Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 306
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(42): e2310047121, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39378090

RESUMO

In the first live-bearing mammals, pregnancy was likely short and ended with a brief period of inflammatory maternal-fetal interaction. This mode of reproduction has been retained in many marsupials. While inflammation is key to successful implantation in eutherians, a key innovation in eutherians is the ability to switch off this inflammation after it has been initiated. This extended period, in which inflammation is suppressed, likely allowed for an extended period of placentation. Extended placentation has evolved independently in one lineage of marsupials, the macropodids (wallabies and kangaroos), with placentation lasting beyond the 2 to 4 d seen in other marsupial taxa, which allows us to investigate the role of inflammation response after attachment in the extension of placentation in mammals. By comparing gene expression changes at attachment in three marsupial species, the tammar wallaby, opossum, and fat-tailed dunnart, we show that inflammatory attachment is an ancestral feature of marsupial implantation. In contrast to eutherians, where attachment-related (quasi-) inflammatory reaction is even involved in epitheliochorial placentation (e.g., pig), this study found no evidence of a distinct attachment-related reaction in wallabies. Instead, only a small number of inflammatory genes are expressed at distinct points of gestation, including IL6 before attachment, LIF throughout placentation, and prostaglandins before birth. During parturition, a more distinct inflammatory reaction is detectable, likely involved in precipitating the parturition cascade similar to eutherians. We suggest that in wallaby, extended gestation became possible by avoiding an inflammatory attachment reaction, which is a different strategy than seen in eutherians.


Assuntos
Evolução Biológica , Inflamação , Macropodidae , Placentação , Animais , Feminino , Gravidez , Macropodidae/genética , Inflamação/genética , Placenta/metabolismo , Implantação do Embrião/genética , Gambás
2.
Proc Natl Acad Sci U S A ; 121(36): e2412185121, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39190362

RESUMO

X chromosome inactivation (XCI) is an epigenetic process that results in the transcriptional silencing of one X chromosome in the somatic cells of females. This phenomenon is common to both eutherian and marsupial mammals, but there are fundamental differences. In eutherians, the X chosen for silencing is random. DNA methylation on the eutherian inactive X is high at transcription start sites (TSSs) and their flanking regions, resulting in universally high DNA methylation. This contrasts XCI in marsupials where the paternally derived X is always silenced, and in which DNA methylation is low at TSSs and flanking regions. Here, we examined the DNA methylation status of the tammar wallaby X chromosome during spermatogenesis to determine the DNA methylation profile of the paternal X prior to and at fertilization. Whole genome enzymatic methylation sequencing was carried out on enriched flow-sorted populations of premeiotic, meiotic, and postmeiotic cells. We observed that the X displayed a pattern of DNA methylation from spermatogonia to mature sperm that reflected the inactive X in female somatic tissue. Therefore, the paternal X chromosome arrives at the egg with a DNA methylation profile that reflects the transcriptionally silent X in adult female somatic tissue. We present this epigenetic signature as a candidate for the long sought-after imprint for paternal XCI in marsupials.


Assuntos
Metilação de DNA , Inativação do Cromossomo X , Cromossomo X , Animais , Inativação do Cromossomo X/genética , Masculino , Feminino , Cromossomo X/genética , Impressão Genômica , Espermatogênese/genética , Macropodidae/genética , Óvulo/metabolismo , Marsupiais/genética , Espermatozoides/metabolismo , Epigênese Genética
3.
Syst Biol ; 73(3): 579-593, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38577768

RESUMO

Increased sampling of genomes and populations across closely related species has revealed that levels of genetic exchange during and after speciation are higher than previously thought. One obvious manifestation of such exchange is strong cytonuclear discordance, where the divergence in mitochondrial DNA (mtDNA) differs from that for nuclear genes more (or less) than expected from differences between mtDNA and nuclear DNA (nDNA) in population size and mutation rate. Given genome-scale data sets and coalescent modeling, we can now confidently identify cases of strong discordance and test specifically for historical or recent introgression as the cause. Using population sampling, combining exon capture data from historical museum specimens and recently collected tissues we showcase how genomic tools can resolve complex evolutionary histories in the brachyotis group of rock-wallabies (Petrogale). In particular, applying population and phylogenomic approaches we can assess the role of demographic processes in driving complex evolutionary patterns and assess a role of ancient introgression and hybridization. We find that described species are well supported as monophyletic taxa for nDNA genes, but not for mtDNA, with cytonuclear discordance involving at least 4 operational taxonomic units across 4 species which diverged 183-278 kya. ABC modeling of nDNA gene trees supports introgression during or after speciation for some taxon pairs with cytonuclear discordance. Given substantial differences in body size between the species involved, this evidence for gene flow is surprising. Heterogenous patterns of introgression were identified but do not appear to be associated with chromosome differences between species. These and previous results suggest that dynamic past climates across the monsoonal tropics could have promoted reticulation among related species.


Assuntos
Núcleo Celular , DNA Mitocondrial , Museus , Filogenia , Animais , DNA Mitocondrial/genética , Núcleo Celular/genética , Macropodidae/genética , Macropodidae/classificação , Introgressão Genética
4.
PLoS Genet ; 18(2): e1010040, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35130272

RESUMO

During meiotic prophase I, homologous chromosomes pair, synapse and recombine in a tightly regulated process that ensures the generation of genetically variable haploid gametes. Although the mechanisms underlying meiotic cell division have been well studied in model species, our understanding of the dynamics of meiotic prophase I in non-traditional model mammals remains in its infancy. Here, we reveal key meiotic features in previously uncharacterised marsupial species (the tammar wallaby and the fat-tailed dunnart), plus the fat-tailed mouse opossum, with a focus on sex chromosome pairing strategies, recombination and meiotic telomere homeostasis. We uncovered differences between phylogroups with important functional and evolutionary implications. First, sex chromosomes, which lack a pseudo-autosomal region in marsupials, had species specific pairing and silencing strategies, with implications for sex chromosome evolution. Second, we detected two waves of γH2AX accumulation during prophase I. The first wave was accompanied by low γH2AX levels on autosomes, which correlated with the low recombination rates that distinguish marsupials from eutherian mammals. In the second wave, γH2AX was restricted to sex chromosomes in all three species, which correlated with transcription from the X in tammar wallaby. This suggests non-canonical functions of γH2AX on meiotic sex chromosomes. Finally, we uncover evidence for telomere elongation in primary spermatocytes of the fat-tailed dunnart, a unique strategy within mammals. Our results provide new insights into meiotic progression and telomere homeostasis in marsupials, highlighting the importance of capturing the diversity of meiotic strategies within mammals.


Assuntos
Pareamento Cromossômico/fisiologia , Cromossomos Sexuais/fisiologia , Telômero/fisiologia , Animais , Macropodidae/genética , Marsupiais/genética , Meiose/genética , Meiose/fisiologia , Prófase Meiótica I/fisiologia , Gambás/genética , Cromossomos Sexuais/genética , Telômero/genética , Cromossomo X/genética , Cromossomo Y/genética
5.
Genes Cells ; 28(2): 149-155, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36527312

RESUMO

We recently identified walbRep, a satellite DNA residing in the genome of the red-necked wallaby Notamacropus rufogriseus. It originates from the walb endogenous retrovirus and is organized in a manner in which the provirus structure is retained. The walbRep repeat units feature an average pairwise nucleotide identity as high as 99.5%, raising the possibility of a recent origin. The tammar wallaby N. eugenii is a species estimated to have diverged from the red-necked wallaby 2-3 million years ago. In PCR analyses of these two and other related species, walbRep-specific fragment amplification was observed only in the red-necked wallaby. Sequence database searches for the tammar wallaby resulted in sequence alignment lists that were sufficiently powerful to exclude the possibility of walbRep existence. These results suggested that the walbRep formation occurred in the red-necked wallaby lineage after its divergence from the tammar wallaby lineage, thus in a time span of maximum 3 million years.


Assuntos
Retrovirus Endógenos , Macropodidae , Animais , Macropodidae/genética , DNA Satélite/genética , Retrovirus Endógenos/genética , Replicação do DNA
6.
Heredity (Edinb) ; 133(1): 21-32, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38834866

RESUMO

Parent-of-origin-specific expression of imprinted genes is critical for successful mammalian growth and development. Insulin, coded by the INS gene, is an important growth factor expressed from the paternal allele in the yolk sac placenta of therian mammals. The tyrosine hydroxylase gene TH encodes an enzyme involved in dopamine synthesis. TH and INS are closely associated in most vertebrates, but the mouse orthologues, Th and Ins2, are separated by repeated DNA. In mice, Th is expressed from the maternal allele, but the parental origin of expression is not known for any other mammal so it is unclear whether the maternal expression observed in the mouse represents an evolutionary divergence or an ancestral condition. We compared the length of the DNA segment between TH and INS across species and show that separation of these genes occurred in the rodent lineage with an accumulation of repeated DNA. We found that the region containing TH and INS in the tammar wallaby produces at least five distinct RNA transcripts: TH, TH-INS1, TH-INS2, lncINS and INS. Using allele-specific expression analysis, we show that the TH/INS locus is expressed from the paternal allele in pre- and postnatal tammar wallaby tissues. Determining the imprinting pattern of TH/INS in other mammals might clarify if paternal expression is the ancestral condition which has been flipped to maternal expression in rodents by the accumulation of repeat sequences.


Assuntos
Alelos , Impressão Genômica , Insulina , Mamíferos , Tirosina 3-Mono-Oxigenase , Animais , Mamíferos/genética , Tirosina 3-Mono-Oxigenase/genética , Camundongos/genética , Insulina/genética , Insulina/metabolismo , Macropodidae/genética , Feminino , Masculino
7.
Heredity (Edinb) ; 132(1): 5-17, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37952041

RESUMO

The imprinted isoform of the Mest gene in mice is involved in key mammalian traits such as placental and fetal growth, maternal care and mammary gland maturation. The imprinted isoform has a distinct differentially methylated region (DMR) at its promoter in eutherian mammals but in marsupials, there are no differentially methylated CpG islands between the parental alleles. Here, we examined similarities and differences in the MEST gene locus across mammals using a marsupial, the tammar wallaby, a monotreme, the platypus, and a eutherian, the mouse, to investigate how imprinting of this gene evolved in mammals. By confirming the presence of the short isoform in all mammalian groups (which is imprinted in eutherians), this study suggests that an alternative promoter for the short isoform evolved at the MEST gene locus in the common ancestor of mammals. In the tammar, the short isoform of MEST shared the putative promoter CpG island with an antisense lncRNA previously identified in humans and an isoform of a neighbouring gene CEP41. The antisense lncRNA was expressed in tammar sperm, as seen in humans. This suggested that the conserved lncRNA might be important in the establishment of MEST imprinting in therian mammals, but it was not imprinted in the tammar. In contrast to previous studies, this study shows that MEST is not imprinted in marsupials. MEST imprinting in eutherians, therefore must have occurred after the marsupial-eutherian split with the acquisition of a key epigenetic imprinting control region, the differentially methylated CpG islands between the parental alleles.


Assuntos
Impressão Genômica , Macropodidae , Proteínas , RNA Longo não Codificante , Animais , Feminino , Humanos , Masculino , Camundongos , Gravidez , Metilação de DNA , Eutérios/genética , Eutérios/metabolismo , Macropodidae/genética , Macropodidae/metabolismo , Placenta/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas/genética , Proteínas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Sêmen/metabolismo
8.
Mol Biol Evol ; 39(1)2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34865126

RESUMO

Chromosome rearrangements can result in the rapid evolution of hybrid incompatibilities. Robertsonian fusions, particularly those with monobrachial homology, can drive reproductive isolation amongst recently diverged taxa. The recent radiation of rock-wallabies (genus Petrogale) is an important model to explore the role of Robertsonian fusions in speciation. Here, we pursue that goal using an extensive sampling of populations and genomes of Petrogale from north-eastern Australia. In contrast to previous assessments using mitochondrial DNA or nuclear microsatellite loci, genomic data are able to separate the most closely related species and to resolve their divergence histories. Both phylogenetic and population genetic analyses indicate introgression between two species that differ by a single Robertsonian fusion. Based on the available data, there is also evidence for introgression between two species which share complex chromosomal rearrangements. However, the remaining results show no consistent signature of introgression amongst species pairs and where evident, indicate generally low introgression overall. X-linked loci have elevated divergence compared with autosomal loci indicating a potential role for genic evolution to produce reproductive isolation in concert with chromosome change. Our results highlight the value of genome scale data in evaluating the role of Robertsonian fusions and structural variation in divergence, speciation, and patterns of molecular evolution.


Assuntos
Macropodidae , Isolamento Reprodutivo , Animais , Cromossomos/genética , DNA Mitocondrial/genética , Macropodidae/genética , Filogenia
9.
Genome ; 65(5): 277-286, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35030050

RESUMO

An albino infant wallaby was born to a mother with wild-type body color. PCR and sequencing analyses of TYR (encoding tyrosinase, which is essential for melanin biosynthesis) of this albino wallaby revealed a 7.1-kb-long DNA fragment inserted in the first exon. Since the fragment carried long terminal repeats, we assumed it to be a copy of an endogenous retrovirus, which we named walb. We cloned other walb copies residing in the genomes of this species and of another wallaby species. The copies exhibited length variation, and the longest copy (>8.0 kb) contained open reading frames whose deduced amino acid sequences were well aligned with those of gag, pol, and env of retroviruses. It is unknown through which of the following likely processes the walb copy was inserted into TYR: endogenization (infection of a germline cell by an exogenous virus), reinfection (infection by a virus produced from a previously endogenized provirus), or retrotransposition (intracellular relocation of a provirus). In any case, the insertion into TYR is considered to have been a recent event on an evolutionary timescale because albino mutant alleles generally do not persist for long because of their deleterious effects in wild circumstances.


Assuntos
Retrovirus Endógenos , Sequência de Aminoácidos , Animais , Retrovirus Endógenos/genética , Macropodidae/genética , Provírus/genética , Sequências Repetidas Terminais
10.
Reproduction ; 161(3): 333-341, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33486468

RESUMO

Male germ cells undergo two consecutive processes - pre-spermatogenesis and spermatogenesis - to generate mature sperm. In eutherian mammals, epigenetic information such as DNA methylation is dynamically reprogrammed during pre-spermatogenesis, before and during mitotic arrest. In mice, by the time germ cells resume mitosis, the majority of DNA methylation is reprogrammed. The tammar wallaby has a similar pattern of germ cell global DNA methylation reprogramming to that of the mouse during early pre-spermatogenesis. However, early male germline development in the tammar or in any marsupial has not been described previously, so it is unknown whether this is a general feature regulating male germline development or a more recent phenomenon in mammalian evolutionary history. To answer this, we examined germ cell nuclear morphology and mitotic arrest during male germline development in the tammar wallaby (Macropus eugenii), a marsupial that diverged from mice and humans around 160 million years ago. Tammar pro-spermatogonia proliferated after birth and entered mitotic arrest after day 30 postpartum (pp). At this time, they began moving towards the periphery of the testis cords and their nuclear size increased. Germ cells increased in number after day 100 pp which is the time that DNA methylation is known to be re-established in the tammar. This is similar to the pattern observed in the mouse, suggesting that resumption of germ cell mitosis and the timing of DNA methylation reprogramming are correlated and conserved across mammals and over long evolutionary timescales.


Assuntos
Células Germinativas , Macropodidae , Animais , Núcleo Celular , Metilação de DNA , Feminino , Macropodidae/genética , Masculino , Camundongos , Espermatozoides
11.
Syst Biol ; 68(3): 520-537, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30481358

RESUMO

Combined "total evidence" analysis of molecular and morphological data offers the opportunity to objectively merge fossils into the tree of life, and challenges the primacy of solely DNA based phylogenetic and dating inference, even among modern taxa. To investigate the relative utility of DNA, morphology, and total evidence for evolutionary inference, we sequenced the first near-complete mitochondrial genomes from extinct Australian megafauna: a 40-50 thousand year old giant short-faced kangaroo (Simosthenurus occidentalis) and giant wallaby (Protemnodon anak). We analyzed the ancient DNA and fossil data alongside comparable data from extant species to infer phylogeny, divergence times, and ancestral body mass among macropods (kangaroos and wallabies). Our results confirm a close relationship between Protemnodon and the iconic kangaroo genus complex "Macropus", and unite the giant Simothenurus with the hare-sized Lagostrophus fasciatus (banded hare-wallaby), suggesting that the latter is the closest living link to the once diverse sthenurine kangaroo radiation. We find that large body size evolved multiple times among kangaroos, coincident with expansion of open woodland habitats beginning in the Late Miocene. In addition, our results suggest that morphological data mislead macropod phylogeny reconstruction and in turn can distort total evidence estimation of divergence dates. However, a novel result with potentially broad application is that the accuracy and precision of reconstructing ancestral body mass was improved by tracing body mass on morphological branch lengths. This is likely due to positive allometric correlation between morphological and body size variation-a relationship that may be masked or even misleadingly inverted with the temporal or molecular branch lengths that typically underpin ancestral body size reconstruction. Our study supports complementary roles for DNA and morphology in evolutionary inference, and opens a new window into the evolution of Australia's unique marsupial fauna.


Assuntos
DNA/genética , Fósseis/anatomia & histologia , Macropodidae/classificação , Filogenia , Animais , Classificação , DNA Antigo , Macropodidae/anatomia & histologia , Macropodidae/genética
12.
BMC Bioinformatics ; 20(1): 654, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31829137

RESUMO

BACKGROUND: In short-read DNA sequencing experiments, the read coverage is a key parameter to successfully assemble the reads and reconstruct the sequence of the input DNA. When coverage is very low, the original sequence reconstruction from the reads can be difficult because of the occurrence of uncovered gaps. Reference guided assembly can then improve these assemblies. However, when the available reference is phylogenetically distant from the sequencing reads, the mapping rate of the reads can be extremely low. Some recent improvements in read mapping approaches aim at modifying the reference according to the reads dynamically. Such approaches can significantly improve the alignment rate of the reads onto distant references but the processing of insertions and deletions remains challenging. RESULTS: Here, we introduce a new algorithm to update the reference sequence according to previously aligned reads. Substitutions, insertions and deletions are performed in the reference sequence dynamically. We evaluate this approach to assemble a western-grey kangaroo mitochondrial amplicon. Our results show that more reads can be aligned and that this method produces assemblies of length comparable to the truth while limiting error rate when classic approaches fail to recover the correct length. Finally, we discuss how the core algorithm of this method could be improved and combined with other approaches to analyse larger genomic sequences. CONCLUSIONS: We introduced an algorithm to perform dynamic alignment of reads on a distant reference. We showed that such approach can improve the reconstruction of an amplicon compared to classically used bioinformatic pipelines. Although not portable to genomic scale in the current form, we suggested several improvements to be investigated to make this method more flexible and allow dynamic alignment to be used for large genome assemblies.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Aprendizado de Máquina , Algoritmos , Animais , Sequência de Bases , Genoma Mitocondrial , Macropodidae/genética , Nucleotídeos/genética
13.
Biol Reprod ; 99(4): 806-816, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29767687

RESUMO

Environmental endocrine disruptors (EEDs) that affect androgen or estrogen activity may disrupt gene regulation during phallus development to cause hypospadias or a masculinized clitoris. We treated developing male tammar wallabies with estrogen and females with androgen from day 20-40 postpartum (pp) during the androgen imprinting window of sensitivity. Estrogen inhibited phallus elongation but had no effect on urethral closure and did not significantly depress testicular androgen synthesis. Androgen treatment in females did not promote phallus elongation but initiated urethral closure. Phalluses were collected for transcriptome sequencing at day 50 pp when they first become sexually dimorphic to examine changes in two signaling pathways, sonic hedgehog (SHH) and wingless-type MMTV integration site family (WNT)/ß-catenin. SHH mRNA and ß-catenin were predominantly expressed in the urethral epithelium in the tammar phallus, as in eutherian mammals. Estrogen treatment and castration of males induced an upregulation of SHH, while androgen treatment downregulated SHH. These effects appear to be direct since we detected putative estrogen receptor α (ERα) and androgen receptor (AR) binding sites near SHH. WNT5A, like SHH, was downregulated by androgen, while WNT4 was upregulated in female phalluses after androgen treatment. After estrogen treatment, WIF1 and WNT7A were both downregulated in male phalluses. After castration, WNT9A was upregulated. These results suggest that SHH and WNT pathways are regulated by both estrogen and androgen to direct the proliferation and elongation of the phallus during differentiation. Their response to exogenous hormones makes these genes potential targets of EEDs in the etiology of abnormal phallus development including hypospadias.


Assuntos
Macropodidae/crescimento & desenvolvimento , Macropodidae/genética , Pênis/crescimento & desenvolvimento , Pênis/metabolismo , Transdução de Sinais/genética , Uretra/crescimento & desenvolvimento , Uretra/metabolismo , Androgênios/metabolismo , Animais , Disruptores Endócrinos/toxicidade , Estrogênios/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Genitália Feminina/efeitos dos fármacos , Genitália Feminina/crescimento & desenvolvimento , Genitália Feminina/metabolismo , Genitália Masculina/efeitos dos fármacos , Genitália Masculina/crescimento & desenvolvimento , Genitália Masculina/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Macropodidae/metabolismo , Masculino , Pênis/efeitos dos fármacos , Diferenciação Sexual/efeitos dos fármacos , Diferenciação Sexual/genética , Diferenciação Sexual/fisiologia , Transdução de Sinais/efeitos dos fármacos , Uretra/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
14.
Mol Phylogenet Evol ; 127: 589-599, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29807156

RESUMO

Amongst the Australasian kangaroos and wallabies (Macropodidae) one anomalous genus, the tree-kangaroos, Dendrolagus, has secondarily returned to arboreality. Modern tree-kangaroos are confined to the wet tropical forests of north Queensland, Australia (2 species) and New Guinea (8 species). Due to their behavior, distribution and habitat most species are poorly known and our understanding of the evolutionary history and systematics of the genus is limited and controversial. We obtained tissue samples from 36 individual Dendrolagus including representatives from 14 of the 17 currently recognised or proposed subspecies and generated DNA sequence data from three mitochondrial (3116 bp) and five nuclear (4097 bp) loci. Phylogenetic analysis of these multi-locus data resolved long-standing questions regarding inter-relationships within Dendrolagus. The presence of a paraphyletic ancestral long-footed and derived monophyletic short-footed group was confirmed. Six major lineages were identified: one in Australia (D. lumholtzi, D. bennettianus) and five in New Guinea (D. inustus, D. ursinus, a Goodfellow's group, D. mbaiso and a Doria's group). Two major episodes of diversification within Dendrolagus were identified: the first during the late Miocene/early Pliocene associated with orogenic processes in New Guinea and the second mostly during the early Pleistocene associated with the intensification of climatic cycling. All sampled subspecies showed high levels of genetic divergence and currently recognized species within both the Doria's and Goodfellow's groups were paraphyletic indicating that adjustments to current taxonomy are warranted.


Assuntos
Macropodidae/classificação , Animais , Biodiversidade , Evolução Biológica , Macropodidae/genética , Nova Guiné , Filogenia , Análise de Sequência de DNA
15.
Chromosoma ; 125(4): 633-44, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27255308

RESUMO

Chromosome rearrangements have been implicated in diseases, such as cancer, and speciation, but it remains unclear whether rearrangements are causal or merely a consequence of these processes. Two marsupial families with very different rates of karyotype evolution provide excellent models in which to study the role of chromosome rearrangements in a disease and evolutionary context. The speciose family Dasyuridae displays remarkable karyotypic conservation, with all species examined to date possessing nearly identical karyotypes. Despite the seemingly high degree of chromosome stability within this family, they appear prone to developing tumours, including transmissible devil facial tumours. In contrast, chromosome rearrangements have been frequent in the evolution of the species-rich family Macropodidae, which displays a high level of karyotypic diversity. In particular, the genus Petrogale (rock-wallabies) displays an extraordinary level of chromosome rearrangement among species. For six parapatric Petrogale species, it appears that speciation has essentially been caught in the act, providing an opportunity to determine whether chromosomal rearrangements are a cause or consequence of speciation in this system. This review highlights the reasons that these two marsupial families are excellent models for testing hypotheses for hotspots of chromosome rearrangement and deciphering the role of chromosome rearrangements in disease and speciation.


Assuntos
Aberrações Cromossômicas , Quebra Cromossômica , Cromossomos de Mamíferos/genética , Rearranjo Gênico/genética , Macropodidae/genética , Neoplasias/genética , Animais , Evolução Biológica , Modelos Animais de Doenças , Feminino , Cariótipo , Masculino
16.
Immunogenetics ; 69(3): 133-143, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27838759

RESUMO

Defensins comprise a family of cysteine-rich antimicrobial peptides with important roles in innate and adaptive immune defense in vertebrates. We characterized alpha and beta defensin genes in three Australian marsupials: the Tasmanian devil (Sarcophilus harrisii), koala (Phascolarctos cinereus), and tammar wallaby (Macropus eugenii) and identified 48, 34, and 39 defensins, respectively. One hundred and twelve have the classical antimicrobial peptides characteristics required for pathogen membrane targeting, including cationic charge (between 1+ and 15+) and a high proportion of hydrophobic residues (>30%). Phylogenetic analysis shows that gene duplication has driven unique and species-specific expansions of devil, koala, and tammar wallaby beta defensins and devil alpha defensins. Defensin genes are arranged in three genomic clusters in marsupials, whereas further duplications and translocations have occurred in eutherians resulting in four and five gene clusters in mice and humans, respectively. Marsupial defensins are generally under purifying selection, particularly residues essential for defensin structural stability. Certain hydrophobic or positively charged sites, predominantly found in the defensin loop, are positively selected, which may have functional significance in defensin-target interaction and membrane insertion.


Assuntos
Anti-Infecciosos/metabolismo , Defensinas/genética , Genoma , Macropodidae/genética , Marsupiais/genética , Phascolarctidae/genética , Seleção Genética/genética , Animais , Austrália , Evolução Molecular , Duplicação Gênica , Genômica , Camundongos , Filogenia , Especificidade da Espécie
17.
Mol Biol Evol ; 32(3): 574-84, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25526902

RESUMO

Understanding the evolution of Australia's extinct marsupial megafauna has been hindered by a relatively incomplete fossil record and convergent or highly specialized morphology, which confound phylogenetic analyses. Further, the harsh Australian climate and early date of most megafaunal extinctions (39-52 ka) means that the vast majority of fossil remains are unsuitable for ancient DNA analyses. Here, we apply cross-species DNA capture to fossils from relatively high latitude, high altitude caves in Tasmania. Using low-stringency hybridization and high-throughput sequencing, we were able to retrieve mitochondrial sequences from two extinct megafaunal macropodid species. The two specimens, Simosthenurus occidentalis (giant short-faced kangaroo) and Protemnodon anak (giant wallaby), have been radiocarbon dated to 46-50 and 40-45 ka, respectively. This is significantly older than any Australian fossil that has previously yielded DNA sequence information. Processing the raw sequence data from these samples posed a bioinformatic challenge due to the poor preservation of DNA. We explored several approaches in order to maximize the signal-to-noise ratio in retained sequencing reads. Our findings demonstrate the critical importance of adopting stringent processing criteria when distant outgroups are used as references for mapping highly fragmented DNA. Based on the most stringent nucleotide data sets (879 bp for S. occidentalis and 2,383 bp for P. anak), total-evidence phylogenetic analyses confirm that macropodids consist of three primary lineages: Sthenurines such as Simosthenurus (extinct short-faced kangaroos), the macropodines (all other wallabies and kangaroos), and the enigmatic living banded hare-wallaby Lagostrophus fasciatus (Lagostrophinae). Protemnodon emerges as a close relative of Macropus (large living kangaroos), a position not supported by recent morphological phylogenetic analyses.


Assuntos
DNA Mitocondrial/genética , Fósseis , Macropodidae/classificação , Macropodidae/genética , Animais , Cavernas , Evolução Molecular , Filogenia , Análise de Sequência de DNA , Tasmânia
18.
Development ; 140(5): 965-75, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23344710

RESUMO

Early cell lineage specification in eutherian mammals results in the formation of a pluripotent inner cell mass (ICM) and trophoblast. By contrast, marsupials have no ICM. Here, we present the first molecular analysis of mechanisms of early cell lineage specification in a marsupial, the tammar wallaby. There was no overt differential localisation of key lineage-specific transcription factors in cleavage and early unilaminar blastocyst stages. Pluriblast cells (equivalent to the ICM) became distinguishable from trophoblast cells by differential expression of POU5F1 and, to a greater extent, POU2, a paralogue of POU5F1. Unlike in the mouse, pluriblast-trophoblast differentiation coincided with a global nuclear-to-cytoplasmic transition of CDX2 localisation. Also unlike in the mouse, Hippo pathway factors YAP and WWTR1 showed mutually distinct localisation patterns that suggest non-redundant roles. NANOG and GATA6 were conserved as markers of epiblast and hypoblast, respectively, but some differences to the mouse were found in their mode of differentiation. Our results suggest that there is considerable evolutionary plasticity in the mechanisms regulating early lineage specification in mammals.


Assuntos
Padronização Corporal , Linhagem da Célula , Mamíferos , Marsupiais/embriologia , Animais , Padronização Corporal/genética , Linhagem da Célula/genética , Linhagem da Célula/fisiologia , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Variação Genética/fisiologia , Macropodidae/embriologia , Macropodidae/genética , Macropodidae/metabolismo , Macropodidae/fisiologia , Mamíferos/embriologia , Mamíferos/genética , Mamíferos/metabolismo , Mamíferos/fisiologia , Marsupiais/genética , Marsupiais/metabolismo , Camundongos , Especificidade de Órgãos/genética , Gravidez , Transdução de Sinais/genética , Fatores de Tempo , Distribuição Tecidual , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Cytokine ; 88: 37-44, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27552114

RESUMO

Interleukin-10 is an immunomodulatory cytokine that has been implicated, along with IFN-γ, in the disease sequelae of mycobacterial infection. In order to investigate the role of IL-10 in marsupial disease models we sequenced and characterised the IL10 gene in the tammar wallaby (Macropus eugenii) and rufous hare-wallaby (Lagorchestes hirsutus). An isoform IL-10Δ3, in which an in-frame deletion of exon 3 occurs, was discovered in both macropod species. Analysis of wallaby and other reported marsupial IL-10 homologs suggests that while marsupial IL-10 is comparable to that of human IL-10, the predicted IL-10Δ3 protein may play a more complicated role in the modulation of IL-10-directed responses. Expression of the canonical gene and splicing variant was confirmed in both wallabies, and the rufous hare-wallaby showed differential expression across lymph node, spleen and liver, with isoform expression detected in the lymph node. This characterisation and expression of IL-10 in de novo tissues provides a basis for further study into the role of IL-10 in disease models in marsupials.


Assuntos
Sequência de Bases , Éxons/imunologia , Regulação da Expressão Gênica/imunologia , Interleucina-10 , Macropodidae , Deleção de Sequência , Animais , Interleucina-10/genética , Interleucina-10/imunologia , Macropodidae/genética , Macropodidae/imunologia , Especificidade de Órgãos , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia
20.
Int J Immunogenet ; 43(4): 209-17, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27306193

RESUMO

In mammals, interleukin-21 is a member of the common gamma chain cytokine family that also includes IL-2, IL-4, IL-7, IL-9 and IL-15. IL-21 has pleiotropic effects on both myeloid and lymphoid immune cells and as a consequence, the biological actions of IL-21 are broad: regulating both innate and adaptive immune responses and playing a pivotal role in antiviral, inflammatory and antitumour cellular responses. While IL-21 genes have been characterized in mammals, birds, fish and amphibians, there are no reports for any marsupial species to date. We characterized the expressed IL-21 gene from immune tissues of two macropod species, the tammar wallaby (Macropus eugenii), a model macropod, and the closely related endangered bridled nailtail wallaby (Onychogalea fraenata). The open reading frame of macropod IL-21 is 462 nucleotides in length and encodes a 153-mer putative protein that has 46% identity with human IL-21. Despite the somewhat low amino acid conservation with other mammals, structural elements and residues essential for IL-21 conformation and receptor association were conserved in the macropod IL-21 predicted peptides. The detection of IL-21 gene expression in T-cell-enriched tissues, combined with analysis of the promotor region of the tammar wallaby gene, suggests that macropod IL-21 is expressed in stimulated T cells but is not readily detected in other cells and tissues. The similarity of gene expression profile and functionally important amino acid residues to eutherian IL-21 makes it unlikely that the differences in B- and T-cell responses that are reported for some marsupial species are due to a lack of important functional residues or IL-21 gene expression in this group of mammals.


Assuntos
Interleucinas/genética , Ativação Linfocitária/imunologia , Macropodidae/imunologia , Sequência de Aminoácidos/genética , Animais , Linfócitos B/imunologia , Regulação da Expressão Gênica/imunologia , Humanos , Interleucinas/biossíntese , Interleucinas/imunologia , Ativação Linfocitária/genética , Macropodidae/genética , Fases de Leitura Aberta , Regiões Promotoras Genéticas , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA