 9%. Niosmoal encapsulation enhanced lopinavir intestinal absorption compared with drug solution. This was reflected from the fraction absorbed from duodenum, which was 24.15%, 73.09%, and 83.23% for solution, standard niosomes and menthol containing vesicles, respectively. These values were 34.32%, 80.8%, and 86.56% for the same formulations in case of jejuno-ileum. Lopinavir absorption from niosomes did not depend on release supporting intact vesicle absorption. The study introduced menthol containing niosomes as carriers for enhanced lopinavir intestinal absorption.


Assuntos
Infecções por HIV , Lipossomos , Animais , Coelhos , Lopinavir/farmacologia , Mentol/farmacologia , Tamanho da Partícula , Absorção Intestinal
11.
Ann Pharm Fr ; 80(3): 273-279, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34563517

RESUMO

The potential usefulness of lopinavir-ritonavir on Covid 19 infection during the first wave of contamination in France had boosted Kaletra® syrup prescription to the point of causing its national shortage. In the intensive care units of Parisian hospitals in charge of patients with life-threatening viral contamination, caregivers had to resort to lopinavir-ritonavir-based tablets, crushing them and then dispersing the powder in milk to facilitate administration by nasogastric tube. The difficulties and poor control of this degraded mode, which does not always ensure control of the amount of the drug in the prepared dose and may induce insufficient antiviral exposure, led us to develop in a very short time, while ensuring quality control proportional to the risk, a liquid form as an alternative to Kaletra® oral solution shortage. For this purpose, we describe this compounding formulation and its preparation process, while justifying the quality control strategy adapted to the risk as well as its chemical and physical stability. Based on the chemical and physical studies, the preparation was showed to be stable during at least 2 months between +2°C and +8°C and 1 week at room temperature. This has resulted in the design of kits that include multi-dose packaging and a measuring device and contain the appropriate quantities of drugs to ensure at least one week's treatment for each patient, during which time the kit in use can be stored at room temperature. The intensive care team used this treatment under conditions that they considered well adapted until the imported specialty became available.


Assuntos
Tratamento Farmacológico da COVID-19 , Ritonavir , Combinação de Medicamentos , Hospitais , Humanos , Lopinavir/farmacologia , Lopinavir/uso terapêutico , Ritonavir/uso terapêutico , SARS-CoV-2 , Suspensões
12.
Chem Res Toxicol ; 34(4): 1150-1160, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33821626

RESUMO

Prophylactic antiretroviral therapy (ART) in HIV infected pregnant mothers and their newborns can dramatically reduce mother-to-child viral transmission and seroconversion in the neonate. The ritonavir-boosted lopinavir regimen, known as Kaletra, has been associated with premature birth and transient adrenal insufficiency in newborns, accompanied by increases in plasma dehydroepiandrosterone 3-sulfate (DHEA-S). In the fetus and neonates, cytochrome P450 CYP3A7 is responsible for the metabolism of DHEA-S into 16α-hydroxy DHEA-S, which plays a critical role in growth and development. In order to determine if CYP3A7 inhibition could lead to the adverse outcomes associated with Kaletra therapy, we conducted in vitro metabolic studies to determine the extent and mechanism of CYP3A7 inhibition by both ritonavir and lopinavir and the relative intrinsic clearance of lopinavir with and without ritonavir in both neonatal and adult human liver microsomes (HLMs). We identified ritonavir as a potent inhibitor of CYP3A7 oxidation of DHEA-S (IC50 = 0.0514 µM), while lopinavir is a much weaker inhibitor (IC50 = 5.88 µM). Furthermore, ritonavir is a time-dependent inhibitor of CYP3A7 with a KI of 0.392 µM and a kinact of 0.119 min-1, illustrating the potential for CYP3A mediated drug-drug interactions with Kaletra. The clearance rate of lopinavir in neonatal HLMs was much slower and comparable to the rate observed in adult HLMs in the presence of ritonavir, suggesting that the addition of ritonavir in the cocktail therapy may not be necessary to maintain effective concentrations of lopinavir in neonates. Our results suggest that several of the observed adverse outcomes of Kaletra therapy may be due to the direct inhibition of CYP3A7 by ritonavir and that the necessity for the inclusion of this drug in the therapy may be obviated by the lower rate of lopinavir clearance in the neonatal liver. These results may lead to a reconsideration of the use of ritonavir in neonatal antiretroviral therapy.


Assuntos
Antirretrovirais/farmacologia , Inibidores do Citocromo P-450 CYP3A/farmacologia , Citocromo P-450 CYP3A/metabolismo , Sulfato de Desidroepiandrosterona/antagonistas & inibidores , Lopinavir/farmacologia , Ritonavir/farmacologia , Adulto , Antirretrovirais/química , Inibidores do Citocromo P-450 CYP3A/química , Sulfato de Desidroepiandrosterona/sangue , Sulfato de Desidroepiandrosterona/metabolismo , Combinação de Medicamentos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , Humanos , Recém-Nascido , Lopinavir/química , Conformação Molecular , Oxirredução , Ritonavir/química
13.
Eur J Clin Pharmacol ; 77(9): 1349-1356, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33754183

RESUMO

PURPOSE: S-warfarin is used to phenotype cytochrome P450 (CYP) 2C9 activity. This study evaluated S-warfarin limited sampling strategy with a population pharmacokinetic (PK) approach to estimate CYP2C9 activity in healthy adults. METHODS: In 6 previously published studies, a single oral dose of warfarin 10 mg was administered alone or with a CYP2C9 inducer to 100 healthy adults. S-warfarin concentrations were obtained from adults during conditions when subjects were not on any prescribed medications. A population PK model was developed using non-linear mixed effects modeling. Limited sampling models (LSMs) using single- or 2-timepoint concentrations were compared with full PK profiles from intense sampling using empiric Bayesian post hoc estimations of S-warfarin AUC derived from the population PK model. Preset criterion for LSM selection and validation were a correlation coefficient (R2) >0.9, relative percent mean prediction error (%MPE) >-5 to <5%, relative percent mean absolute error (%MAE) ≤ 10%, and relative percent root mean squared error (%RMSE) ≤ 15%. RESULTS: S-warfarin concentrations (n=2540) were well described with a two-compartment model. Mean apparent oral clearance was 0.56 L/hr and volume of distribution was 35.5 L. Clearance decreased 33% with the CYP2C9 *3 allele and increased 42% with lopinavir/ritonavir co-administration. During CYP2C9 constitutive conditions, LSMs at 48 hr and at 72 hr as well as 2-timepoint LSMs were within acceptable limits for R2, %MPE, %MAE, and %RMSE. During CYP2C9 induction, S-warfarin LSMs had unacceptable %MPE, %MAE, and %RMSE. CONCLUSIONS: Phenotyping studies with S-warfarin in healthy subjects can utilize a single- and/or a 2-timepoint LSM with a population PK approach to estimate constitutive CYP2C9 activity.


Assuntos
Indutores do Citocromo P-450 CYP2C9/farmacologia , Citocromo P-450 CYP2C9/metabolismo , Lopinavir/farmacologia , Modelos Biológicos , Ritonavir/farmacologia , Varfarina/farmacologia , Fatores Etários , Área Sob a Curva , Teorema de Bayes , Citocromo P-450 CYP2C9/genética , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Feminino , Genótipo , Voluntários Saudáveis , Humanos , Masculino , Taxa de Depuração Metabólica , Fenótipo , Fatores Sexuais , Varfarina/administração & dosagem
14.
Clin Exp Pharmacol Physiol ; 48(2): 203-210, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33090501

RESUMO

The coronavirus disease 2019 (COVID-19) is an epidemic disease caused by the Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) and spreading throughout the world rapidly. Here we evaluated the efficacy of the Lopinavir/Ritonavir (LPV/r) and its combination with other drugs in the treatment of COVID-19. We included 170 confirmed COVID-19 patients who had been cured and discharged. Their antiviral therapies were LPV/r alone or combinations with interferon (IFN), Novaferon and Arbidol. We evaluated the medication efficacy by comparing the time of the negative nucleic acid conversion and the length of hospitalization mainly. The LPV/r + Novaferon [6.00 (4.00-8.00) and 7.50 (5.00-10.00) days] had shorter time of the negative nucleic acid conversion (P = .0036) and shorter time of hospitalization (P < .001) compared with LPV/r alone [9.00 (5.00-12.00) and 12.00 (11.00-15.00) days] and LPV/r + IFN [9.00 (7.25-11.00) and 12.00 (10.00-13.50) days]. On the contrary, LPV/r + IFN [9.00 (7.25-11.00) and 12.00 (10.00-13.50) days] had shorter time of the negative nucleic acid conversion (P = .031) and shorter time of hospitalization (P < .001) compared with LPV/r + IFN +Novaferon [10.00 (8.00-11.25) and 13.50 (11.50-17.00) days] and LPV/r + IFN +Arbidol [14.00 (9.75-19.00) and 19.50 (13.25-24.00) days]. In conclusion, the combination of LPV/r and Novaferon may have better efficacy against COVID-19. However, adding IFN based on LPV/r + Novaferon or adding Arbidol based on LPV/r + IFN may not improve the efficacy.


Assuntos
Tratamento Farmacológico da COVID-19 , Lopinavir/farmacologia , Ritonavir/farmacologia , Adulto , Interações Medicamentosas , Feminino , Humanos , Lopinavir/uso terapêutico , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Ritonavir/uso terapêutico , Resultado do Tratamento
15.
J Clin Pharm Ther ; 46(5): 1459-1464, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34254323

RESUMO

WHAT IS KNOWN AND OBJECTIVE: Tenofovir exposure is increased in non-pregnant adults when tenofovir disoproxil fumarate is coadministered with lopinavir/ritonavir. In pregnant women, tenofovir exposure is decreased. Our objective is to describe the effect of lopinavir/ritonavir on tenofovir pharmacokinetics during pregnancy. METHODS: Data were collected through the International Maternal Pediatric and Adolescent AIDS Clinical Trials (IMPAACT) Network P1026s protocol. This was a nonrandomized, open-label, parallel-group and multicentre phase-IV prospective study in pregnant women with HIV. Intensive steady-state 24-h pharmacokinetic profiles were collected during the third trimester of pregnancy and postpartum. Tenofovir was measured in plasma using validated liquid chromatography-mass spectrometry method (quantification limit: 10 ng/ml). Statistical tests compared paired and between group pharmacokinetic data. RESULTS AND DISCUSSION: In women not receiving lopinavir/ritonavir (n = 28), tenofovir AUC0-24 was 27% lower (2.2 mcg·h/ml vs 2.8 mcg·h/ml, p = 0.002) and oral clearance was 27% higher (61 L/h vs 48 L/h, p = 0.001) during the third trimester compared to paired postpartum data. In women receiving lopinavir/ritonavir (n = 10), tenofovir AUC0-24 and oral clearance were not different antepartum compared to postpartum. Women with and women without concomitant lopinavir/ritonavir displayed no significant differences in postpartum tenofovir pharmacokinetics. WHAT IS NEW AND CONCLUSION: Tenofovir exposure during the third trimester was reduced compared to postpartum in pregnant women not receiving lopinavir/ritonavir, but not in pregnant women also receiving lopinavir/ritonavir. Our findings suggest that pregnancy confounds the expected decrease in tenofovir exposure with concomitant lopinavir/ritonavir in non-pregnant adults. These findings illustrate the need for drug-drug interaction studies in pregnant women as drug disposition differs significantly in pregnant women compared to non-pregnant adults.


Assuntos
Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Lopinavir/farmacologia , Lopinavir/uso terapêutico , Ritonavir/farmacologia , Ritonavir/uso terapêutico , Tenofovir/farmacocinética , Adolescente , Adulto , Fármacos Anti-HIV/farmacocinética , Área Sob a Curva , Combinação de Medicamentos , Interações Medicamentosas , Feminino , Meia-Vida , Humanos , Taxa de Depuração Metabólica , Pessoa de Meia-Idade , Gravidez , Estudos Prospectivos , Adulto Jovem
16.
J Electrocardiol ; 64: 30-35, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33307378

RESUMO

BACKGROUND: Administration of Hydroxychloroquine and Azithromycin in patients with coronavirus disease 2019 (COVID-19) prolongs QTc corrected interval (QTc). The effect and safety of Lopinavir/Ritonavir in combination with these therapies have seldom been studied. OBJECTIVES: Our aim was to evaluate changes in QTc in patients receiving double (Hydroxychloroquine + Azithromycin) and triple therapy (Hydroxychloroquine + Azithromycin + Lopinavir/Ritonavir) to treat COVID-19. Secondary outcome was the incidence of in-hospital all-cause mortality. METHODS: Patients under treatment with double (DT) and triple therapy (TT) for COVID-19 were consecutively included in this prospective observational study. Serial in-hospital electrocardiograms were performed to measure QTc at baseline and during therapy. RESULTS: 168 patients (±66.2 years old) were included: 32.1% received DT and 67.9% received TT. The mean baseline QTc was 410.33 ms. Patients under DT and TT prolonged QTc interval respect baseline values (p < 0.001), without significant differences between both therapy groups (p = 0.748). Overall, 33 patients (19.6%) had a peak QTc and/or an increase QTc 60 ms from baseline, with a higher prevalence among those with hypokalemia (p = 0.003). All-cause mortality was similar between both strategy groups (p = 0.093) and high risk QTc prolongation was no related to clinical events in this series. CONCLUSIONS: DT and TT prolong the QTc in patients with COVID-19. Addition of Lopinavir/Ritonavir on top of Hydroxychloroquine and Azithromycin did not increase QTc compared to DT.


Assuntos
Azitromicina/farmacologia , COVID-19/fisiopatologia , Eletrocardiografia/efeitos dos fármacos , Hidroxicloroquina/farmacologia , Lopinavir/farmacologia , Ritonavir/farmacologia , Idoso , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Azitromicina/uso terapêutico , Quimioterapia Combinada , Feminino , Inibidores da Protease de HIV/farmacologia , Inibidores da Protease de HIV/uso terapêutico , Humanos , Hidroxicloroquina/uso terapêutico , Estimativa de Kaplan-Meier , Lopinavir/uso terapêutico , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Ritonavir/uso terapêutico , Tratamento Farmacológico da COVID-19
17.
Int J Mol Sci ; 22(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34502033

RESUMO

The novel coronavirus disease, caused by severe acute respiratory coronavirus 2 (SARS-CoV-2), rapidly spreading around the world, poses a major threat to the global public health. Herein, we demonstrated the binding mechanism of PF-07321332, α-ketoamide, lopinavir, and ritonavir to the coronavirus 3-chymotrypsin-like-protease (3CLpro) by means of docking and molecular dynamic (MD) simulations. The analysis of MD trajectories of 3CLpro with PF-07321332, α-ketoamide, lopinavir, and ritonavir revealed that 3CLpro-PF-07321332 and 3CLpro-α-ketoamide complexes remained stable compared with 3CLpro-ritonavir and 3CLpro-lopinavir. Investigating the dynamic behavior of ligand-protein interaction, ligands PF-07321332 and α-ketoamide showed stronger bonding via making interactions with catalytic dyad residues His41-Cys145 of 3CLpro. Lopinavir and ritonavir were unable to disrupt the catalytic dyad, as illustrated by increased bond length during the MD simulation. To decipher the ligand binding mode and affinity, ligand interactions with SARS-CoV-2 proteases and binding energy were calculated. The binding energy of the bespoke antiviral PF-07321332 clinical candidate was two times higher than that of α-ketoamide and three times than that of lopinavir and ritonavir. Our study elucidated in detail the binding mechanism of the potent PF-07321332 to 3CLpro along with the low potency of lopinavir and ritonavir due to weak binding affinity demonstrated by the binding energy data. This study will be helpful for the development and optimization of more specific compounds to combat coronavirus disease.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Protease de Coronavírus/farmacologia , Lactamas/farmacologia , Leucina/farmacologia , Nitrilas/farmacologia , Prolina/farmacologia , Antivirais/uso terapêutico , Domínio Catalítico/efeitos dos fármacos , Proteases 3C de Coronavírus/metabolismo , Inibidores de Protease de Coronavírus/uso terapêutico , Humanos , Lactamas/uso terapêutico , Leucina/uso terapêutico , Lopinavir/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Nitrilas/uso terapêutico , Prolina/uso terapêutico , Ritonavir/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia
18.
Biochemistry ; 59(18): 1769-1779, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32293875

RESUMO

Since the emergence of a novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported from Wuhan, China, neither a specific vaccine nor an antiviral drug against SARS-CoV-2 has become available. However, a combination of two HIV-1 protease inhibitors, lopinavir and ritonavir, has been found to be effective against SARS-CoV, and both drugs could bind well to the SARS-CoV 3C-like protease (SARS-CoV 3CLpro). In this work, molecular complexation between each inhibitor and SARS-CoV-2 3CLpro was studied using all-atom molecular dynamics simulations, free energy calculations, and pair interaction energy analyses based on MM/PB(GB)SA and FMO-MP2/PCM/6-31G* methods. Both anti-HIV drugs interacted well with the residues at the active site of SARS-CoV-2 3CLpro. Ritonavir showed a somewhat higher number atomic contacts, a somewhat higher binding efficiency, and a somewhat higher number of key binding residues compared to lopinavir, which correspond with the slightly lower water accessibility at the 3CLpro active site. In addition, only ritonavir could interact with the oxyanion hole residues N142 and G143 via the formation of two hydrogen bonds. The interactions in terms of electrostatics, dispersion, and charge transfer played an important role in the drug binding. The obtained results demonstrated how repurposed anti-HIV drugs could be used to combat COVID-19.


Assuntos
Antivirais/farmacologia , Infecções por Coronavirus/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Lopinavir/química , Lopinavir/farmacologia , Pneumonia Viral/tratamento farmacológico , Ritonavir/química , Ritonavir/farmacologia , Antivirais/uso terapêutico , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/enzimologia , COVID-19 , Domínio Catalítico , Proteases 3C de Coronavírus , Infecções por Coronavirus/enzimologia , Infecções por Coronavirus/virologia , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Reposicionamento de Medicamentos , Inibidores Enzimáticos/uso terapêutico , Humanos , Lopinavir/uso terapêutico , Simulação de Dinâmica Molecular , Pandemias , Pneumonia Viral/enzimologia , Pneumonia Viral/virologia , Ligação Proteica , Estrutura Terciária de Proteína , Ritonavir/uso terapêutico , SARS-CoV-2 , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-33046487

RESUMO

The limited therapeutic options and the recent emergence of multidrug-resistant Candida species present a significant challenge to human medicine and underscore the need for novel therapeutic approaches. Drug repurposing appears as a promising tool to augment the activity of current azole antifungals, especially against multidrug-resistant Candida auris In this study, we evaluated the fluconazole chemosensitization activities of 1,547 FDA-approved drugs and clinical molecules against azole-resistant C. auris This led to the discovery that lopinavir, an HIV protease inhibitor, is a potent agent capable of sensitizing C. auris to the effect of azole antifungals. At a therapeutically achievable concentration, lopinavir exhibited potent synergistic interactions with azole drugs, particularly with itraconazole against C. auris (fractional inhibitory concentration index [ΣFICI] ranged from 0.04 to 0.09). Additionally, the lopinavir/itraconazole combination enhanced the survival rate of C. auris-infected Caenorhabditis elegans by 90% and reduced the fungal burden in infected nematodes by 88.5% (P < 0.05) relative to that of the untreated control. Furthermore, lopinavir enhanced the antifungal activity of itraconazole against other medically important Candida species, including C. albicans, C. tropicalis, C. krusei, and C. parapsilosis Comparative transcriptomic profiling and mechanistic studies revealed that lopinavir was able to significantly interfere with the glucose permeation and ATP synthesis. This compromised the efflux ability of C. auris and consequently enhanced the susceptibility to azole drugs, as demonstrated by Nile red efflux assays. Altogether, these findings present lopinavir as a novel, potent, and broad-spectrum azole-chemosensitizing agent that warrants further investigation against recalcitrant Candida infections.


Assuntos
Antifúngicos , Preparações Farmacêuticas , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Azóis/farmacologia , Candida , Fluconazol , Humanos , Lopinavir/farmacologia , Testes de Sensibilidade Microbiana
20.
Artigo em Inglês | MEDLINE | ID: mdl-32641296

RESUMO

Coronavirus disease 2019 (COVID-19) leads to inflammatory cytokine release, which can downregulate the expression of metabolizing enzymes. This cascade affects drug concentrations in the plasma. We investigated the association between lopinavir (LPV) and hydroxychloroquine (HCQ) plasma concentrations and the levels of the acute-phase inflammation marker C-reactive protein (CRP). LPV plasma concentrations in 92 patients hospitalized at our institution were prospectively collected. Lopinavir-ritonavir was administered every 12 hours, 800/200 mg on day 1 and 400/100 mg on day 2 until day 5 or 7. HCQ was given at 800 mg, followed by 400 mg after 6, 24, and 48 h. Hematological, liver, kidney, and inflammation laboratory values were analyzed on the day of drug level determination. The median age of study participants was 59 (range, 24 to 85) years, and 71% were male. The median durations from symptom onset to hospitalization and treatment initiation were 7 days (interquartile range [IQR], 4 to 10) and 8 days (IQR, 5 to 10), respectively. The median LPV trough concentration on day 3 of treatment was 26.5 µg/ml (IQR, 18.9 to 31.5). LPV plasma concentrations positively correlated with CRP values (r = 0.37, P < 0.001) and were significantly lower when tocilizumab was preadministered. No correlation was found between HCQ concentrations and CRP values. High LPV plasma concentrations were observed in COVID-19 patients. The ratio of calculated unbound drug fraction to published SARS-CoV-2 50% effective concentrations (EC50) indicated insufficient LPV concentrations in the lung. CRP values significantly correlated with LPV but not HCQ plasma concentrations, implying inhibition of cytochrome P450 3A4 (CYP3A4) metabolism by inflammation.


Assuntos
Antivirais/farmacocinética , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Síndrome da Liberação de Citocina/tratamento farmacológico , Hidroxicloroquina/farmacocinética , Lopinavir/farmacocinética , Pneumonia Viral/tratamento farmacológico , Ritonavir/farmacocinética , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais Humanizados/uso terapêutico , Antivirais/sangue , Antivirais/farmacologia , Betacoronavirus/imunologia , Betacoronavirus/patogenicidade , Biomarcadores/sangue , Proteína C-Reativa/metabolismo , COVID-19 , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/mortalidade , Infecções por Coronavirus/virologia , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/mortalidade , Síndrome da Liberação de Citocina/virologia , Esquema de Medicação , Combinação de Medicamentos , Feminino , Hospitais Universitários , Humanos , Hidroxicloroquina/sangue , Hidroxicloroquina/farmacologia , Tempo de Internação/estatística & dados numéricos , Lopinavir/sangue , Lopinavir/farmacologia , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/imunologia , Pneumonia Viral/mortalidade , Pneumonia Viral/virologia , Estudos Retrospectivos , Ritonavir/sangue , Ritonavir/farmacologia , SARS-CoV-2 , Índice de Gravidade de Doença , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA