Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.880
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(21): 5935-5950.e18, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39368476

RESUMO

Diatoms are central to the global carbon cycle. At the heart of diatom carbon fixation is an overlooked organelle called the pyrenoid, where concentrated CO2 is delivered to densely packed Rubisco. Diatom pyrenoids fix approximately one-fifth of global CO2, but the protein composition of this organelle is largely unknown. Using fluorescence protein tagging and affinity purification-mass spectrometry, we generate a high-confidence spatially defined protein-protein interaction network for the diatom pyrenoid. Within our pyrenoid interaction network are 10 proteins with previously unknown functions. We show that six of these form a shell that encapsulates the Rubisco matrix and is critical for pyrenoid structural integrity, shape, and function. Although not conserved at a sequence or structural level, the diatom pyrenoid shares some architectural similarities to prokaryotic carboxysomes. Collectively, our results support the convergent evolution of pyrenoids across the two main plastid lineages and uncover a major structural and functional component of global CO2 fixation.


Assuntos
Ciclo do Carbono , Dióxido de Carbono , Diatomáceas , Organelas , Ribulose-Bifosfato Carboxilase , Diatomáceas/metabolismo , Dióxido de Carbono/metabolismo , Organelas/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Mapas de Interação de Proteínas , Fotossíntese
2.
Cell ; 185(4): 712-728.e14, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35063084

RESUMO

Tau (MAPT) drives neuronal dysfunction in Alzheimer disease (AD) and other tauopathies. To dissect the underlying mechanisms, we combined an engineered ascorbic acid peroxidase (APEX) approach with quantitative affinity purification mass spectrometry (AP-MS) followed by proximity ligation assay (PLA) to characterize Tau interactomes modified by neuronal activity and mutations that cause frontotemporal dementia (FTD) in human induced pluripotent stem cell (iPSC)-derived neurons. We established interactions of Tau with presynaptic vesicle proteins during activity-dependent Tau secretion and mapped the Tau-binding sites to the cytosolic domains of integral synaptic vesicle proteins. We showed that FTD mutations impair bioenergetics and markedly diminished Tau's interaction with mitochondria proteins, which were downregulated in AD brains of multiple cohorts and correlated with disease severity. These multimodal and dynamic Tau interactomes with exquisite spatial resolution shed light on Tau's role in neuronal function and disease and highlight potential therapeutic targets to block Tau-mediated pathogenesis.


Assuntos
Mitocôndrias/metabolismo , Degeneração Neural/metabolismo , Mapas de Interação de Proteínas , Sinapses/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Aminoácidos/metabolismo , Biotinilação , Encéfalo/metabolismo , Encéfalo/patologia , Núcleo Celular/metabolismo , Progressão da Doença , Metabolismo Energético , Demência Frontotemporal/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Mutantes/metabolismo , Mutação/genética , Degeneração Neural/patologia , Neurônios/metabolismo , Ligação Proteica , Domínios Proteicos , Proteômica , Índice de Gravidade de Doença , Frações Subcelulares/metabolismo , Tauopatias/genética , Proteínas tau/química
3.
Cell ; 184(11): 3022-3040.e28, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33961781

RESUMO

Thousands of interactions assemble proteins into modules that impart spatial and functional organization to the cellular proteome. Through affinity-purification mass spectrometry, we have created two proteome-scale, cell-line-specific interaction networks. The first, BioPlex 3.0, results from affinity purification of 10,128 human proteins-half the proteome-in 293T cells and includes 118,162 interactions among 14,586 proteins. The second results from 5,522 immunoprecipitations in HCT116 cells. These networks model the interactome whose structure encodes protein function, localization, and complex membership. Comparison across cell lines validates thousands of interactions and reveals extensive customization. Whereas shared interactions reside in core complexes and involve essential proteins, cell-specific interactions link these complexes, "rewiring" subnetworks within each cell's interactome. Interactions covary among proteins of shared function as the proteome remodels to produce each cell's phenotype. Viewable interactively online through BioPlexExplorer, these networks define principles of proteome organization and enable unknown protein characterization.


Assuntos
Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas/genética , Proteoma/genética , Biologia Computacional/métodos , Células HCT116/metabolismo , Células HEK293/metabolismo , Humanos , Espectrometria de Massas/métodos , Mapas de Interação de Proteínas/fisiologia , Proteoma/metabolismo , Proteômica/métodos
4.
Cell ; 182(1): 24-37, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32649876

RESUMO

Viral genomes encode transcriptional regulators that alter the expression of viral and host genes. Despite an emerging role in human diseases, a thorough annotation of human viral transcriptional regulators (vTRs) is currently lacking, limiting our understanding of their molecular features and functions. Here, we provide a comprehensive catalog of 419 vTRs belonging to 20 different virus families. Using this catalog, we characterize shared and unique cellular genes, proteins, and pathways targeted by particular vTRs and discuss the role of vTRs in human disease pathogenesis. Our study provides a unique and valuable resource for the fields of virology, genomics, and human disease genetics.


Assuntos
Transcrição Gênica , Proteínas Virais/metabolismo , Epigênese Genética , Humanos , Modelos Biológicos , Mapas de Interação de Proteínas , Proteínas Virais/química , Proteínas Virais/genética
5.
Cell ; 182(5): 1362-1362.e1, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32888497

RESUMO

The arrestins are ubiquitously expressed adaptor proteins that orchestrate transmembrane signaling cascades triggered by the 7-transmembrane G protein-coupled receptors. While originally discovered as proteins that block receptor-G protein coupling, arrestins are now appreciated for their expanding repertoire of dynamic protein interactions and cellular functions.


Assuntos
Arrestinas/metabolismo , Membrana Celular/metabolismo , Mapas de Interação de Proteínas/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia
6.
Cell ; 181(2): 460-474.e14, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32191846

RESUMO

Plants are foundational for global ecological and economic systems, but most plant proteins remain uncharacterized. Protein interaction networks often suggest protein functions and open new avenues to characterize genes and proteins. We therefore systematically determined protein complexes from 13 plant species of scientific and agricultural importance, greatly expanding the known repertoire of stable protein complexes in plants. By using co-fractionation mass spectrometry, we recovered known complexes, confirmed complexes predicted to occur in plants, and identified previously unknown interactions conserved over 1.1 billion years of green plant evolution. Several novel complexes are involved in vernalization and pathogen defense, traits critical for agriculture. We also observed plant analogs of animal complexes with distinct molecular assemblies, including a megadalton-scale tRNA multi-synthetase complex. The resulting map offers a cross-species view of conserved, stable protein assemblies shared across plant cells and provides a mechanistic, biochemical framework for interpreting plant genetics and mutant phenotypes.


Assuntos
Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mapas de Interação de Proteínas/fisiologia , Espectrometria de Massas/métodos , Plantas/genética , Plantas/metabolismo , Mapeamento de Interação de Proteínas/métodos , Proteômica/métodos
7.
Cell ; 181(2): 306-324.e28, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32302570

RESUMO

Liquid-liquid phase separation (LLPS) mediates formation of membraneless condensates such as those associated with RNA processing, but the rules that dictate their assembly, substructure, and coexistence with other liquid-like compartments remain elusive. Here, we address the biophysical mechanism of this multiphase organization using quantitative reconstitution of cytoplasmic stress granules (SGs) with attached P-bodies in human cells. Protein-interaction networks can be viewed as interconnected complexes (nodes) of RNA-binding domains (RBDs), whose integrated RNA-binding capacity determines whether LLPS occurs upon RNA influx. Surprisingly, both RBD-RNA specificity and disordered segments of key proteins are non-essential, but modulate multiphase condensation. Instead, stoichiometry-dependent competition between protein networks for connecting nodes determines SG and P-body composition and miscibility, while competitive binding of unconnected proteins disengages networks and prevents LLPS. Inspired by patchy colloid theory, we propose a general framework by which competing networks give rise to compositionally specific and tunable condensates, while relative linkage between nodes underlies multiphase organization.


Assuntos
Grânulos Citoplasmáticos/fisiologia , Estruturas Citoplasmáticas/fisiologia , Mapas de Interação de Proteínas/fisiologia , Fenômenos Biofísicos , Linhagem Celular Tumoral , Citoplasma/metabolismo , Humanos , Proteínas Intrinsicamente Desordenadas/genética , Extração Líquido-Líquido/métodos , Organelas/química , RNA/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/fisiologia
8.
Cell ; 182(4): 1027-1043.e17, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32822567

RESUMO

Cell-surface protein-protein interactions (PPIs) mediate cell-cell communication, recognition, and responses. We executed an interactome screen of 564 human cell-surface and secreted proteins, most of which are immunoglobulin superfamily (IgSF) proteins, using a high-throughput, automated ELISA-based screening platform employing a pooled-protein strategy to test all 318,096 PPI combinations. Screen results, augmented by phylogenetic homology analysis, revealed ∼380 previously unreported PPIs. We validated a subset using surface plasmon resonance and cell binding assays. Observed PPIs reveal a large and complex network of interactions both within and across biological systems. We identified new PPIs for receptors with well-characterized ligands and binding partners for "orphan" receptors. New PPIs include proteins expressed on multiple cell types and involved in diverse processes including immune and nervous system development and function, differentiation/proliferation, metabolism, vascularization, and reproduction. These PPIs provide a resource for further biological investigation into their functional relevance and may offer new therapeutic drug targets.


Assuntos
Ligantes , Mapas de Interação de Proteínas/fisiologia , Receptores de Superfície Celular/metabolismo , Receptor DCC/química , Receptor DCC/metabolismo , Humanos , Filogenia , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/química , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/classificação , Receptores de Interleucina-1/química , Receptores de Interleucina-1/metabolismo , Família de Moléculas de Sinalização da Ativação Linfocitária/química , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Ressonância de Plasmônio de Superfície
9.
Cell ; 183(4): 1142-1142.e1, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33186524

RESUMO

Immune checkpoints are key regulatory mechanisms integral to the maintenance of self-tolerance and execution of antigen-specific immune responses. In recent years, they have been leveraged to treat both autoimmune disease and various forms of cancer with much success. This SnapShot illustrates known immune checkpoint interactions in APC-mediated T cell modulation. To view this SnapShot, open or download the PDF.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Proteínas de Checkpoint Imunológico/metabolismo , Linfócitos T/imunologia , Células Apresentadoras de Antígenos/efeitos dos fármacos , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Proteínas de Checkpoint Imunológico/química , Domínios Proteicos , Mapas de Interação de Proteínas , Linfócitos T/efeitos dos fármacos
10.
Cell ; 182(2): 329-344.e19, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32589946

RESUMO

Cell surface receptors and their interactions play a central role in physiological and pathological signaling. Despite its clinical relevance, the immunoglobulin superfamily (IgSF) remains uncharacterized and underrepresented in databases. Here, we present a systematic extracellular protein map, the IgSF interactome. Using a high-throughput technology to interrogate most single transmembrane receptors for binding to 445 IgSF proteins, we identify over 500 interactions, 82% previously undocumented, and confirm more than 60 receptor-ligand pairs using orthogonal assays. Our study reveals a map of cell-type-specific interactions and the landscape of dysregulated receptor-ligand crosstalk in cancer, including selective loss of function for tumor-associated mutations. Furthermore, investigation of the IgSF interactome in a large cohort of cancer patients identifies interacting protein signatures associated with clinical outcome. The IgSF interactome represents an important resource to fuel biological discoveries and a framework for understanding the functional organization of the surfaceome during homeostasis and disease, ultimately informing therapeutic development.


Assuntos
Imunoglobulinas/metabolismo , Neoplasias/patologia , Mapas de Interação de Proteínas , Antígeno B7-H1/metabolismo , Antígeno Carcinoembrionário/metabolismo , Comunicação Celular , Análise por Conglomerados , Meios de Cultivo Condicionados/química , Células HEK293 , Humanos , Imunoglobulinas/química , Imunoglobulinas/genética , Ligantes , Mutação , Neoplasias/genética , Neoplasias/metabolismo , Ligação Proteica , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
11.
Cell ; 178(4): 850-866.e26, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398340

RESUMO

We performed a comprehensive assessment of rare inherited variation in autism spectrum disorder (ASD) by analyzing whole-genome sequences of 2,308 individuals from families with multiple affected children. We implicate 69 genes in ASD risk, including 24 passing genome-wide Bonferroni correction and 16 new ASD risk genes, most supported by rare inherited variants, a substantial extension of previous findings. Biological pathways enriched for genes harboring inherited variants represent cytoskeletal organization and ion transport, which are distinct from pathways implicated in previous studies. Nevertheless, the de novo and inherited genes contribute to a common protein-protein interaction network. We also identified structural variants (SVs) affecting non-coding regions, implicating recurrent deletions in the promoters of DLG2 and NR3C2. Loss of nr3c2 function in zebrafish disrupts sleep and social function, overlapping with human ASD-related phenotypes. These data support the utility of studying multiplex families in ASD and are available through the Hartwell Autism Research and Technology portal.


Assuntos
Transtorno do Espectro Autista/genética , Predisposição Genética para Doença/genética , Linhagem , Mapas de Interação de Proteínas/genética , Animais , Criança , Bases de Dados Genéticas , Modelos Animais de Doenças , Feminino , Deleção de Genes , Guanilato Quinases/genética , Humanos , Padrões de Herança/genética , Aprendizado de Máquina , Masculino , Núcleo Familiar , Regiões Promotoras Genéticas/genética , Receptores de Mineralocorticoides/genética , Fatores de Risco , Proteínas Supressoras de Tumor/genética , Sequenciamento Completo do Genoma , Peixe-Zebra/genética
12.
Annu Rev Biochem ; 87: 921-964, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29925267

RESUMO

Protein serine/threonine phosphatases (PPPs) are ancient enzymes, with distinct types conserved across eukaryotic evolution. PPPs are segregated into types primarily on the basis of the unique interactions of PPP catalytic subunits with regulatory proteins. The resulting holoenzymes dock substrates distal to the active site to enhance specificity. This review focuses on the subunit and substrate interactions for PPP that depend on short linear motifs. Insights about these motifs from structures of holoenzymes open new opportunities for computational biology approaches to elucidate PPP networks. There is an expanding knowledge base of posttranslational modifications of PPP catalytic and regulatory subunits, as well as of their substrates, including phosphorylation, acetylation, and ubiquitination. Cross talk between these posttranslational modifications creates PPP-based signaling. Knowledge of PPP complexes, signaling clusters, as well as how PPPs communicate with each other in response to cellular signals should unlock the doors to PPP networks and signaling "clouds" that orchestrate and coordinate different aspects of cell physiology.


Assuntos
Fosfoproteínas Fosfatases/metabolismo , Animais , Biologia Computacional , Evolução Molecular , Humanos , Modelos Moleculares , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/genética , Mapas de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Subunidades Proteicas , Especificidade por Substrato
13.
Cell ; 173(7): 1557-1559, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29906439

RESUMO

With the complexities of organelle communication and their dynamics under intense investigation, what are the new principles that are emerging, and where is the field headed? Cell's Robert Kruger recently discussed these questions with Erika Holzbaur, Jennifer Lippincott-Schwartz, and Ivan Dikic. Annotated excerpts from this conversation are presented below, and the full conversation is available with the article online.


Assuntos
Organelas/metabolismo , Animais , Sistemas CRISPR-Cas/genética , Mapas de Interação de Proteínas , Proteínas/genética , Proteínas/metabolismo
14.
Cell ; 172(3): 590-604.e13, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29373831

RESUMO

Stress granules (SGs) are transient ribonucleoprotein (RNP) aggregates that form during cellular stress and are increasingly implicated in human neurodegeneration. To study the proteome and compositional diversity of SGs in different cell types and in the context of neurodegeneration-linked mutations, we used ascorbate peroxidase (APEX) proximity labeling, mass spectrometry, and immunofluorescence to identify ∼150 previously unknown human SG components. A highly integrated, pre-existing SG protein interaction network in unstressed cells facilitates rapid coalescence into larger SGs. Approximately 20% of SG diversity is stress or cell-type dependent, with neuronal SGs displaying a particularly complex repertoire of proteins enriched in chaperones and autophagy factors. Strengthening the link between SGs and neurodegeneration, we demonstrate aberrant dynamics, composition, and subcellular distribution of SGs in cells from amyotrophic lateral sclerosis (ALS) patients. Using three Drosophila ALS/FTD models, we identify SG-associated modifiers of neurotoxicity in vivo. Altogether, our results highlight SG proteins as central to understanding and ultimately targeting neurodegeneration.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Grânulos Citoplasmáticos/metabolismo , Mapas de Interação de Proteínas , Ribonucleoproteínas/metabolismo , Estresse Fisiológico , Animais , Drosophila melanogaster , Células HEK293 , Células HeLa , Humanos , Neurônios/metabolismo , Transporte Proteico
15.
Cell ; 174(6): 1361-1372.e10, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30193110

RESUMO

A key aspect of genomic medicine is to make individualized clinical decisions from personal genomes. We developed a machine-learning framework to integrate personal genomes and electronic health record (EHR) data and used this framework to study abdominal aortic aneurysm (AAA), a prevalent irreversible cardiovascular disease with unclear etiology. Performing whole-genome sequencing on AAA patients and controls, we demonstrated its predictive precision solely from personal genomes. By modeling personal genomes with EHRs, this framework quantitatively assessed the effectiveness of adjusting personal lifestyles given personal genome baselines, demonstrating its utility as a personal health management tool. We showed that this new framework agnostically identified genetic components involved in AAA, which were subsequently validated in human aortic tissues and in murine models. Our study presents a new framework for disease genome analysis, which can be used for both health management and understanding the biological architecture of complex diseases. VIDEO ABSTRACT.


Assuntos
Aneurisma da Aorta Abdominal/patologia , Genômica , Animais , Aneurisma da Aorta Abdominal/genética , Área Sob a Curva , Modelos Animais de Doenças , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Humanos , Aprendizado de Máquina , Camundongos , Polimorfismo de Nucleotídeo Único , Mapas de Interação de Proteínas , Curva ROC , Sequenciamento Completo do Genoma
16.
Cell ; 172(1-2): 358-372.e23, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29307493

RESUMO

Metabolite-protein interactions control a variety of cellular processes, thereby playing a major role in maintaining cellular homeostasis. Metabolites comprise the largest fraction of molecules in cells, but our knowledge of the metabolite-protein interactome lags behind our understanding of protein-protein or protein-DNA interactomes. Here, we present a chemoproteomic workflow for the systematic identification of metabolite-protein interactions directly in their native environment. The approach identified a network of known and novel interactions and binding sites in Escherichia coli, and we demonstrated the functional relevance of a number of newly identified interactions. Our data enabled identification of new enzyme-substrate relationships and cases of metabolite-induced remodeling of protein complexes. Our metabolite-protein interactome consists of 1,678 interactions and 7,345 putative binding sites. Our data reveal functional and structural principles of chemical communication, shed light on the prevalence and mechanisms of enzyme promiscuity, and enable extraction of quantitative parameters of metabolite binding on a proteome-wide scale.


Assuntos
Metaboloma , Proteoma/metabolismo , Proteômica/métodos , Transdução de Sinais , Software , Regulação Alostérica , Sítios de Ligação , Escherichia coli , Metabolômica/métodos , Ligação Proteica , Mapas de Interação de Proteínas , Proteoma/química , Saccharomyces cerevisiae , Análise de Sequência de Proteína/métodos
17.
Nat Rev Mol Cell Biol ; 21(6): 327-340, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32235894

RESUMO

The ability of living systems to adapt to changing conditions originates from their capacity to change their molecular constitution. This is achieved by multiple mechanisms that modulate the quantitative composition and the diversity of the molecular inventory. Molecular diversification is particularly pronounced on the proteome level, at which multiple proteoforms derived from the same gene can in turn combinatorially form different protein complexes, thus expanding the repertoire of functional modules in the cell. The study of molecular and modular diversity and their involvement in responses to changing conditions has only recently become possible through the development of new 'omics'-based screening technologies. This Review explores our current knowledge of the mechanisms regulating functional diversification along the axis of gene expression, with a focus on the proteome and interactome. We explore the interdependence between different molecular levels and how this contributes to functional diversity. Finally, we highlight several recent techniques for studying molecular diversity, with specific focus on mass spectrometry-based analysis of the proteome and its organization into functional modules, and examine future directions for this rapidly growing field.


Assuntos
Proteoma/química , Proteoma/metabolismo , Proteômica , Animais , Redes Reguladoras de Genes , Humanos , Complexos Multiproteicos , Mapas de Interação de Proteínas , Isoformas de Proteínas , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Proteoma/genética , Transcriptoma
18.
Cell ; 168(1-2): 159-171.e14, 2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-28041848

RESUMO

Phase transitions driven by intrinsically disordered protein regions (IDRs) have emerged as a ubiquitous mechanism for assembling liquid-like RNA/protein (RNP) bodies and other membrane-less organelles. However, a lack of tools to control intracellular phase transitions limits our ability to understand their role in cell physiology and disease. Here, we introduce an optogenetic platform that uses light to activate IDR-mediated phase transitions in living cells. We use this "optoDroplet" system to study condensed phases driven by the IDRs of various RNP body proteins, including FUS, DDX4, and HNRNPA1. Above a concentration threshold, these constructs undergo light-activated phase separation, forming spatiotemporally definable liquid optoDroplets. FUS optoDroplet assembly is fully reversible even after multiple activation cycles. However, cells driven deep within the phase boundary form solid-like gels that undergo aging into irreversible aggregates. This system can thus elucidate not only physiological phase transitions but also their link to pathological aggregates.


Assuntos
Imagem Molecular/métodos , Transição de Fase , Proteínas/química , Animais , Proteínas de Arabidopsis , Criptocromos , Proteínas Intrinsicamente Desordenadas , Cinética , Luz , Camundongos , Modelos Químicos , Células NIH 3T3 , Optogenética , Mapas de Interação de Proteínas , Proteínas/metabolismo
19.
Cell ; 169(2): 350-360.e12, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28388416

RESUMO

Cells operate through protein interaction networks organized in space and time. Here, we describe an approach to resolve both dimensions simultaneously by using proximity labeling mediated by engineered ascorbic acid peroxidase (APEX). APEX has been used to capture entire organelle proteomes with high temporal resolution, but its breadth of labeling is generally thought to preclude the higher spatial resolution necessary to interrogate specific protein networks. We provide a solution to this problem by combining quantitative proteomics with a system of spatial references. As proof of principle, we apply this approach to interrogate proteins engaged by G-protein-coupled receptors as they dynamically signal and traffic in response to ligand-induced activation. The method resolves known binding partners, as well as previously unidentified network components. Validating its utility as a discovery pipeline, we establish that two of these proteins promote ubiquitin-linked receptor downregulation after prolonged activation.


Assuntos
Ascorbato Peroxidases/química , Mapas de Interação de Proteínas , Coloração e Rotulagem/métodos , Animais , Humanos , Lisossomos/metabolismo , Transporte Proteico , Receptores Acoplados a Proteínas G/metabolismo , Receptores Opioides/metabolismo , Ubiquitina/metabolismo
20.
Mol Cell ; 84(19): 3790-3809.e8, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39303721

RESUMO

mRNAs interact with RNA-binding proteins (RBPs) throughout their processing and maturation. While efforts have assigned RBPs to RNA substrates, less exploration has leveraged protein-protein interactions (PPIs) to study proteins in mRNA life-cycle stages. We generated an RNA-aware, RBP-centric PPI map across the mRNA life cycle in human cells by immunopurification-mass spectrometry (IP-MS) of ∼100 endogenous RBPs with and without RNase, augmented by size exclusion chromatography-mass spectrometry (SEC-MS). We identify 8,742 known and 20,802 unreported interactions between 1,125 proteins and determine that 73% of the IP-MS-identified interactions are RNA regulated. Our interactome links many proteins, some with unknown functions, to specific mRNA life-cycle stages, with nearly half associated with multiple stages. We demonstrate the value of this resource by characterizing the splicing and export functions of enhancer of rudimentary homolog (ERH), and by showing that small nuclear ribonucleoprotein U5 subunit 200 (SNRNP200) interacts with stress granule proteins and binds cytoplasmic RNA differently during stress.


Assuntos
Mapas de Interação de Proteínas , RNA Mensageiro , Proteínas de Ligação a RNA , Humanos , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Ligação Proteica , Células HeLa , Mapeamento de Interação de Proteínas , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Células HEK293 , Espectrometria de Massas , Splicing de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA