Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Clin Microbiol Rev ; 37(2): e0003423, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38690871

RESUMO

SUMMARYIn 2023, the World Health Organization designated eumycetoma causative agents as high-priority pathogens on its list of fungal priority pathogens. Despite this recognition, a comprehensive understanding of these causative agents is lacking, and potential variations in clinical manifestations or therapeutic responses remain unclear. In this review, 12,379 eumycetoma cases were reviewed. In total, 69 different fungal species were identified as causative agents. However, some were only identified once, and there was no supporting evidence that they were indeed present in the grain. Madurella mycetomatis was by far the most commonly reported fungal causative agent. In most studies, identification of the fungus at the species level was based on culture or histology, which was prone to misidentifications. The newly used molecular identification tools identified new causative agents. Clinically, no differences were reported in the appearance of the lesion, but variations in mycetoma grain formation and antifungal susceptibility were observed. Although attempts were made to explore the differences in clinical outcomes based on antifungal susceptibility, the lack of large clinical trials and the inclusion of surgery as standard treatment posed challenges in drawing definitive conclusions. Limited case series suggested that eumycetoma cases caused by Fusarium species were less responsive to treatment than those caused by Madurella mycetomatis. However, further research is imperative for a comprehensive understanding.


Assuntos
Antifúngicos , Micetoma , Micetoma/microbiologia , Micetoma/tratamento farmacológico , Micetoma/diagnóstico , Humanos , Antifúngicos/uso terapêutico , Antifúngicos/farmacologia , Madurella/efeitos dos fármacos , Resultado do Tratamento
2.
Antimicrob Agents Chemother ; 68(5): e0161223, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38602413

RESUMO

Mycetoma is a devastating neglected tropical infection of the subcutaneous tissues. It is caused by fungal and bacterial pathogens recognized as eumycetoma and actinomycetoma, respectively. Mycetoma treatment involves diagnosing the causative microorganism as a prerequisite to prescribing a proper medication. Current therapy of fungal eumycetoma causative agents, such as Madurella mycetomatis, consists of long-term antifungal medication with itraconazole followed by surgery, yet with usually unsatisfactory clinical outcomes. Actinomycetoma, on the contrary, usually responds to treatment with co-trimoxazole and amikacin. Therefore, there is a pressing need to discover novel broad-spectrum antimicrobial agents to circumvent the time-consuming and costly diagnosis. Using the resazurin assay, a series of 23 naphthylisoquinoline (NIQ) alkaloids and related naphthoquinones were subjected to in vitro screening against two fungal strains of M. mycetomatis and three bacterial strains of Actinomadura madurae and A. syzygii. Seven NIQs, mostly dimers, showed promising in vitro activities against at least one strain of the mycetoma-causative pathogens, while the naphthoquinones did not show any activity. A synthetic NIQ dimer, 8,8'''-O,O-dimethylmichellamine A (18), inhibited all tested fungal and bacterial strains (IC50 = 2.81-12.07 µg/mL). One of the dimeric NIQs, michellamine B (14), inhibited a strain of M. mycetomatis and significantly enhanced the survival rate of Galleria mellonella larvae infected with M. mycetomatis at concentrations of 1 and 4 µg/mL, without being toxic to the uninfected larvae. As a result, broad-spectrum dimeric NIQs like 14 and 18 with antimicrobial activity are considered hit compounds that could be worth further optimization to develop novel lead antimycetomal agents.


Assuntos
Alcaloides , Antifúngicos , Madurella , Testes de Sensibilidade Microbiana , Micetoma , Micetoma/tratamento farmacológico , Micetoma/microbiologia , Antifúngicos/farmacologia , Animais , Alcaloides/farmacologia , Alcaloides/química , Madurella/efeitos dos fármacos , Isoquinolinas/farmacologia , Actinomadura/efeitos dos fármacos , Naftoquinonas/farmacologia , Larva/microbiologia , Larva/efeitos dos fármacos , Mariposas/microbiologia
3.
Int J Mol Sci ; 25(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38892422

RESUMO

OBJECTIVES: Eumycetoma is a neglected tropical disease (NTD) characterized by subcutaneous lesions and the formation of grains. Attempts to treat eumycetoma involve a combination of antifungal treatment and surgery, although the outcome is frequently disappointing. Therefore, there is a need to identify novel antifungal drugs to treat eumycetoma. In this respect, Medicines for Malaria Venture (MMV) has assembled libraries of compounds for researchers to use in drug discovery research against NTD. Therefore, we screened two MMVOpen compound libraries to identify novel leads for eumycetoma. METHODS: A total of 400 compounds from the COVID Box and the Global Health Priority Box were screened in vitro at 100 µM and 25 µM against the most common causative agents of eumycetoma, namely Madurella mycetomatis and Falciformispora senegalensis, and the resulting IC50 and MIC50 values were obtained. Compounds with an IC50 < 8 µM were identified for possible in vivo efficacy studies using an M. mycetomatis grain model in Galleria mellonella larvae. RESULTS: Out of the 400 compounds, 22 were able to inhibit both M. mycetomatis and F. senegalensis growth at 100 µM and 25 µM, with compounds MMV1593278, MMV020335, and MMV1804559 being selected for in vivo testing. Of these three, only the pyrazolopyrimidine derivative MMV1804559 was able to prolong the survival of M. mycetomatis-infected G. mellonella larvae. Furthermore, the grains in MMV1804559-treated larvae were significantly smaller compared to the PBS-treated group. CONCLUSION: MMV1804559 shows promising in vitro and in vivo activity against M. mycetomatis.


Assuntos
Antifúngicos , Madurella , Micetoma , Madurella/efeitos dos fármacos , Micetoma/tratamento farmacológico , Micetoma/microbiologia , Antifúngicos/farmacologia , Animais , Testes de Sensibilidade Microbiana , Larva/efeitos dos fármacos , Larva/microbiologia , Humanos
4.
Molecules ; 29(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38675665

RESUMO

In the search for new bioactive agents against the infectious pathogen responsible for the neglected tropical disease (NTD) mycetoma, we tested a collection of 27 essential oils (EOs) in vitro against Madurella mycetomatis, the primary pathogen responsible for the fungal form of mycetoma, termed eumycetoma. Among this series, the EO of Santalum album (Santalaceae), i.e., East Indian sandalwood oil, stood out prominently with the most potent inhibition in vitro. We, therefore, directed our research toward 15 EOs of Santalum species of different geographical origins, along with two samples of EOs from other plant species often commercialized as "sandalwood oils". Most of these EOs displayed similar strong activity against M. mycetomatis in vitro. All tested oils were thoroughly analyzed by GC-QTOF MS and most of their constituents were identified. Separation of the sandalwood oil into the fractions of sesquiterpene hydrocarbons and alcohols showed that its activity is associated with the sesquiterpene alcohols. The major constituents, the sesquiterpene alcohols (Z)-α- and (Z)-ß-santalol were isolated from the S. album oil by column chromatography on AgNO3-coated silica. They were tested as isolated compounds against the fungus, and (Z)-α-santalol was about two times more active than the ß-isomer.


Assuntos
Madurella , Micetoma , Óleos Voláteis , Óleos de Plantas , Santalum , Sesquiterpenos , Madurella/efeitos dos fármacos , Óleos de Plantas/farmacologia , Óleos de Plantas/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Micetoma/microbiologia , Micetoma/tratamento farmacológico , Santalum/química , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Antifúngicos/farmacologia , Antifúngicos/química , Testes de Sensibilidade Microbiana
5.
Med Mycol ; 56(4): 469-478, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28992315

RESUMO

Mycetoma is a tropical neglected disease characterized by large subcutaneous lesions in which the causative organisms reside in the form of grains. The most common causative agent is Madurella mycetomatis. Antifungal therapy often fails due to these grains, but to identify novel treatment options has been difficult since grains do not form in vitro. We recently used Galleria mellonella larvae to develop an in vivo grain model. In the current study, we set out to determine the therapeutic efficacy of commonly used antifungal agents in this larval model. Pharmacokinetics of ketoconazole, itraconazole, voriconazole, posaconazole, amphotericin B, and terbinafine were determined in the hemolymph of G. mellonella larvae. Antifungal therapy was given either therapeutically or prophylactic on three consecutive days in therapeutically equivalent dosages. Survival was monitored for 10 days and colony-forming units (cfu) and melanization were determined on day 3. Measurable concentrations of antifungal agents were found in the hemolymph of the larvae. None of the azole antifungal agents prolonged survival when given therapeutically or prophylactically. Amphotericin B and terbinafine did prolong survival, even at concentrations below the minimal inhibitory concentration of M. mycetomatis. The cfu and melanization did not differ between any of the treated groups and phosphate-buffered saline (PBS) treated groups. Grains were still present in surviving larvae but appeared to be encapsulated. This study demonstrated for the first time a comparison between the efficacy of different antifungal agents toward grains of M. mycetomatis. It appeared that amphotericin B and terbinafine were able to prolong larval survival.


Assuntos
Modelos Animais de Doenças , Madurella/efeitos dos fármacos , Mariposas/microbiologia , Anfotericina B/farmacologia , Animais , Antifúngicos/farmacologia , Larva/microbiologia , Testes de Sensibilidade Microbiana , Terbinafina/farmacologia
6.
PLoS Negl Trop Dis ; 18(4): e0012092, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38578808

RESUMO

Madurella mycetomatis is the main cause of mycetoma, a chronic granulomatous infection for which currently no adequate therapy is available. To improve therapy, more knowledge on a molecular level is required to understand how M. mycetomatis is able to cause this disease. However, the genetic toolbox for M. mycetomatis is limited. To date, no method is available to genetically modify M. mycetomatis. In this paper, a protoplast-mediated transformation protocol was successfully developed for this fungal species, using hygromycin as a selection marker. Furthermore, using this method, a cytoplasmic-GFP-expressing M. mycetomatis strain was created. The reported methodology will be invaluable to explore the pathogenicity of M. mycetomatis and to develop reporter strains which can be useful in drug discovery as well as in genetic studies.


Assuntos
Higromicina B , Madurella , Protoplastos , Transformação Genética , Higromicina B/farmacologia , Higromicina B/análogos & derivados , Madurella/genética , Madurella/efeitos dos fármacos , Farmacorresistência Fúngica/genética , Micetoma/microbiologia , Micetoma/tratamento farmacológico , Cinamatos/farmacologia
7.
Eur J Med Chem ; 277: 116720, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39142148

RESUMO

Mycetoma is a neglected invasive infection endemic in tropical and subtropical regions, presenting as a chronic subcutaneous inflammatory mass that can spread to deeper structures, leading to deformities, disabilities, and potentially mortality. The current treatment of eumycetoma, the fungal form of mycetoma, involves antifungal agents, such as itraconazole, combined with surgical intervention. However, this approach has limited success, with low cure rates and a high risk of recurrence. This study addresses to the urgent need for more effective therapeutics by designing and synthesising 47 diversely pharmacomodulated imidazo [1,2-b]pyridazine derivatives using a simple synthetic pathway with good yields and purity. Of these, 17 showed promising in vitro activity against Madurella mycetomatis, the prime causative agent of eumycetoma, with IC50 ≤ 5 µM and demonstrated significantly lower cytotoxicity compared to standard treatments in NIH-3T3 fibroblasts. Notably, compound 14d exhibited an excellent activity with an IC50 of 0.9 µM, in the same order then itraconazole (IC50 = 1.1 µM), and achieved a favourable selectivity index of 16 compared to 0.8 for itraconazole. These promising results warrant further research to evaluate the clinical potential of these novel compounds as safer, more effective treatments for eumycetoma, thus addressing a profound gap in current therapeutic strategies.


Assuntos
Antifúngicos , Imidazóis , Micetoma , Doenças Negligenciadas , Piridazinas , Piridazinas/farmacologia , Piridazinas/química , Piridazinas/síntese química , Micetoma/tratamento farmacológico , Camundongos , Animais , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Imidazóis/química , Imidazóis/farmacologia , Imidazóis/síntese química , Relação Estrutura-Atividade , Doenças Negligenciadas/tratamento farmacológico , Estrutura Molecular , Madurella/efeitos dos fármacos , Células NIH 3T3 , Testes de Sensibilidade Microbiana , Relação Dose-Resposta a Droga , Humanos , Sobrevivência Celular/efeitos dos fármacos
8.
Antimicrob Agents Chemother ; 56(11): 6054-6, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22964246

RESUMO

Currently, therapy of black-grain mycetoma caused by Madurella mycetomatis consists of extensive debridement of the infected tissue combined with prolonged antifungal therapy with ketoconazole or itraconazole. In the present study, the in vitro activity of the new triazole isavuconazole toward M. mycetomatis was evaluated. Isavuconazole appeared to have high activity against M. mycetomatis, with MICs ranging from ≤0.016 to 0.125 µg/ml. Due to its favorable pharmacokinetics, isavuconazole could be a promising antifungal agent in the treatment of mycetoma.


Assuntos
Antifúngicos/farmacologia , Itraconazol/farmacologia , Cetoconazol/farmacologia , Madurella/efeitos dos fármacos , Nitrilas/farmacologia , Piridinas/farmacologia , Triazóis/farmacologia , Humanos , Madurella/crescimento & desenvolvimento , Madurella/isolamento & purificação , Testes de Sensibilidade Microbiana , Micetoma/tratamento farmacológico , Micetoma/microbiologia
9.
J Clin Microbiol ; 50(3): 988-94, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22205798

RESUMO

A new species of nonsporulating fungus, isolated in a case of black-grain mycetoma in Sudan, is described as Madurella fahalii. The species is characterized by phenotypic and molecular criteria. Multigene phylogenies based on the ribosomal DNA (rDNA) internal transcribed spacer (ITS), the partial ß-tubulin gene (BT2), and the RNA polymerase II subunit 2 gene (RPB2) indicate that M. fahalii is closely related to Madurella mycetomatis and M. pseudomycetomatis; the latter name is validated according to the rules of botanical nomenclature. Madurella ikedae was found to be synonymous with M. mycetomatis. An isolate from Indonesia was found to be different from all known species based on multilocus analysis and is described as Madurella tropicana. Madurella is nested within the order Sordariales, with Chaetomium as its nearest neighbor. Madurella fahalii has a relatively low optimum growth temperature (30°C) and is less susceptible to the azoles than other Madurella species, with voriconazole and posaconazole MICs of 1 µg/ml, a ketoconazole MIC of 2 µg/ml, and an itraconazole MIC of >16 µg/ml. Since eumycetoma is still treated only with azoles, correct species identification is important for the optimal choice of antifungal therapy.


Assuntos
Madurella/classificação , Madurella/isolamento & purificação , Micetoma/microbiologia , Antifúngicos/farmacologia , DNA Fúngico/química , DNA Fúngico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Proteínas Fúngicas/genética , Humanos , Perna (Membro)/patologia , Madurella/efeitos dos fármacos , Madurella/genética , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Dados de Sequência Molecular , Micetoma/patologia , Filogenia , Pirimidinas/farmacologia , RNA Polimerase II/genética , Análise de Sequência de DNA , Sudão , Triazóis/farmacologia , Tubulina (Proteína)/genética , Voriconazol
10.
PLoS Negl Trop Dis ; 16(2): e0010159, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35120131

RESUMO

Eumycetoma is a chronic subcutaneous neglected tropical disease that can be caused by more than 40 different fungal causative agents. The most common causative agents produce black grains and belong to the fungal orders Sordariales and Pleosporales. The current antifungal agents used to treat eumycetoma are itraconazole or terbinafine, however, their cure rates are low. To find novel drugs for eumycetoma, we screened 400 diverse drug-like molecules from the Pandemic Response Box against common eumycetoma causative agents as part of the Open Source Mycetoma initiative (MycetOS). 26 compounds were able to inhibit the growth of Madurella mycetomatis, Madurella pseudomycetomatis and Madurella tropicana, 26 compounds inhibited Falciformispora senegalensis and seven inhibited growth of Medicopsis romeroi in vitro. Four compounds were able to inhibit the growth of all five species of fungi tested. They are the benzimidazole carbamates fenbendazole and carbendazim, the 8-aminoquinolone derivative tafenoquine and MMV1578570. Minimal inhibitory concentrations were then determined for the compounds active against M. mycetomatis. Compounds showing potent activity in vitro were further tested in vivo. Fenbendazole, MMV1782387, ravuconazole and olorofim were able to significantly prolong Galleria mellonella larvae survival and are promising candidates to explore in mycetoma treatment and to also serve as scaffolds for medicinal chemistry optimisation in the search for novel antifungals to treat eumycetoma.


Assuntos
Antifúngicos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Micetoma/tratamento farmacológico , Acetamidas/farmacologia , Animais , Ascomicetos/efeitos dos fármacos , Descoberta de Drogas , Fenbendazol/farmacologia , Madurella/efeitos dos fármacos , Mariposas/microbiologia , Doenças Negligenciadas , Piperazinas/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Tiazóis/farmacologia , Triazóis/farmacologia
11.
Antimicrob Agents Chemother ; 55(4): 1771-3, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21263050

RESUMO

Presently, therapy of eumycetoma in Sudan is still based on surgery combined with prolonged ketoconazole therapy. This usually results in a poor clinical outcome. To determine if posaconazole and terbinafine could offer better therapeutic alternatives, the in vitro susceptibilities of 34 Madurella mycetomatis strains were determined. It appeared that posaconazole was highly active against M. mycetomatis but terbinafine was only moderately active. Since posaconazole has an excellent safety profile, it might provide an important alternative in mycetoma therapy.


Assuntos
Antifúngicos/farmacologia , Madurella/efeitos dos fármacos , Naftalenos/farmacologia , Triazóis/farmacologia , Itraconazol/farmacologia , Cetoconazol/farmacologia , Testes de Sensibilidade Microbiana , Terbinafina
12.
PLoS Negl Trop Dis ; 15(6): e0009488, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34106933

RESUMO

Mycetoma is a devastating neglected tropical infection of the subcutaneous tissue and most commonly caused by the fungus Madurella mycetomatis. Treatment of mycetoma consists of a combination of a long term antifungal treatment with itraconazole and surgery. However, treatment is associated with low success rates. Therefore, there is a need to identify novel treatments for mycetoma. CIN-102 is a synthetic partial copy of cinnamon oils with activity against many pathogenic bacteria and fungi. In this study we determined the in vitro activity of CIN-102 against 21 M. mycetomatis isolates and its in vivo efficacy in a M. mycetomatis infected Galleria mellonella larval model. In vitro, CIN-102 was active against M. mycetomatis with MICs ranging from 32 µg/mL to 512 µg/mL. 128 µg/mL was needed to inhibit the growth in 50% of tested isolates. In vivo, concentrations below the MIC of 40 mg/kg and 80 mg/kg CIN-102 prolonged larval survival, but higher concentrations of CIN-102 did not.


Assuntos
Antifúngicos/farmacologia , Benzoatos/farmacologia , Cinamatos/farmacologia , Cinnamomum zeylanicum/química , Madurella/efeitos dos fármacos , Micetoma/microbiologia , Terpenos/farmacologia , Animais , Benzoatos/síntese química , Cinamatos/síntese química , Combinação de Medicamentos , Sinergismo Farmacológico , Humanos , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Madurella/genética , Madurella/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Mariposas/microbiologia , Micetoma/tratamento farmacológico , Terpenos/síntese química
14.
Antimicrob Agents Chemother ; 54(6): 2738-40, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20350944

RESUMO

Eumycetoma caused by Madurella mycetomatis is treated surgically and with high doses of ketoconazole. Therapeutic responses are poor, and recurrent infections are common. In search of therapeutic alternatives in the treatment of mycetoma, we determined the in vitro susceptibilities of M. mycetomatis isolates against caspofungin, anidulafungin, and micafungin. As a comparator fungus, Aspergillus fumigatus was used. Minimal effective concentrations (MECs) and MICs were assessed and compared to those of ketoconazole. M. mycetomatis isolates were not susceptible to the echinocandins.


Assuntos
Antifúngicos/farmacologia , Equinocandinas/farmacologia , Madurella/efeitos dos fármacos , Micetoma/tratamento farmacológico , Micetoma/microbiologia , Anidulafungina , Aspergillus fumigatus/efeitos dos fármacos , Caspofungina , Farmacorresistência Fúngica , Humanos , Técnicas In Vitro , Lipopeptídeos/farmacologia , Madurella/isolamento & purificação , Micafungina , Testes de Sensibilidade Microbiana
15.
J Clin Microbiol ; 48(1): 251-7, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19923486

RESUMO

A case of black-grain mycetoma occurring on the lower jaw with an odontogenic origin, which to our knowledge is the first case reported in China, is presented here. The clinical manifestation, histopathological morphology, and microbiological features are described. The new species, Madurella pseudomycetomatis, isolated from the black grains discharged by this patient, was analyzed using sequence data of the multiloci of ribosomal DNA (rDNA) and its ability to ferment carbohydrate as well as morphology. The analyses of the internal transcribed spacer (ITS) region and the D1/D2 hypervariable region of the 28S ribosomal gene sequences support a new species designation. Antifungal susceptibility testing was conducted, indicating that Madurella pseudomycetomatis was highly susceptible to itraconazole, voriconazole, and amphotericin B; moderately susceptible to terbinafine; and resistant to fluconazole and flucytosine.


Assuntos
Doenças Maxilomandibulares/microbiologia , Madurella/classificação , Madurella/isolamento & purificação , Micetoma/diagnóstico , Micetoma/microbiologia , Adulto , Animais , Antifúngicos/farmacologia , China , DNA Fúngico/química , DNA Fúngico/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Modelos Animais de Doenças , Feminino , Genes de RNAr , Humanos , Madurella/efeitos dos fármacos , Madurella/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , RNA Fúngico/genética , RNA Ribossômico 28S/genética , Análise de Sequência de DNA
18.
PLoS Negl Trop Dis ; 12(4): e0006437, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29698504

RESUMO

Eumycetoma is a chronic infectious disease characterized by a large subcutaneous mass, often caused by the fungus Madurella mycetomatis. A combination of surgery and prolonged medication is needed to treat this infection with a success rate of only 30%. There is, therefore, an urgent need to find more effective drugs for the treatment of this disease. In this study, we screened 800 diverse drug-like molecules and identified 215 molecules that were active in vitro. Minimal inhibitory concentrations were determined for the 13 most active compounds. One of the most potent compounds, a fenarimol analogue for which a large analogue library is available, led to the screening of an additional 35 compounds for their in vitro activity against M. mycetomatis hyphae, rendering four further hit compounds. To assess the in vivo potency of these hit compounds, a Galleria mellonella larvae model infected with M. mycetomatis was used. Several of the compounds identified in vitro demonstrated promising efficacy in vivo in terms of prolonged larval survival and/or reduced fungal burden. The results presented in this paper are the starting point of an Open Source Mycetoma (MycetOS) approach in which members of the global scientific community are invited to participate and contribute as equal partners. We hope that this initiative, coupled with the promising new hits we have reported, will lead to progress in drug discovery for this most neglected of neglected tropical diseases.


Assuntos
Antifúngicos/uso terapêutico , Madurella/efeitos dos fármacos , Micetoma/tratamento farmacológico , Pirimidinas/uso terapêutico , Animais , Feminino , Hifas/efeitos dos fármacos , Larva/efeitos dos fármacos , Micetoma/microbiologia , Doenças Negligenciadas
19.
Rev Argent Microbiol ; 38(1): 13-8, 2006.
Artigo em Espanhol | MEDLINE | ID: mdl-16784127

RESUMO

This work presents clinical, microbiological and outcome data collected from 76 patients with mycetomas at the Muñiz Hospital from 1989 to 2004. Forty-nine patients were male and 27 female; the mean age was 43.4 years. The majority of the patients acquired the infection in Argentina: the most affected provinces were Santiago del Estero with 31 cases, and Chaco with 11; 8 cases came from other countries (Bolivia 6 and Paraguay 2). The mean evolution of the disease was 9.2 years. The most frequently observed sites were: feet 63 cases, ankles 3, and knees 2. Forty-eight patients had bone lesions and 5, adenomegalies. The following etiological agents were identified: Madurella grisea 29 cases, Actinomadura madurae 26, Scedosporium apiospermum 5, Nocardia brasiliensis 5, Acremonium spp. 4 (Acremonium falciforme 2, Acremonium kiliense 1, Acremonium recifei 1), Madurella mycetomatis 3, Fusarium solani 2, Nocardia asteroides 1 and Streptomyces somaliensis 1. The main drugs used in the treatments were ketoconazole and itraconazole for maduromycotic mycetomas, and cotrimoxazole associated with ciprofloxacin or amikacin for actinomycetic mycetoma. Six patients had to undergo amputation, 25 cases achieved complete clinical remission and 34 showed remarkable improvement.


Assuntos
Infecções por Actinomycetales/epidemiologia , Micetoma/epidemiologia , Actinomycetales/isolamento & purificação , Infecções por Actinomycetales/tratamento farmacológico , Infecções por Actinomycetales/microbiologia , Infecções por Actinomycetales/cirurgia , Adolescente , Adulto , Idoso , Doenças dos Trabalhadores Agrícolas/tratamento farmacológico , Doenças dos Trabalhadores Agrícolas/epidemiologia , Doenças dos Trabalhadores Agrícolas/microbiologia , Doenças dos Trabalhadores Agrícolas/cirurgia , Amputação Cirúrgica , Antibacterianos/uso terapêutico , Antifúngicos/uso terapêutico , Argentina/epidemiologia , Terapia Combinada , Feminino , Dermatoses do Pé/tratamento farmacológico , Dermatoses do Pé/epidemiologia , Dermatoses do Pé/microbiologia , Dermatoses do Pé/cirurgia , Fusarium , Humanos , Madurella/efeitos dos fármacos , Madurella/isolamento & purificação , Masculino , Pessoa de Meia-Idade , Fungos Mitospóricos/isolamento & purificação , Micetoma/tratamento farmacológico , Micetoma/microbiologia , Micetoma/cirurgia , Nocardiose/tratamento farmacológico , Nocardiose/epidemiologia , Nocardiose/microbiologia , Nocardiose/cirurgia , Osteíte/tratamento farmacológico , Osteíte/etiologia , Osteíte/microbiologia , Osteíte/cirurgia , Indução de Remissão , Estudos Retrospectivos , Resultado do Tratamento
20.
PLoS Negl Trop Dis ; 9(3): e0003488, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25768115

RESUMO

Eumycetoma is a debilitating chronic inflammatory fungal infection that exists worldwide but it is endemic in many tropical and subtropical regions. The major causative organism is the fungus Madurella mycetomatis. The current treatment of eumycetoma is suboptimal and characterized by low cure rate and high recurrence rates. Hence, an alternative therapy is needed to address this. Here we determined the antifungal activity of seven Sudanese medicinal plant species against Madurella mycetomatis. Of these, only three species; Boswellia papyrifera, Acacia nubica and Nigella sativa, showed some antifungal activity against M. mycetomatis and were further studied. Crude methanol, hexane and defatted methanol extracts of these species were tested for their antifungal activity. B. papyrifera had the highest antifungal activity (MIC50 of 1 ug/ml) and it was further fractionated. The crude methanol and the soluble ethyl acetate fractions of B. papyrifera showed some antifungal activity. The Gas-Liquid-Chromatography hybrid Mass-Spectrophotometer analysis of these two fractions showed the existence of beta-amyrin, beta-amyrone, beta-Sitosterol and stigmatriene. Stigmatriene had the best antifungal activity, compared to other three phytoconstituents, with an MIC-50 of 32 µg/ml. Although the antifungal activity of the identified phytoconstituents was only limited, the antifungal activity of the complete extracts is more promising, indicating synergism. Furthermore these plant extracts are also known to have anti-inflammatory activity and can stimulate wound-healing; characteristics which might also be of great value in the development of novel therapeutic drugs for this chronic inflammatory disease. Therefore further exploration of these plant species in the treatment of mycetoma is encouraging.


Assuntos
Antifúngicos/farmacologia , Madurella/efeitos dos fármacos , Micetoma/microbiologia , Extratos Vegetais/farmacologia , Plantas Medicinais , Cromatografia Gasosa-Espectrometria de Massas , Madurella/química , Sudão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA