Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.865
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Plant Cell ; 36(2): 447-470, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37820736

RESUMO

Plant nucleotide-binding leucine-rich repeat (NLRs) immune receptors directly or indirectly recognize pathogen-secreted effector molecules to initiate plant defense. Recognition of multiple pathogens by a single NLR is rare and usually occurs via monitoring for changes to host proteins; few characterized NLRs have been shown to recognize multiple effectors. The barley (Hordeum vulgare) NLR gene Mildew locus a (Mla) has undergone functional diversification, and the proteins encoded by different Mla alleles recognize host-adapted isolates of barley powdery mildew (Blumeria graminis f. sp. hordei [Bgh]). Here, we show that Mla3 also confers resistance to the rice blast fungus Magnaporthe oryzae in a dosage-dependent manner. Using a forward genetic screen, we discovered that the recognized effector from M. oryzae is Pathogenicity toward Weeping Lovegrass 2 (Pwl2), a host range determinant factor that prevents M. oryzae from infecting weeping lovegrass (Eragrostis curvula). Mla3 has therefore convergently evolved the capacity to recognize effectors from diverse pathogens.


Assuntos
Ascomicetos , Eragrostis , Hordeum , Magnaporthe , Virulência/genética , Hordeum/genética , Eragrostis/metabolismo , Plantas/metabolismo , Especificidade de Hospedeiro , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(28): e2402872121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968126

RESUMO

Bioengineering of plant immune receptors has emerged as a key strategy for generating novel disease resistance traits to counteract the expanding threat of plant pathogens to global food security. However, current approaches are limited by rapid evolution of plant pathogens in the field and may lack durability when deployed. Here, we show that the rice nucleotide-binding, leucine-rich repeat (NLR) immune receptor Pik-1 can be engineered to respond to a conserved family of effectors from the multihost blast fungus pathogen Magnaporthe oryzae. We switched the effector binding and response profile of the Pik NLR from its cognate rice blast effector AVR-Pik to the host-determining factor pathogenicity toward weeping lovegrass 2 (Pwl2) by installing a putative host target, OsHIPP43, in place of the native integrated heavy metal-associated domain (generating Pikm-1OsHIPP43). This chimeric receptor also responded to other PWL alleles from diverse blast isolates. The crystal structure of the Pwl2/OsHIPP43 complex revealed a multifaceted, robust interface that cannot be easily disrupted by mutagenesis, and may therefore provide durable, broad resistance to blast isolates carrying PWL effectors in the field. Our findings highlight how the host targets of pathogen effectors can be used to bioengineer recognition specificities that have more robust properties compared to naturally evolved disease resistance genes.


Assuntos
Proteínas Fúngicas , Proteínas NLR , Oryza , Doenças das Plantas , Proteínas de Plantas , Oryza/microbiologia , Oryza/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Proteínas NLR/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/imunologia , Proteínas de Plantas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/imunologia , Interações Hospedeiro-Patógeno/imunologia , Resistência à Doença/imunologia , Imunidade Vegetal , Bioengenharia/métodos , Magnaporthe/imunologia , Magnaporthe/genética , Magnaporthe/metabolismo , Ligação Proteica , Receptores Imunológicos/metabolismo , Ascomicetos
3.
PLoS Pathog ; 20(1): e1011988, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38289966

RESUMO

Autophagy and Cell wall integrity (CWI) signaling are critical stress-responsive processes during fungal infection of host plants. In the rice blast fungus Magnaporthe oryzae, autophagy-related (ATG) proteins phosphorylate CWI kinases to regulate virulence; however, how autophagy interplays with CWI signaling to coordinate such regulation remains unknown. Here, we have identified the phosphorylation of ATG protein MoAtg4 as an important process in the coordination between autophagy and CWI in M. oryzae. The ATG kinase MoAtg1 phosphorylates MoAtg4 to inhibit the deconjugation and recycling of the key ATG protein MoAtg8. At the same time, MoMkk1, a core kinase of CWI, also phosphorylates MoAtg4 to attenuate the C-terminal cleavage of MoAtg8. Significantly, these two phosphorylation events maintain proper autophagy levels to coordinate the development and pathogenicity of the rice blast fungus.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Fosforilação , Virulência , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Magnaporthe/metabolismo , Autofagia , Parede Celular/metabolismo , Oryza/microbiologia , Doenças das Plantas/microbiologia , Regulação Fúngica da Expressão Gênica
4.
PLoS Pathog ; 20(6): e1012277, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38885263

RESUMO

Filamentous plant pathogens deliver effector proteins into host cells to suppress host defence responses and manipulate metabolic processes to support colonization. Understanding the evolution and molecular function of these effectors provides knowledge about pathogenesis and can suggest novel strategies to reduce damage caused by pathogens. However, effector proteins are highly variable, share weak sequence similarity and, although they can be grouped according to their structure, only a few structurally conserved effector families have been functionally characterized to date. Here, we demonstrate that Zinc-finger fold (ZiF) secreted proteins form a functionally diverse effector family in the blast fungus Magnaporthe oryzae. This family relies on the Zinc-finger motif for protein stability and is ubiquitously present in blast fungus lineages infecting 13 different host species, forming different effector tribes. Homologs of the canonical ZiF effector, AVR-Pii, from rice infecting isolates are present in multiple M. oryzae lineages. Wheat infecting strains of the fungus also possess an AVR-Pii like allele that binds host Exo70 proteins and activates the immune receptor Pii. Furthermore, ZiF tribes may vary in the proteins they bind to, indicating functional diversification and an intricate effector/host interactome. Altogether, we uncovered a new effector family with a common protein fold that has functionally diversified in lineages of M. oryzae. This work expands our understanding of the diversity of M. oryzae effectors, the molecular basis of plant pathogenesis and may ultimately facilitate the development of new sources for pathogen resistance.


Assuntos
Proteínas Fúngicas , Doenças das Plantas , Dedos de Zinco , Doenças das Plantas/microbiologia , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Interações Hospedeiro-Patógeno , Oryza/microbiologia , Ascomicetos/genética , Ascomicetos/metabolismo , Magnaporthe/genética , Magnaporthe/metabolismo , Filogenia
5.
PLoS Pathog ; 20(1): e1011945, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38252628

RESUMO

The rice blast fungus Magnaporthe oryzae differentiates specialized cells called appressoria that are required for fungal penetration into host leaves. In this study, we identified the novel basic leucine zipper (bZIP) transcription factor BIP1 (B-ZIP Involved in Pathogenesis-1) that is essential for pathogenicity. BIP1 is required for the infection of plant leaves, even if they are wounded, but not for appressorium-mediated penetration of artificial cellophane membranes. This phenotype suggests that BIP1 is not implicated in the differentiation of the penetration peg but is necessary for the initial establishment of the fungus within plant cells. BIP1 expression was restricted to the appressorium by both transcriptional and post-transcriptional control. Genome-wide transcriptome analysis showed that 40 genes were down regulated in a BIP1 deletion mutant. Most of these genes were specifically expressed in the appressorium. They encode proteins with pathogenesis-related functions such as enzymes involved in secondary metabolism including those encoded by the ACE1 gene cluster, small secreted proteins such as SLP2, BAS2, BAS3, and AVR-Pi9 effectors, as well as plant cuticle and cell wall degrading enzymes. Interestingly, this BIP1 network is different from other known infection-related regulatory networks, highlighting the complexity of gene expression control during plant-fungal interactions. Promoters of BIP1-regulated genes shared a GCN4/bZIP-binding DNA motif (TGACTC) binding in vitro to BIP1. Mutation of this motif in the promoter of MGG_08381.7 from the ACE1 gene cluster abolished its appressorium-specific expression, showing that BIP1 behaves as a transcriptional activator. In summary, our findings demonstrate that BIP1 is critical for the expression of early invasion-related genes in appressoria. These genes are likely needed for biotrophic invasion of the first infected host cell, but not for the penetration process itself. Through these mechanisms, the blast fungus strategically anticipates the host plant environment and responses during appressorium-mediated penetration.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Oryza/microbiologia , Magnaporthe/metabolismo , Ascomicetos/genética , Ascomicetos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Regulação Fúngica da Expressão Gênica
6.
Plant Cell ; 35(5): 1360-1385, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36808541

RESUMO

The rice blast fungus Magnaporthe oryzae causes a devastating disease that threatens global rice (Oryza sativa) production. Despite intense study, the biology of plant tissue invasion during blast disease remains poorly understood. Here we report a high-resolution transcriptional profiling study of the entire plant-associated development of the blast fungus. Our analysis revealed major temporal changes in fungal gene expression during plant infection. Pathogen gene expression could be classified into 10 modules of temporally co-expressed genes, providing evidence for the induction of pronounced shifts in primary and secondary metabolism, cell signaling, and transcriptional regulation. A set of 863 genes encoding secreted proteins are differentially expressed at specific stages of infection, and 546 genes named MEP (Magnaportheeffector protein) genes were predicted to encode effectors. Computational prediction of structurally related MEPs, including the MAX effector family, revealed their temporal co-regulation in the same co-expression modules. We characterized 32 MEP genes and demonstrate that Mep effectors are predominantly targeted to the cytoplasm of rice cells via the biotrophic interfacial complex and use a common unconventional secretory pathway. Taken together, our study reveals major changes in gene expression associated with blast disease and identifies a diverse repertoire of effectors critical for successful infection.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Magnaporthe/fisiologia , Ascomicetos/metabolismo , Transdução de Sinais , Citoplasma/metabolismo , Oryza/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
7.
Plant Cell ; 35(7): 2527-2551, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-36976907

RESUMO

Fungi and oomycetes deliver effectors into living plant cells to suppress defenses and control plant processes needed for infection. Little is known about the mechanism by which these pathogens translocate effector proteins across the plasma membrane into the plant cytoplasm. The blast fungus Magnaporthe oryzae secretes cytoplasmic effectors into a specialized biotrophic interfacial complex (BIC) before translocation. Here, we show that cytoplasmic effectors within BICs are packaged into punctate membranous effector compartments that are occasionally observed in the host cytoplasm. Live cell imaging with fluorescently labeled proteins in rice (Oryza sativa) showed that these effector puncta colocalize with the plant plasma membrane and with CLATHRIN LIGHT CHAIN 1, a component of clathrin-mediated endocytosis (CME). Inhibiting CME using virus-induced gene silencing and chemical treatments resulted in cytoplasmic effectors in swollen BICs lacking effector puncta. By contrast, fluorescent marker colocalization, gene silencing, and chemical inhibitor studies failed to support a major role for clathrin-independent endocytosis in effector translocation. Effector localization patterns indicated that cytoplasmic effector translocation occurs underneath appressoria before invasive hyphal growth. Taken together, this study provides evidence that cytoplasmic effector translocation is mediated by CME in BICs and suggests a role for M. oryzae effectors in coopting plant endocytosis.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Oryza/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ascomicetos/metabolismo , Doenças das Plantas/microbiologia
8.
Proc Natl Acad Sci U S A ; 120(12): e2301358120, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36913579

RESUMO

To cause rice blast disease, the filamentous fungus Magnaporthe oryzae secretes a battery of effector proteins into host plant tissue to facilitate infection. Effector-encoding genes are expressed only during plant infection and show very low expression during other developmental stages. How effector gene expression is regulated in such a precise manner during invasive growth by M. oryzae is not known. Here, we report a forward-genetic screen to identify regulators of effector gene expression, based on the selection of mutants that show constitutive effector gene expression. Using this simple screen, we identify Rgs1, a regulator of G-protein signaling (RGS) protein that is necessary for appressorium development, as a novel transcriptional regulator of effector gene expression, which acts prior to plant infection. We show that an N-terminal domain of Rgs1, possessing transactivation activity, is required for effector gene regulation and acts in an RGS-independent manner. Rgs1 controls the expression of at least 60 temporally coregulated effector genes, preventing their transcription during the prepenetration stage of development prior to plant infection. A regulator of appressorium morphogenesis is therefore also required for the orchestration of pathogen gene expression required for invasive growth by M. oryzae during plant infection.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Magnaporthe/genética , Ascomicetos/genética , Transdução de Sinais , Expressão Gênica , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Oryza/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
9.
Proc Natl Acad Sci U S A ; 120(13): e2211102120, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36952381

RESUMO

Receptor-like kinases (RLKs) may initiate signaling pathways by perceiving and transmitting environmental signals to cellular machinery and play diverse roles in plant development and stress responses. The rice genome encodes more than one thousand RLKs, but only a small number have been characterized as receptors for phytohormones, polypeptides, elicitors, and effectors. Here, we screened the function of 11 RLKs in rice resistance to the blast fungus Magnaporthe oryzae (M. oryzae) and identified a negative regulator named BDR1 (Blast Disease Resistance 1). The expression of BDR1 was rapidly increased under M. oryzae infection, while silencing or knockout of BDR1 significantly enhanced M. oryzae resistance in two rice varieties. Protein interaction and kinase activity assays indicated that BDR1 directly interacted with and phosphorylated mitogen-activated kinase 3 (MPK3). Knockout of BDR1 compromised M. oryzae-induced MPK3 phosphorylation levels. Moreover, transcriptome analysis revealed that M. oryzae-elicited jasmonate (JA) signaling and terpenoid biosynthesis pathway were negatively regulated by BDR1 and MPK3. Mutation of JA biosynthetic (allene oxide cyclase (AOC)/signaling (MYC2) genes decreased rice resistance to M. oryzae. Besides diterpenoid, the monoterpene linalool and the sesquiterpene caryophyllene were identified as unique defensive compounds against M. oryzae, and their biosynthesis genes (TPS3 and TPS29) were transcriptionally regulated by JA signaling and suppressed by BDR1 and MPK3. These findings demonstrate the existence of a BDR1-MPK3 cascade that negatively mediates rice blast resistance by affecting JA-related defense responses.


Assuntos
Magnaporthe , Oryza , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Transdução de Sinais , Reguladores de Crescimento de Plantas/metabolismo , Oryza/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Resistência à Doença/genética , Magnaporthe/fisiologia
10.
PLoS Genet ; 19(5): e1010748, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37186579

RESUMO

The rice blast fungus Magnaporthe oryzae forms specialized infectious structures called appressoria that breach host cells to initiate infection. Previous studies demonstrated that the regulator of G-protein signaling (RGS)-like protein MoRgs7 undergoes endocytosis upon fungal sensing of hydrophobic environmental cues to activate cAMP signaling required for appressorium formation. However, the mechanism by which MoRgs7 internalizes and its fate remains undetermined. We here show that MoSep1, a conserved protein kinase of Mitotic Exit Network (MEN), phosphorylates MoRgs7 to regulate its function. MoRgs7 phosphorylation determines its interaction with MoCrn1, a coronin-like actin-binding protein homolog that also modulates the internalization of MoRgs7. Importantly, the endocytic transport of MoRgs7 is critical for its GTPase-activating protein (GAP) function important in cAMP signaling. Together, our findings revealed a novel mechanism by which M. oryzae activates MoRgs7-mediated hydrophobic cue-sensing signal transduction involving protein phosphorylation and endocytic transport to govern appressorium formation and fungal pathogenicity.


Assuntos
Magnaporthe , Oryza , Humanos , Fosforilação , Sinais (Psicologia) , Magnaporthe/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Oryza/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Regulação Fúngica da Expressão Gênica
11.
Proc Natl Acad Sci U S A ; 120(8): e2215426120, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36791100

RESUMO

Blast disease in cereal plants is caused by the fungus Magnaporthe oryzae and accounts for a significant loss in food crops. At the outset of infection, expression of a putative polysaccharide monooxygenase (MoPMO9A) is increased. MoPMO9A contains a catalytic domain predicted to act on cellulose and a carbohydrate-binding domain that binds chitin. A sequence similarity network of the MoPMO9A family AA9 showed that 220 of the 223 sequences in the MoPMO9A-containing cluster of sequences have a conserved unannotated region with no assigned function. Expression and purification of the full length and two MoPMO9A truncations, one containing the catalytic domain and the domain of unknown function (DUF) and one with only the catalytic domain, were carried out. In contrast to other AA9 polysaccharide monooxygenases (PMOs), MoPMO9A is not active on cellulose but showed activity on cereal-derived mixed (1→3, 1→4)-ß-D-glucans (MBG). Moreover, the DUF is required for activity. MoPMO9A exhibits activity consistent with C4 oxidation of the polysaccharide and can utilize either oxygen or hydrogen peroxide as a cosubstrate. It contains a predicted 3-dimensional fold characteristic of other PMOs. The DUF is predicted to form a coiled-coil with six absolutely conserved cysteines acting as a zipper between the two α-helices. MoPMO9A substrate specificity and domain architecture are different from previously characterized AA9 PMOs. The results, including a gene ontology analysis, support a role for MoPMO9A in MBG degradation during plant infection. Consistent with this analysis, deletion of MoPMO9A results in reduced pathogenicity.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Oxigenases de Função Mista/metabolismo , Polissacarídeos/metabolismo , Celulose/metabolismo , Ascomicetos/metabolismo , Magnaporthe/genética , Doenças das Plantas/microbiologia , Proteínas Fúngicas/metabolismo , Oryza/metabolismo
12.
PLoS Genet ; 19(9): e1010927, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37733784

RESUMO

The emergence of fungicide resistance severely threatens crop production by limiting the availability and application of established fungicides. Therefore, it is urgent to identify new fungicidal targets for controlling plant diseases. Here, we characterized the function of a conserved homoserine O-acetyltransferase (HOA) from the rice blast fungus Magnaporthe oryzae that could serve as the candidate antifungal target. Deletion of the MoMET2 and MoCYS2 genes encoding HOAs perturbed the biosynthesis of methionine and S-adenyl methionine, a methyl group donor for epigenetic modifications, and severely attenuated the development and virulence of M. oryzae. The ∆Momet2 mutant is significantly increased in 5-methylcytosine (5mC) modification that represses the expression of genes required for pathogenicity, including MoGLIK and MoCDH-CYT. We further showed that host-induced gene silencing (HIGS) targeting MoMET2 and MoCYS2 effectively controls rice blasts. Our studies revealed the importance of HOA in the development and virulence of M. oryzae, which suggests the potential feasibility of HOA as new targets for novel anti-rice blast measurements.


Assuntos
Magnaporthe , Oryza , Virulência/genética , Oryza/metabolismo , Metionina/genética , Expressão Gênica , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
13.
PLoS Pathog ; 19(6): e1011011, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37276223

RESUMO

Isoprothiolane (IPT) resistance has emerged in Magnaporthe oryzae, due to the long-term usage of IPT to control rice blast in China, yet the mechanisms of the resistance remain largely unknown. Through IPT adaptation on PDA medium, we obtained a variety of IPT-resistant mutants. Based on their EC50 values to IPT, the resistant mutants were mainly divided into three distinct categories, i.e., low resistance (LR, 6.5 ≤ EC50 < 13.0 µg/mL), moderate resistance 1 (MR-1, 13.0 ≤ EC50 < 25.0 µg/mL), and moderate resistance 2 (MR-2, 25.0 ≤ EC50 < 35.0 µg/mL). Molecular analysis of MoIRR (Magnaporthe oryzae isoprothiolane resistance related) gene demonstrated that it was associated only with the moderate resistance in MR-2 mutants, indicating that other mechanisms were associated with resistance in LR and MR-1 mutants. In this study, we mainly focused on the characterization of low resistance to IPT in M. oryzae. Mycelial growth and conidial germination were significantly reduced, indicating fitness penalties in LR mutants. Based on the differences of whole genome sequences between parental isolate and LR mutants, we identified a conserved MoVelB gene, encoding the velvet family transcription factor, and genetic transformation of wild type isolate verified that MoVelB gene was associated with the low resistance. Based on molecular analysis, we further demonstrated that the velvet family proteins VelB and VeA were indispensable for IPT toxicity and the deformation of the VelB-VeA-LaeA complex played a vital role for the low IPT-resistance in M. oryzae, most likely through the down-regulation of the secondary metabolism-related genes or CYP450 genes to reduce the toxicity of IPT.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Magnaporthe/genética , Tiofenos , Oryza/genética , Doenças das Plantas
14.
PLoS Pathog ; 19(4): e1011251, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37011084

RESUMO

Magnaporthe oryzae causes rice blasts posing serious threats to food security worldwide. During infection, M. oryzae utilizes several transmembrane receptor proteins that sense cell surface cues to induce highly specialized infectious structures called appressoria. However, little is known about the mechanisms of intracellular receptor tracking and their function. Here, we described that disrupting the coat protein complex II (COPII) cargo protein MoErv14 severely affects appressorium formation and pathogenicity as the ΔMoerv14 mutant is defective not only in cAMP production but also in the phosphorylation of the mitogen-activated protein kinase (MAPK) MoPmk1. Studies also showed that either externally supplementing cAMP or maintaining MoPmk1 phosphorylation suppresses the observed defects in the ΔMoerv14 strain. Importantly, MoErv14 is found to regulate the transport of MoPth11, a membrane receptor functioning upstream of G-protein/cAMP signaling, and MoWish and MoSho1 function upstream of the Pmk1-MAPK pathway. In summary, our studies elucidate the mechanism by which the COPII protein MoErv14 plays an important function in regulating the transport of receptors involved in the appressorium formation and virulence of the blast fungus.


Assuntos
Magnaporthe , Oryza , Virulência , Magnaporthe/metabolismo , Transdução de Sinais , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Membrana Celular/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Oryza/microbiologia , Doenças das Plantas/microbiologia , Esporos Fúngicos/metabolismo
15.
Plant Cell ; 34(9): 3425-3442, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35642941

RESUMO

Plants manage the high cost of immunity activation by suppressing the expression of defense genes during normal growth and rapidly switching them on upon pathogen invasion. TGAs are key transcription factors controlling the expression of defense genes. However, how TGAs function, especially in monocot plants like rice with continuously high levels of endogenous salicylic acid (SA) remains elusive. In this study, we characterized the role of OsTGA5 as a negative regulator of rice resistance against blast fungus by transcriptionally repressing the expression of various defense-related genes. Moreover, OsTGA5 repressed PTI responses and the accumulation of endogenous SA. Importantly, we showed that the nucleus-localized casein kinase II (CK2) complex interacts with and phosphorylates OsTGA5 on Ser-32, which reduces the affinity of OsTGA5 for the JIOsPR10 promoter, thereby alleviating the repression of JIOsPR10 transcription and increasing rice resistance. Furthermore, the in vivo phosphorylation of OsTGA5 Ser-32 was enhanced by blast fungus infection. The CK2 α subunit, depending on its kinase activity, positively regulated rice defense against blast fungus. Taken together, our results provide a mechanism for the role of OsTGA5 in negatively regulating the transcription of defense-related genes in rice and the repressive switch imposed by nuclear CK2-mediated phosphorylation during blast fungus invasion.


Assuntos
Magnaporthe , Oryza , Caseína Quinase II , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Fosforilação , Doenças das Plantas , Proteínas de Plantas , Ácido Salicílico , Transcrição Gênica
16.
Plant Cell ; 34(5): 1822-1843, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35171277

RESUMO

Deployment of broad-spectrum disease resistance against multiple pathogen species is an efficient way to control plant diseases. Here, we identify a Microtubule-associated C4HC3-type E3 Ligase (MEL) in both Nicotiana benthamiana and Oryza sativa, and show that it is able to integrate and initiate a series of host immune signaling, conferring broad-spectrum resistance to viral, fungal, and bacterial pathogens. We demonstrate that MEL forms homodimer through intermolecular disulfide bonds between its cysteine residues in the SWIM domain, and interacts with its substrate serine hydroxymethyltrasferase 1 (SHMT1) through the YφNL motif. Ubiquitin ligase activity, homodimerization and YφNL motif are indispensable for MEL to regulate plant immunity by mediating SHMT1 degradation through the 26S proteasome pathway. Our findings provide a fundamental basis for utilizing the MEL-SHMT1 module to generate broad-spectrum-resistant rice to global destructive pathogens including rice stripe virus, Magnaporthe oryzae, and Xanthomonas oryzae pv. oryzae.


Assuntos
Magnaporthe , Oryza , Xanthomonas , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/genética , Magnaporthe/fisiologia , Oryza/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Xanthomonas/fisiologia
17.
Proc Natl Acad Sci U S A ; 119(43): e2210559119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36252011

RESUMO

Exocytosis plays an important role in plant-microbe interactions, in both pathogenesis and symbiosis. Exo70 proteins are integral components of the exocyst, an octameric complex that mediates tethering of vesicles to membranes in eukaryotes. Although plant Exo70s are known to be targeted by pathogen effectors, the underpinning molecular mechanisms and the impact of this interaction on infection are poorly understood. Here, we show the molecular basis of the association between the effector AVR-Pii of the blast fungus Maganaporthe oryzae and rice Exo70 alleles OsExo70F2 and OsExo70F3, which is sensed by the immune receptor pair Pii via an integrated RIN4/NOI domain. The crystal structure of AVR-Pii in complex with OsExo70F2 reveals that the effector binds to a conserved hydrophobic pocket in Exo70, defining an effector/target binding interface. Structure-guided and random mutagenesis validates the importance of AVR-Pii residues at the Exo70 binding interface to sustain protein association and disease resistance in rice when challenged with fungal strains expressing effector mutants. Furthermore, the structure of AVR-Pii defines a zinc-finger effector fold (ZiF) distinct from the MAX (Magnaporthe Avrs and ToxB-like) fold previously described for a majority of characterized M. oryzae effectors. Our data suggest that blast fungus ZiF effectors bind a conserved Exo70 interface to manipulate plant exocytosis and that these effectors are also baited by plant immune receptors, pointing to new opportunities for engineering disease resistance.


Assuntos
Magnaporthe , Oryza , Resistência à Doença , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno , Magnaporthe/genética , Oryza/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/química , Plantas/metabolismo , Zinco/metabolismo
18.
Proc Natl Acad Sci U S A ; 119(27): e2116896119, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35771942

RESUMO

Throughout their evolution, plant nucleotide-binding leucine-rich-repeat receptors (NLRs) have acquired widely divergent unconventional integrated domains that enhance their ability to detect pathogen effectors. However, the functional dynamics that drive the evolution of NLRs with integrated domains (NLR-IDs) remain poorly understood. Here, we reconstructed the evolutionary history of an NLR locus prone to unconventional domain integration and experimentally tested hypotheses about the evolution of NLR-IDs. We show that the rice (Oryza sativa) NLR Pias recognizes the effector AVR-Pias of the blast fungal pathogen Magnaporthe oryzae. Pias consists of a functionally specialized NLR pair, the helper Pias-1 and the sensor Pias-2, that is allelic to the previously characterized Pia pair of NLRs: the helper RGA4 and the sensor RGA5. Remarkably, Pias-2 carries a C-terminal DUF761 domain at a similar position to the heavy metal-associated (HMA) domain of RGA5. Phylogenomic analysis showed that Pias-2/RGA5 sensor NLRs have undergone recurrent genomic recombination within the genus Oryza, resulting in up to six sequence-divergent domain integrations. Allelic NLRs with divergent functions have been maintained transspecies in different Oryza lineages to detect sequence-divergent pathogen effectors. By contrast, Pias-1 has retained its NLR helper activity throughout evolution and is capable of functioning together with the divergent sensor-NLR RGA5 to respond to AVR-Pia. These results suggest that opposite selective forces have driven the evolution of paired NLRs: highly dynamic domain integration events maintained by balancing selection for sensor NLRs, in sharp contrast to purifying selection and functional conservation of immune signaling for helper NLRs.


Assuntos
Evolução Molecular , Magnaporthe , Proteínas NLR , Oryza , Doenças das Plantas , Proteínas de Plantas , Receptores Imunológicos , Ligação Genética , Interações Hospedeiro-Patógeno/imunologia , Magnaporthe/genética , Magnaporthe/patogenicidade , Proteínas NLR/genética , Proteínas NLR/imunologia , Oryza/imunologia , Oryza/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Proteínas Inibidoras de STAT Ativados/genética , Proteínas Inibidoras de STAT Ativados/imunologia , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia
19.
Planta ; 259(6): 143, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704489

RESUMO

MAIN CONCLUSION: The investigation is the first report on genome-wide identification and characterization of NBLRR genes in pearl millet. We have shown the role of gene loss and purifying selection in the divergence of NBLRRs in Poaceae lineage and candidate CaNBLRR genes for resistance to Magnaporthe grisea infection. Plants have evolved multiple integral mechanisms to counteract the pathogens' infection, among which plant immunity through NBLRR (nucleotide-binding site, leucine-rich repeat) genes is at the forefront. The genome-wide mining in pearl millet (Cenchrus americanus (L.) Morrone) revealed 146 CaNBLRRs. The variation in the branch length of NBLRRs showed the dynamic nature of NBLRRs in response to evolving pathogen races. The orthology of NBLRRs showed a predominance of many-to-one orthologs, indicating the divergence of NBLRRs in the pearl millet lineage mainly through gene loss events followed by gene gain through single-copy duplications. Further, the purifying selection (Ka/Ks < 1) shaped the expansion of NBLRRs within the lineage of pear millet and other members of Poaceae. Presence of cis-acting elements, viz. TCA element, G-box, MYB, SARE, ABRE and conserved motifs annotated with P-loop, kinase 2, RNBS-A, RNBS-D, GLPL, MHD, Rx-CC and LRR suggests their putative role in disease resistance and stress regulation. The qRT-PCR analysis in pearl millet lines showing contrasting responses to Magnaporthe grisea infection identified CaNBLRR20, CaNBLRR33, CaNBLRR46 CaNBLRR51, CaNBLRR78 and CaNBLRR146 as putative candidates. Molecular docking showed the involvement of three and two amino acid residues of LRR domains forming hydrogen bonds (histidine, arginine and threonine) and salt bridges (arginine and lysine) with effectors. Whereas 14 and 20 amino acid residues of CaNBLRR78 and CaNBLRR20 showed hydrophobic interactions with 11 and 9 amino acid residues of effectors, Mg.00g064570.m01 and Mg.00g006570.m01, respectively. The present investigation gives a comprehensive overview of CaNBLRRs and paves the foundation for their utility in pearl millet resistance breeding through understanding of host-pathogen interactions.


Assuntos
Cenchrus , Resistência à Doença , Doenças das Plantas , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Cenchrus/genética , Filogenia , Magnaporthe/fisiologia , Família Multigênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Evolução Molecular , Genoma de Planta/genética , Pennisetum/genética , Pennisetum/microbiologia , Pennisetum/imunologia
20.
Plant Biotechnol J ; 22(6): 1740-1756, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38294722

RESUMO

Rice blast, caused by Magnaporthe oryzae, significantly impacts grain yield, necessitating the identification of broad-spectrum resistance genes and their functional mechanisms for disease-resistant crop breeding. Here, we report that rice with knockdown OsHDAC1 gene expression displays enhanced broad-spectrum blast resistance without effects on plant height and tiller numbers compared to wild-type rice, while rice overexpressing OsHDAC1 is more susceptible to M. oryzae. We identify a novel blast resistance transcription factor, OsGRAS30, which genetically acts upstream of OsHDAC1 and interacts with OsHDAC1 to suppress its enzymatic activity. This inhibition increases the histone H3K27ac level, thereby boosting broad-spectrum blast resistance. Integrating genome-wide mapping of OsHDAC1 and H3K27ac targets with RNA sequencing analysis unveils how OsHDAC1 mediates the expression of OsSSI2, OsF3H, OsRLR1 and OsRGA5 to regulate blast resistance. Our findings reveal that the OsGRAS30-OsHDAC1 module is critical to rice blast control. Therefore, targeting either OsHDAC1 or OsGRAS30 offers a promising approach for enhancing crop blast resistance.


Assuntos
Resistência à Doença , Oryza , Doenças das Plantas , Proteínas de Plantas , Fatores de Transcrição , Oryza/genética , Oryza/microbiologia , Oryza/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Resistência à Doença/genética , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Regulação da Expressão Gênica de Plantas , Magnaporthe/fisiologia , Ascomicetos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA