Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Diabetes Obes Metab ; 26 Suppl 2: 46-63, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38504134

RESUMO

Over the past few decades, there has been a global surge in the prevalence of obesity, rendering it a globally recognized epidemic. Contrary to simply being a medical condition, obesity is an intricate disease with a multifactorial aetiology. Understanding the precise cause of obesity remains a challenge; nevertheless, there seems to be a complex interplay among biological, psychosocial and behavioural factors. Studies on the genetic factors of obesity have revealed several pathways in the brain that play a crucial role in food intake regulation. The best characterized pathway, thus far, is the leptin-melanocortin pathway, from which disruptions are responsible for the majority of monogenic obesity disorders. The effectiveness of conservative lifestyle interventions in addressing monogenic obesity has been limited. Therefore, it is crucial to complement the management strategy with pharmacological and surgical options. Emphasis has been placed on developing drugs aimed at replacing the absent signals, with the goal of restoring the pathway. In both monogenic and polygenic forms of obesity, outcomes differ across various interventions, likely due to the multifaceted nature of the disease. This underscores the need to explore alternative therapeutic strategies that can mitigate this heterogeneity. Precision medicine can be regarded as a powerful tool that can address this concern, as it values the understanding of the underlying abnormality triggering the disease and provides a tailored treatment accordingly. This would assist in optimizing outcomes of the current therapeutic approaches and even aid in the development of novel treatments capable of more effectively managing the global obesity epidemic.


Assuntos
Manejo da Obesidade , Humanos , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Medicina de Precisão , Obesidade/epidemiologia , Obesidade/genética , Obesidade/terapia , Leptina/genética , Leptina/metabolismo , Melanocortinas/uso terapêutico , Melanocortinas/genética
2.
Eur J Pediatr ; 182(11): 4781-4793, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37607976

RESUMO

Obesity represents a major health problem in the pediatric population with an increasing prevalence worldwide, associated with cardiovascular and metabolic disorders, and due to both genetic and environmental factors. Rare forms of obesity are mostly monogenic, and less frequently due to polygenic influence. Polygenic form of obesity is usually the common obesity with single gene variations exerting smaller impact on weight and is commonly non-syndromic.Non-syndromic monogenic obesity is associated with variants in single genes typically related to the hypothalamic leptin-melanocortin signalling pathway, which plays a key role in hunger and satiety regulation, thus body weight control. Patients with these genetic defects usually present with hyperphagia and early-onset severe obesity. Significant progress in genetic diagnostic testing has recently made for early identification of patients with genetic obesity, which guarantees prompt intervention in terms of therapeutic management of the disease. What is Known: • Obesity represents a major health problem among children and adolescents, with an increasing prevalence worldwide, associated with cardiovascular disease and metabolic abnormalities, and it can be due to both genetic and environmental factors. • Non-syndromic monogenic obesity is linked to modifications in single genes usually involved in the hypothalamic leptin-melanocortin signalling pathway, which plays a key role in hunger and satiety regulation. What is New: • The increasing understanding of rare forms of monogenic obesity has provided significant insights into the genetic causes of pediatric obesity, and our current knowledge of the various genes associated with childhood obesity is rapidly expanding. • A useful diagnostic algorithm for early identification of genetic obesity has been proposed, which can ensure a prompt intervention in terms of therapeutic management of the disease and an early prevention of the development of associated metabolic conditions.


Assuntos
Obesidade Infantil , Criança , Adolescente , Humanos , Obesidade Infantil/diagnóstico , Obesidade Infantil/genética , Leptina/genética , Testes Genéticos , Melanocortinas/genética
3.
Fish Shellfish Immunol ; 131: 838-846, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36334699

RESUMO

The melanocortin system is an ancient neuroendocrine system conserved from teleosts to mammals. The melanocortin system is a set of complex neuroendocrine signaling pathways involved in numerous physiological processes, and particularly associated with the hypothalamic-pituitary-interrenal (HPI) axis response. The melanocortin 1 receptor (MC1R) is the central melanocortin receptor involved in pigmentation in vertebrates, including fish. In order to assess the immune role of MC1R, this study used a homozygous Mc1r knockout zebrafish. Hence, skin cortisol levels, variations in the blood leucocyte population, as well as the expression levels of immune genes in various tissues of wild-type TU strain (Tübingen, Nüsslein-Volhard Lab) (WT) and homozygous mc1r knockout zebrafish (mc1rK.O.) stimulated with LPS was carried out. Results show that the mc1rK.O. mutant fish produce lower levels of cortisol in mucus and fewer macrophages in blood after exposure to LPS compared to control fish. Regarding the expression of immune genes, mutant fish show a significant increase in the expression of the anti-inflammatory interleukin il10. These results suggest that the mc1rK.O. mutant fish may follow an alternative mechanism among the immune responses, where macrophages seem to have an anti-inflammatory function, attenuating nitric oxide (NO) production and providing an advantage through the mitigation of excessive or strong inflammatory reactions. Nonetheless, a lower number of this cell type could imply a reduced phagocytic potential in the face of an infection. At the same time, lower cortisol levels in the mc1rK.O. mutant fish could be an advantage as for the lower susceptibility to stress and the physiological and metabolic consequences of high cortisol levels.


Assuntos
Receptor Tipo 1 de Melanocortina , Peixe-Zebra , Animais , Receptor Tipo 1 de Melanocortina/genética , Receptor Tipo 1 de Melanocortina/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Hidrocortisona , Lipopolissacarídeos , Melanocortinas/genética , Imunidade , Anti-Inflamatórios , Mutação , Mamíferos/metabolismo
4.
Int J Mol Sci ; 23(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35955479

RESUMO

The melanocortin receptors are G-protein-coupled receptors, which are essential components of the hypothalamic-pituitary-adrenal axis, and they mediate the actions of melanocortins (melanocyte-stimulating hormones: α-MSH, ß-MSH, and γ-MSH) as well as the adrenocorticotropin hormone (ACTH) in skin pigmentation, adrenal steroidogenesis, and stress response. Three melanocortin receptor genes (MC1R, MC2R, and MC5R) contribute to the risk of major depressive disorder (MDD), and one melanocortin receptor gene (MC4R) contributes to the risk of type 2 diabetes (T2D). MDD increases T2D risk in drug-naïve patients; thus, MDD and T2D commonly coexist. The five melanocortin receptor genes might confer risk for both disorders. However, they have never been investigated jointly to evaluate their potential contributing roles in the MDD-T2D comorbidity, specifically within families. In 212 Italian families with T2D and MDD, we tested 11 single nucleotide polymorphisms (SNPs) in the MC1R gene, 9 SNPs in MC2R, 3 SNPs in MC3R, 4 SNPs in MC4R, and 2 SNPs in MC5R. The testing used 2-point parametric linkage and linkage disequilibrium (LD) (i.e., association) analysis with four models (dominant with complete penetrance (D1), dominant with incomplete penetrance (D2), recessive with complete penetrance (R1), and recessive with incomplete penetrance (R2)). We detected significant (p ≤ 0.05) linkage and/or LD (i.e., association) to/with MDD for one SNP in MC2R (rs111734014) and one SNP in MC5R (rs2236700), and to/with T2D for three SNPs in MC1R (rs1805007 and rs201192930, and rs2228479), one SNP in MC2R (rs104894660), two SNPs in MC3R (rs3746619 and rs3827103), and one SNP in MC4R genes (Chr18-60372302). The linkage/LD/association was significant across different linkage patterns and different modes of inheritance. All reported variants are novel in MDD and T2D. This is the first study to report risk variants in MC1R, MC2R, and MC3R genes in T2D. MC2R and MC5R genes are replicated in MDD, with one novel variant each. Within our dataset, only the MC2R gene appears to confer risk for both MDD and T2D, albeit with different risk variants. To further clarity the role of the melanocortin receptor genes in MDD-T2D, these findings should be sought among other ethnicities as well.


Assuntos
Transtorno Depressivo Maior , Diabetes Mellitus Tipo 2 , Comorbidade , Depressão , Diabetes Mellitus Tipo 2/genética , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Melanocortinas/genética , Melanocortinas/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Receptores de Melanocortina/genética , Receptores de Melanocortina/metabolismo
5.
J Neurosci ; 40(16): 3165-3177, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32213554

RESUMO

Despite their opposing actions on food intake, POMC and NPY/AgRP neurons in the arcuate nucleus of the hypothalamus (ARH) are derived from the same progenitors that give rise to ARH neurons. However, the mechanism whereby common neuronal precursors subsequently adopt either the anorexigenic (POMC) or the orexigenic (NPY/AgRP) identity remains elusive. We hypothesize that POMC and NPY/AgRP cell fates are specified and maintained by distinct intrinsic factors. In search of them, we profiled the transcriptomes of developing POMC and NPY/AgRP neurons in mice. Moreover, cell-type-specific transcriptomic analyses revealed transcription regulators that are selectively enriched in either population, but whose developmental functions are unknown in these neurons. Among them, we found the expression of the PR domain-containing factor 12 (Prdm12) was enriched in POMC neurons but absent in NPY/AgRP neurons. To study the role of Prdm12 in vivo, we developed and characterized a floxed Prdm12 allele. Selective ablation of Prdm12 in embryonic POMC neurons led to significantly reduced Pomc expression as well as early-onset obesity in mice of either sex that recapitulates symptoms of human POMC deficiency. Interestingly, however, specific deletion of Prdm12 in adult POMC neurons showed that it is no longer required for Pomc expression or energy balance. Collectively, these findings establish a critical role for Prdm12 in the anorexigenic neuron identity and suggest that it acts developmentally to program body weight homeostasis. Finally, the combination of cell-type-specific genomic and genetic analyses provides a means to dissect cellular and functional diversity in the hypothalamus whose neurodevelopment remains poorly studied.SIGNIFICANCE STATEMENT POMC and NPY/AgRP neurons are derived from the same hypothalamic progenitors but have opposing effects on food intake. We profiled the transcriptomes of genetically labeled POMC and NPY/AgRP neurons in the developing mouse hypothalamus to decipher the transcriptional codes behind the versus orexigenic neuron identity. Our analyses revealed 29 transcription regulators that are selectively enriched in one of the two populations. We generated new mouse genetic models to selective ablate one of POMC-neuron enriched transcription factors Prdm12 in developing and adult POMC neurons. Our studies establish a previously unrecognized role for Prdm12 in the anorexigenic neuron identity and suggest that it acts developmentally to program body weight homeostasis.


Assuntos
Hipotálamo/metabolismo , Melanocortinas/metabolismo , Neurônios/metabolismo , Transcriptoma , Proteína Relacionada com Agouti/metabolismo , Animais , Peso Corporal , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Melanocortinas/genética , Camundongos , Camundongos Transgênicos , Pró-Opiomelanocortina/metabolismo
6.
Proc Natl Acad Sci U S A ; 115(43): 11018-11023, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30297428

RESUMO

Erectile dysfunction affects millions of men worldwide. Twin studies support the role of genetic risk factors underlying erectile dysfunction, but no specific genetic variants have been identified. We conducted a large-scale genome-wide association study of erectile dysfunction in 36,649 men in the multiethnic Kaiser Permanente Northern California Genetic Epidemiology Research in Adult Health and Aging cohort. We also undertook replication analyses in 222,358 men from the UK Biobank. In the discovery cohort, we identified a single locus (rs17185536-T) on chromosome 6 near the single-minded family basic helix-loop-helix transcription factor 1 (SIM1) gene that was significantly associated with the risk of erectile dysfunction (odds ratio = 1.26, P = 3.4 × 10-25). The association replicated in the UK Biobank sample (odds ratio = 1.25, P = 6.8 × 10-14), and the effect is independent of known erectile dysfunction risk factors, including body mass index (BMI). The risk locus resides on the same topologically associating domain as SIM1 and interacts with the SIM1 promoter, and the rs17185536-T risk allele showed differential enhancer activity. SIM1 is part of the leptin-melanocortin system, which has an established role in body weight homeostasis and sexual function. Because the variants associated with erectile dysfunction are not associated with differences in BMI, our findings suggest a mechanism that is specific to sexual function.


Assuntos
Disfunção Erétil/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Idoso , Alelos , Índice de Massa Corporal , Estudos de Casos e Controles , Cromossomos Humanos Par 6/genética , Estudos de Coortes , Humanos , Leptina/genética , Masculino , Melanocortinas/genética , Pessoa de Meia-Idade , Regiões Promotoras Genéticas/genética
11.
Mol Biol Rep ; 45(6): 1575-1585, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30288642

RESUMO

This study was designed to screen the crossbred pigs for SNPs in five candidate genes, associated with pork quality traits and to differentiate their genotypes by PCR-RFLP. The results indicated that genotypes of crossbred pigs were NN (90%) and Nn (10%) for RYR1; RR (83%) and QR (17%) for PRKAG3; HH (98%), Hh (1%) and hh (1%) for HFABP; DD (99%) and CD (1%) for MYF-5; and AG (57%), GG (26%) and AA (17%) for MC4R SNPs, respectively. Allelic frequencies for five SNPs {RYR1 (1843C>T), PRKAG3 (c.599G>A), HFABP (c.1322C>T), MYF-5 (c.1205A>C) and MC4R (c.1426A>G)} were 0.95 and 0.05 (N/n), 0.08 and 0.92 (Q/R), 0.99 and 0.01 (H/h), 0.00 and 1.00 (C/D) and 0.45 and 0.55 (A/G), respectively. The effect of RYR1 (1843C>T) SNP was significant on pH45 (P < 0.05), pH24 (P < 0.05) and protein % (P < 0.05). The PRKAG3 (c.599G>A) and MC4R (c.1426A>G) SNP had significant association with dressing percentages. The results revealed that RYR1, PRKAG3 and MC4R SNPs may be used in marker associated selection for pork quality traits in crossbred pigs.


Assuntos
Carne Vermelha/análise , Sus scrofa/genética , Proteínas Quinases Ativadas por AMP/genética , Alelos , Criação de Animais Domésticos/métodos , Animais , Cruzamento , Proteína 3 Ligante de Ácido Graxo/genética , Qualidade dos Alimentos , Frequência do Gene/genética , Estudos de Associação Genética , Genótipo , Haplótipos , Índia , Desequilíbrio de Ligação , Carne/análise , Melanocortinas/genética , Fator Regulador Miogênico 5/genética , Fenótipo , Polimorfismo Genético/genética , Locos de Características Quantitativas , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Suínos/genética
12.
J Anim Physiol Anim Nutr (Berl) ; 102(2): 564-567, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28990229

RESUMO

The aim of the study was to investigate the association of two parts of melanocortin gene (MC4R-1, MC4R-2) and feed intake for V-line rabbits. V-line rabbits were grouped into high and low daily feed intake during the period from 30 to 63 days of age in order to identify MC4R SNPs useful for association study with feed intake. DNA from blood samples of each group was extracted to amplify the MC4R gene. The purified PCR products were sequenced in those had the highest and lowest feed intake. Alignment of sequence data from each group revealed that there is a variation detected in MC4R-1 at nucleotide 35 (T-G) (sense mutation) and another variation was detected in MC4R-2 gene at nucleotide 19 (T-C) (sense mutation) for high feed intake rabbits. These sense mutations lead to transform some amino acids and cause a significant change of the MC4R function. The results of average daily feed intake (ADFI) indicated that group (1) had significantly higher feed intake than group (2) of V-line rabbits. The detected mutations and the analysis of daily feed intake means revealed a significant association between MC4R polymorphism and feed intake in rabbits.


Assuntos
Ingestão de Alimentos/genética , Melanocortinas/genética , Polimorfismo de Nucleotídeo Único , Coelhos/genética , Coelhos/fisiologia , Animais
13.
Diabetologia ; 60(5): 778-783, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28013339

RESUMO

At one level, obesity is clearly a problem of simple physics, a result of eating too much and not expending enough energy. The more complex question, however, is why do some people eat more than others? Studies of human and mouse genetics over the past two decades have uncovered a number of pathways within the brain that play a key role in the control of food intake. A prime example is the leptin-melanocortin pathway, which we now know greatly contributes to mammalian appetitive behaviour. However, genetic disruption of this pathway remains rare and does not represent the major burden of the disease that is carried by those of us with 'common obesity'. In recent years, genome-wide association studies have revealed more than 100 different candidate genes linked to BMI, with most (including many components of the melanocortin pathway) acting in the central nervous system and influencing food intake. So while severe disruption of the melanocortin pathway results in severe obesity, subtle variations in these genes influence where you might sit in the normal distribution of BMI. As we now enter this 'post-genomics' world, can this new information influence our treatment and management of obese patients?


Assuntos
Obesidade/etiologia , Animais , Índice de Massa Corporal , Cães , Ingestão de Alimentos , Estudo de Associação Genômica Ampla , Humanos , Hipotálamo/metabolismo , Melanocortinas/genética
14.
Mol Ecol ; 26(1): 259-276, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27664794

RESUMO

The melanocortin-1 receptor (MC1R) gene influences coloration by altering the expression of genes acting downstream in the melanin synthesis. MC1R belongs to the melanocortin system, a genetic network coding for the ligands that regulate MC1R and other melanocortin receptors controlling different physiological and behavioural traits. The impact of MC1R variants on these regulatory melanocortin genes was never considered, even though MC1R mutations could alter the influence of these genes on coloration (e.g. by decreasing MC1R response to melanocortin ligands). Using barn owl growing feathers, we investigated the differences between MC1R genotypes in the (co)expression of six melanocortin and nine melanogenic-related genes and in the association between melanocortin gene expression and phenotype (feather pheomelanin content). Compared to the MC1R rufous allele, responsible for reddish coloration, the white allele was not only associated with an expected lower expression of melanogenic-related genes (TYR, TYRP1, OCA2, SLC45A2, KIT, DCT) but also with a lower MC1R expression and a higher expression of ASIP, the MC1R antagonist. More importantly, the expression of PCSK2, responsible for the maturation of the MC1R agonist, α-melanocyte-stimulating hormone, was positively related to pheomelanin content in MC1R white homozygotes but not in individuals carrying the MC1R rufous allele. These findings indicate that MC1R mutations not only alter the expression of melanogenic-related genes but also the association between coloration and the expression of melanocortin genes upstream of MC1R. This suggests that MC1R mutations can modulate the regulation of coloration by the pleiotropic melanocortin genes, potentially decoupling the often-observed associations between coloration and other phenotypes.


Assuntos
Melanocortinas/genética , Pigmentação/genética , Receptor Tipo 1 de Melanocortina/genética , Estrigiformes/genética , Alelos , Animais , Plumas , Redes Reguladoras de Genes , Genótipo
15.
Int J Mol Sci ; 18(12)2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29206201

RESUMO

Modular genetic systems and networks have complex evolutionary histories shaped by selection acting on single genes as well as on their integrated function within the network. However, uncovering molecular coevolution requires the detection of coevolving sites in sequences. Detailed knowledge of the functions of each gene in the system is also necessary to identify the selective agents driving coevolution. Using recently developed computational tools, we investigated the effect of positive selection on the coevolution of ten major genes in the melanocortin system, responsible for multiple physiological functions and human diseases. Substitutions driven by positive selection at the melanocortin-1-receptor (MC1R) induced more coevolutionary changes on the system than positive selection on other genes in the system. Contrarily, selection on the highly pleiotropic POMC gene, which orchestrates the activation of the different melanocortin receptors, had the lowest coevolutionary influence. MC1R and possibly its main function, melanin pigmentation, seems to have influenced the evolution of the melanocortin system more than functions regulated by MC2-5Rs such as energy homeostasis, glucocorticoid-dependent stress and anti-inflammatory responses. Although replication in other regulatory systems is needed, this suggests that single functional aspects of a genetic network or system can be of higher importance than others in shaping coevolution among the genes that integrate it.


Assuntos
Melanocortinas/metabolismo , Receptor Tipo 1 de Melanocortina/metabolismo , Animais , Evolução Molecular , Redes Reguladoras de Genes/fisiologia , Melanocortinas/genética , Filogenia , Receptor Tipo 1 de Melanocortina/genética , Seleção Genética/genética
16.
Int J Obes (Lond) ; 38(1): 148-51, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23649472

RESUMO

The central melanocortin system is essential for the regulation of long-term energy homeostasis in humans. Rodent experiments suggest that this system also affects glucose metabolism, in particular by modulating peripheral insulin sensitivity independently of its effect on adiposity. Rare patients with complete genetic defects in the central melanocortin system can provide insight into the role of this system in glucose homeostasis in humans. We here describe the eighth individual with complete proopiomelanocortin (POMC) deficiency and the first with coincidental concomitant type 1 diabetes, which provides a unique opportunity to determine the role of melanocortins in glucose homeostasis in human. Direct sequencing of the POMC gene in this severely obese patient with isolated adrenocorticotropic hormone deficiency identified a homozygous 5' untranslated region mutation -11C>A, which we find to abolish normal POMC protein synthesis, as assessed in vitro. The patient's insulin requirements were as expected for his age and pubertal development. This unique patient suggests that in humans the central melanocortin system does not seem to affect peripheral insulin sensitivity, independently of its effect on adiposity.


Assuntos
Insuficiência Adrenal/genética , Diabetes Mellitus Tipo 1/genética , Resistência à Insulina/genética , Melanocortinas/metabolismo , Obesidade/genética , Obesidade Infantil/genética , Pró-Opiomelanocortina/deficiência , Insuficiência Adrenal/complicações , Criança , Metabolismo Energético , Comportamento Alimentar , Genótipo , Homeostase , Humanos , Masculino , Melanocortinas/genética , Obesidade/complicações , Obesidade Infantil/etiologia , Pró-Opiomelanocortina/genética , Análise de Sequência de DNA , Aumento de Peso/genética
17.
Gen Comp Endocrinol ; 209: 3-10, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24768673

RESUMO

The melanocortin system is one of the most complex of the hormonal systems. It involves different agonists encoded in the multiplex precursor proopiomelanocortin (POMC) or in different genes as ß-defensins, endogenous antagonist, like agouti-signalling protein (ASIP) or agouti-related protein (AGRP), and five different melanocortin receptors (MCRs). Rounds of whole genome duplication events have preceded the functional and molecular diversification of the family in addition some co-evolutionary and tandem duplication processes have been proposed. The evolutionary patterns of the different partners are controversial and different hypotheses have emerged from a study of the sequenced genomes. In this review, we summarize the different evolutionary hypotheses proposed for the different melanocortin partners.


Assuntos
Proteína Agouti Sinalizadora/genética , Proteína Relacionada com Agouti/genética , Evolução Molecular , Melanocortinas , Pró-Opiomelanocortina/genética , Receptores de Melanocortina/genética , Proteína Agouti Sinalizadora/fisiologia , Proteína Relacionada com Agouti/fisiologia , Sequência de Aminoácidos , Animais , Humanos , Melanocortinas/genética , Melanocortinas/metabolismo , Dados de Sequência Molecular , Receptores de Melanocortina/antagonistas & inibidores , Homologia de Sequência
18.
Hum Hered ; 75(2-4): 152-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24081231

RESUMO

BACKGROUND/AIMS: The burden of the childhood obesity epidemic is well recognized; nevertheless, the genetic markers and gene-environment interactions associated with the development of common obesity are still unknown. In this study, candidate genes associated to satiety and appetite control pathways with obesity-related traits were tested in Caucasian preschoolers from the STRONG Kids project. METHODS: Eight genetic variants in genes related to obesity (BDNF, LEPR, FTO, PCSK1, POMC, TUB, LEP, and MC4R) were genotyped in 128 children from the STRONG Kids project (mean age 39.7 months). Data were analyzed for individual associations and to test for genetic predisposition scores (GPSs) with body mass index (BMI) and anthropometric traits (Z-scores, e.g. height-for-age Z-score, HAZ). Covariates included age, sex, and breastfeeding (BF) duration. RESULTS: Obesity and overweight prevalence was 6.3 and 19.5%, respectively, according to age- and sex-specific BMI percentiles. Individual genetic associations of MC4R and LEPR markers with HAZ were strengthened when BF duration was included as a covariate. Our GPSs show that, as the number of risk alleles increased, the risk of higher BMI and HAZ also increased. Overall, the GPSs assembled were able to explain 2-3% of the variability in BMI and HAZ phenotypes. CONCLUSION: Genetic associations with common obesity-related phenotypes were found in the STRONG Kids project. GPSs assembled for specific candidate genes were associated with BMI and HAZ phenotypes.


Assuntos
Apetite/genética , Predisposição Genética para Doença , Variação Genética , Obesidade Infantil/genética , Resposta de Saciedade , Alelos , Estatura/genética , Peso Corporal/genética , Pré-Escolar , Humanos , Leptina/genética , Melanocortinas/genética , Fenótipo , Fatores de Risco , Transdução de Sinais/genética
19.
World J Pediatr ; 20(1): 26-39, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37725322

RESUMO

BACKGROUND: Obesity is a multifactorial chronic disease with a high, increasing worldwide prevalence. Genetic causes account for 7% of the cases in children with extreme obesity. DATA SOURCES: This narrative review was conducted by searching for papers published in the PubMed/MEDLINE, Embase and SciELO databases and included 161 articles. The search used the following search terms: "obesity", "obesity and genetics", "leptin", "Prader-Willi syndrome", and "melanocortins". The types of studies included were systematic reviews, clinical trials, prospective cohort studies, cross-sectional and prospective studies, narrative reviews, and case reports. RESULTS: The leptin-melanocortin pathway is primarily responsible for the regulation of appetite and body weight. However, several important aspects of the pathophysiology of obesity remain unknown. Genetic causes of obesity can be grouped into syndromic, monogenic, and polygenic causes and should be assessed in children with extreme obesity before the age of 5 years, hyperphagia, or a family history of extreme obesity. A microarray study, an analysis of the melanocortin type 4 receptor gene mutations and leptin levels should be performed for this purpose. There are three therapeutic levels: lifestyle modifications, pharmacological treatment, and bariatric surgery. CONCLUSIONS: Genetic study technologies are in constant development; however, we are still far from having a personalized approach to genetic causes of obesity. A significant proportion of the affected individuals are associated with genetic causes; however, there are still barriers to its approach, as it continues to be underdiagnosed. Video Abstract (MP4 1041807 KB).


Assuntos
Leptina , Obesidade Mórbida , Criança , Humanos , Pré-Escolar , Leptina/genética , Estudos Prospectivos , Estudos Transversais , Obesidade , Obesidade Mórbida/genética , Melanocortinas/genética
20.
Obes Rev ; 25(8): e13754, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38779716

RESUMO

The recent development of next-generation sequencing (NGS) technologies has led to an increase of mutation screening reports of monogenic obesity genes in diverse experimental designs. However, no study to date has summarized their findings. Two reviewers independently conducted a systematic review of MEDLINE, Embase, and Web of Science Core Collection databases from inception to September 2022 to identify monogenic non-syndromic obesity gene screening studies. Of 1051 identified references, 31 were eligible after title and abstract screening and 28 after full-text reading and risk of bias and quality assessment. Most studies (82%) used NGS methods. The number of genes screened varied from 2 to 12 genes from the leptin-melanocortin pathway. While all the included studies used in silico tools to assess the functional status of mutations, only 2 performed in vitro tests. The prevalence of carriers of pathogenic/likely pathogenic monogenic mutations is 13.24% on average (heterozygous: 12.31%; homozygous/heterozygous composite: 0.93%). As no study reported the penetrance of pathogenic mutations on obesity, we estimated that homozygous carriers exhibited a complete penetrance (100%) and heterozygous carriers a variable penetrance (3-100%). The review provides an exhaustive description of sequencing methods, functional characterization, prevalence, and penetrance of rare coding mutations in monogenic non-syndromic obesity genes.


Assuntos
Leptina , Melanocortinas , Mutação , Obesidade , Penetrância , Humanos , Obesidade/genética , Leptina/genética , Melanocortinas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Prevalência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA