Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Biochem ; 86: 245-275, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28301739

RESUMO

Metabolism is highly complex and involves thousands of different connected reactions; it is therefore necessary to use mathematical models for holistic studies. The use of mathematical models in biology is referred to as systems biology. In this review, the principles of systems biology are described, and two different types of mathematical models used for studying metabolism are discussed: kinetic models and genome-scale metabolic models. The use of different omics technologies, including transcriptomics, proteomics, metabolomics, and fluxomics, for studying metabolism is presented. Finally, the application of systems biology for analyzing global regulatory structures, engineering the metabolism of cell factories, and analyzing human diseases is discussed.


Assuntos
Genoma , Metabolômica/estatística & dados numéricos , Modelos Biológicos , Modelos Estatísticos , Biologia de Sistemas/estatística & dados numéricos , Transcriptoma , Bactérias/genética , Bactérias/metabolismo , Fungos/genética , Fungos/metabolismo , Humanos , Cinética , Engenharia Metabólica , Metabolômica/métodos , Proteômica , Biologia de Sistemas/métodos
2.
PLoS Comput Biol ; 20(6): e1011912, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38843301

RESUMO

To standardize metabolomics data analysis and facilitate future computational developments, it is essential to have a set of well-defined templates for common data structures. Here we describe a collection of data structures involved in metabolomics data processing and illustrate how they are utilized in a full-featured Python-centric pipeline. We demonstrate the performance of the pipeline, and the details in annotation and quality control using large-scale LC-MS metabolomics and lipidomics data and LC-MS/MS data. Multiple previously published datasets are also reanalyzed to showcase its utility in biological data analysis. This pipeline allows users to streamline data processing, quality control, annotation, and standardization in an efficient and transparent manner. This work fills a major gap in the Python ecosystem for computational metabolomics.


Assuntos
Metabolômica , Software , Metabolômica/métodos , Metabolômica/estatística & dados numéricos , Biologia Computacional/métodos , Lipidômica/métodos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Linguagens de Programação , Humanos
3.
J Proteome Res ; 23(5): 1702-1712, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38640356

RESUMO

Several lossy compressors have achieved superior compression rates for mass spectrometry (MS) data at the cost of storage precision. Currently, the impacts of precision losses on MS data processing have not been thoroughly evaluated, which is critical for the future development of lossy compressors. We first evaluated different storage precision (32 bit and 64 bit) in lossless mzML files. We then applied 10 truncation transformations to generate precision-lossy files: five relative errors for intensities and five absolute errors for m/z values. MZmine3 and XCMS were used for feature detection and GNPS for compound annotation. Lastly, we compared Precision, Recall, F1 - score, and file sizes between lossy files and lossless files under different conditions. Overall, we revealed that the discrepancy between 32 and 64 bit precision was under 1%. We proposed an absolute m/z error of 10-4 and a relative intensity error of 2 × 10-2, adhering to a 5% error threshold (F1 - scores above 95%). For a stricter 1% error threshold (F1 - scores above 99%), an absolute m/z error of 2 × 10-5 and a relative intensity error of 2 × 10-3 were advised. This guidance aims to help researchers improve lossy compression algorithms and minimize the negative effects of precision losses on downstream data processing.


Assuntos
Compressão de Dados , Espectrometria de Massas , Metabolômica , Espectrometria de Massas/métodos , Metabolômica/métodos , Metabolômica/estatística & dados numéricos , Compressão de Dados/métodos , Software , Humanos , Algoritmos
4.
J Am Soc Nephrol ; 33(2): 375-386, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35017168

RESUMO

BACKGROUND: Untargeted plasma metabolomic profiling combined with machine learning (ML) may lead to discovery of metabolic profiles that inform our understanding of pediatric CKD causes. We sought to identify metabolomic signatures in pediatric CKD based on diagnosis: FSGS, obstructive uropathy (OU), aplasia/dysplasia/hypoplasia (A/D/H), and reflux nephropathy (RN). METHODS: Untargeted metabolomic quantification (GC-MS/LC-MS, Metabolon) was performed on plasma from 702 Chronic Kidney Disease in Children study participants (n: FSGS=63, OU=122, A/D/H=109, and RN=86). Lasso regression was used for feature selection, adjusting for clinical covariates. Four methods were then applied to stratify significance: logistic regression, support vector machine, random forest, and extreme gradient boosting. ML training was performed on 80% total cohort subsets and validated on 20% holdout subsets. Important features were selected based on being significant in at least two of the four modeling approaches. We additionally performed pathway enrichment analysis to identify metabolic subpathways associated with CKD cause. RESULTS: ML models were evaluated on holdout subsets with receiver-operator and precision-recall area-under-the-curve, F1 score, and Matthews correlation coefficient. ML models outperformed no-skill prediction. Metabolomic profiles were identified based on cause. FSGS was associated with the sphingomyelin-ceramide axis. FSGS was also associated with individual plasmalogen metabolites and the subpathway. OU was associated with gut microbiome-derived histidine metabolites. CONCLUSION: ML models identified metabolomic signatures based on CKD cause. Using ML techniques in conjunction with traditional biostatistics, we demonstrated that sphingomyelin-ceramide and plasmalogen dysmetabolism are associated with FSGS and that gut microbiome-derived histidine metabolites are associated with OU.


Assuntos
Aprendizado de Máquina , Metaboloma , Metabolômica/métodos , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/metabolismo , Adolescente , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Glomerulosclerose Segmentar e Focal/etiologia , Glomerulosclerose Segmentar e Focal/metabolismo , Humanos , Lactente , Rim/anormalidades , Modelos Logísticos , Masculino , Redes e Vias Metabólicas , Metabolômica/estatística & dados numéricos , Estudos Prospectivos , Máquina de Vetores de Suporte
5.
Hepatology ; 74(5): 2699-2713, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34002868

RESUMO

BACKGROUND AND AIMS: Acute kidney injury (AKI) has a poor prognosis in cirrhosis. Given the variability of creatinine, the prediction of AKI and dialysis by other markers is needed. The aim of this study is to determine the role of serum and urine metabolomics in the prediction of AKI and dialysis in an inpatient cirrhosis cohort. APPROACH AND RESULTS: Inpatients with cirrhosis from 11 North American Consortium of End-stage Liver Disease centers who provided admission serum/urine when they were AKI and dialysis-free were included. Analysis of covariance adjusted for demographics, infection, and cirrhosis severity was performed to identify metabolites that differed among patients (1) who developed AKI or not; (2) required dialysis or not; and/pr (3) within AKI subgroups who needed dialysis or not. We performed random forest and AUC analyses to identify specific metabolite(s) associated with outcomes. Logistic regression with clinical variables with/without metabolites was performed. A total of 602 patients gave serum (218 developed AKI, 80 needed dialysis) and 435 gave urine (164 developed AKI, 61 needed dialysis). For AKI prediction, clinical factor-adjusted AUC was 0.91 for serum and 0.88 for urine. Major metabolites such as uremic toxins (2,3-dihydroxy-5-methylthio-4-pentenoic acid [DMTPA], N2N2dimethylguanosine, uridine/pseudouridine) and tryptophan/tyrosine metabolites (kynunerate, 8-methoxykyunerate, quinolinate) were higher in patients who developed AKI. For dialysis prediction, clinical factor-adjusted AUC was 0.93 for serum and 0.91 for urine. Similar metabolites as AKI were altered here. For dialysis prediction in those with AKI, the AUC was 0.81 and 0.79 for serum/urine. Lower branched-chain amino-acid (BCAA) metabolites but higher cysteine, tryptophan, glutamate, and DMTPA were seen in patients with AKI needing dialysis. Serum/urine metabolites were additive to clinical variables for all outcomes. CONCLUSIONS: Specific admission urinary and serum metabolites were significantly additive to clinical variables to predict AKI development and dialysis initiation in inpatients with cirrhosis. These observations can potentially facilitate earlier initiation of renoprotective measures.


Assuntos
Injúria Renal Aguda/epidemiologia , Doença Hepática Terminal/complicações , Cirrose Hepática/complicações , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/terapia , Idoso , Biomarcadores/sangue , Biomarcadores/metabolismo , Biomarcadores/urina , Doença Hepática Terminal/sangue , Doença Hepática Terminal/metabolismo , Doença Hepática Terminal/urina , Feminino , Humanos , Cirrose Hepática/sangue , Cirrose Hepática/metabolismo , Cirrose Hepática/urina , Masculino , Metabolômica/estatística & dados numéricos , Pessoa de Meia-Idade , Admissão do Paciente/estatística & dados numéricos , Prognóstico , Estudos Prospectivos , Diálise Renal/estatística & dados numéricos , Medição de Risco/métodos , Medição de Risco/estatística & dados numéricos
6.
PLoS Comput Biol ; 17(5): e1008920, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33945539

RESUMO

Specialised metabolites from microbial sources are well-known for their wide range of biomedical applications, particularly as antibiotics. When mining paired genomic and metabolomic data sets for novel specialised metabolites, establishing links between Biosynthetic Gene Clusters (BGCs) and metabolites represents a promising way of finding such novel chemistry. However, due to the lack of detailed biosynthetic knowledge for the majority of predicted BGCs, and the large number of possible combinations, this is not a simple task. This problem is becoming ever more pressing with the increased availability of paired omics data sets. Current tools are not effective at identifying valid links automatically, and manual verification is a considerable bottleneck in natural product research. We demonstrate that using multiple link-scoring functions together makes it easier to prioritise true links relative to others. Based on standardising a commonly used score, we introduce a new, more effective score, and introduce a novel score using an Input-Output Kernel Regression approach. Finally, we present NPLinker, a software framework to link genomic and metabolomic data. Results are verified using publicly available data sets that include validated links.


Assuntos
Genética Microbiana/estatística & dados numéricos , Genômica/estatística & dados numéricos , Metabolômica/estatística & dados numéricos , Software , Vias Biossintéticas/genética , Biologia Computacional , Mineração de Dados , Bases de Dados Factuais , Bases de Dados Genéticas , Genoma Microbiano , Fenômenos Microbiológicos , Família Multigênica , Análise de Regressão
7.
PLoS Comput Biol ; 17(7): e1009234, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34297714

RESUMO

Metabolic adaptations to complex perturbations, like the response to pharmacological treatments in multifactorial diseases such as cancer, can be described through measurements of part of the fluxes and concentrations at the systemic level and individual transporter and enzyme activities at the molecular level. In the framework of Metabolic Control Analysis (MCA), ensembles of linear constraints can be built integrating these measurements at both systemic and molecular levels, which are expressed as relative differences or changes produced in the metabolic adaptation. Here, combining MCA with Linear Programming, an efficient computational strategy is developed to infer additional non-measured changes at the molecular level that are required to satisfy these constraints. An application of this strategy is illustrated by using a set of fluxes, concentrations, and differentially expressed genes that characterize the response to cyclin-dependent kinases 4 and 6 inhibition in colon cancer cells. Decreases and increases in transporter and enzyme individual activities required to reprogram the measured changes in fluxes and concentrations are compared with down-regulated and up-regulated metabolic genes to unveil those that are key molecular drivers of the metabolic response.


Assuntos
Redes e Vias Metabólicas , Modelos Biológicos , Fenômenos Bioquímicos , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Biologia Computacional , Simulação por Computador , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicólise , Células HCT116 , Humanos , Cinética , Modelos Lineares , Análise do Fluxo Metabólico/estatística & dados numéricos , Metabolômica/estatística & dados numéricos , Estudo de Prova de Conceito , Inibidores de Proteínas Quinases/farmacologia , Teoria de Sistemas
8.
Am J Epidemiol ; 190(3): 459-467, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32959873

RESUMO

Many epidemiologic studies use metabolomics for discovery-based research. The degree to which sample handling may influence findings, however, is poorly understood. In 2016, serum samples from 13 volunteers from the US Department of Agriculture's Beltsville Human Nutrition Research Center were subjected to different clotting (30 minutes/120 minutes) and refrigeration (0 minutes/24 hours) conditions, as well as different numbers (0/1/4) and temperatures (ice/refrigerator/room temperature) of thaws. The median absolute percent difference (APD) between metabolite levels and correlations between levels across conditions were estimated for 628 metabolites. The potential for handling artifacts to induce false-positive associations was estimated using variable hypothetical scenarios in which 1%-100% of case samples had different handling than control samples. All handling conditions influenced metabolite levels. Across metabolites, the median APD when extending clotting time was 9.08%. When increasing the number of thaws from 0 to 4, the median APD was 10.05% for ice and 5.54% for room temperature. Metabolite levels were correlated highly across conditions (all r's ≥ 0.84), indicating that relative ranks were preserved. However, if handling varied even modestly by case status, our hypotheticals showed that results can be biased and can result in false-positive findings. Sample handling affects levels of metabolites, and special care should be taken to minimize effects. Shorter room-temperature thaws should be preferred over longer ice thaws, and handling should be meticulously matched by case status.


Assuntos
Coleta de Amostras Sanguíneas/estatística & dados numéricos , Estudos Epidemiológicos , Metaboloma , Metabolômica/estatística & dados numéricos , Coleta de Amostras Sanguíneas/normas , Humanos , Metabolômica/normas , Projetos Piloto , Temperatura , Fatores de Tempo
9.
Brief Bioinform ; 20(1): 203-209, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28968812

RESUMO

Complex diseases cannot be understood only on the basis of single gene, single mRNA transcript or single protein but the effect of their collaborations. The combination consequence in molecular level can be captured by the alterations of metabolites. With the rapidly developing of biomedical instruments and analytical platforms, a large number of metabolite signatures of complex diseases were identified and documented in the literature. Biologists' hardship in the face of this large amount of papers recorded metabolic signatures of experiments' results calls for an automated data repository. Therefore, we developed MetSigDis aiming to provide a comprehensive resource of metabolite alterations in various diseases. MetSigDis is freely available at http://www.bio-annotation.cn/MetSigDis/. By reviewing hundreds of publications, we collected 6849 curated relationships between 2420 metabolites and 129 diseases across eight species involving Homo sapiens and model organisms. All of these relationships were used in constructing a metabolite disease network (MDN). This network displayed scale-free characteristics according to the degree distribution (power-law distribution with R2 = 0.909), and the subnetwork of MDN for interesting diseases and their related metabolites can be visualized in the Web. The common alterations of metabolites reflect the metabolic similarity of diseases, which is measured using Jaccard index. We observed that metabolite-based similar diseases are inclined to share semantic associations of Disease Ontology. A human disease network was then built, where a node represents a disease, and an edge indicates similarity of pair-wise diseases. The network validated the observation that linked diseases based on metabolites should have more overlapped genes.


Assuntos
Doença , Metaboloma , Metabolômica/estatística & dados numéricos , Animais , Biologia Computacional/métodos , Bases de Dados Factuais/estatística & dados numéricos , Doença/genética , Humanos , Ferramenta de Busca
10.
Brief Bioinform ; 20(4): 1269-1279, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-29272335

RESUMO

With the recent developments in the field of multi-omics integration, the interest in factors such as data preprocessing, choice of the integration method and the number of different omics considered had increased. In this work, the impact of these factors is explored when solving the problem of sample classification, by comparing the performances of five unsupervised algorithms: Multiple Canonical Correlation Analysis, Multiple Co-Inertia Analysis, Multiple Factor Analysis, Joint and Individual Variation Explained and Similarity Network Fusion. These methods were applied to three real data sets taken from literature and several ad hoc simulated scenarios to discuss classification performance in different conditions of noise and signal strength across the data types. The impact of experimental design, feature selection and parameter training has been also evaluated to unravel important conditions that can affect the accuracy of the result.


Assuntos
Biologia Computacional/métodos , Integração de Sistemas , Aprendizado de Máquina não Supervisionado , Algoritmos , Animais , Análise por Conglomerados , Simulação por Computador , Bases de Dados Factuais , Análise Fatorial , Genômica/estatística & dados numéricos , Humanos , Metabolômica/estatística & dados numéricos , Camundongos , Modelos Biológicos , Análise Multivariada , Proteômica/estatística & dados numéricos , Biologia de Sistemas , Aprendizado de Máquina não Supervisionado/estatística & dados numéricos
11.
J Hum Genet ; 66(1): 93-102, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32385339

RESUMO

Omics studies attempt to extract meaningful messages from large-scale and high-dimensional data sets by treating the data sets as a whole. The concept of treating data sets as a whole is important in every step of the data-handling procedures: the pre-processing step of data records, the step of statistical analyses and machine learning, translation of the outputs into human natural perceptions, and acceptance of the messages with uncertainty. In the pre-processing, the method by which to control the data quality and batch effects are discussed. For the main analyses, the approaches are divided into two types and their basic concepts are discussed. The first type is the evaluation of many items individually, followed by interpretation of individual items in the context of multiple testing and combination. The second type is the extraction of fewer important aspects from the whole data records. The outputs of the main analyses are translated into natural languages with techniques, such as annotation and ontology. The other technique for making the outputs perceptible is visualization. At the end of this review, one of the most important issues in the interpretation of omics data analyses is discussed. Omics studies have a large amount of information in their data sets, and every approach reveals only a very restricted aspect of the whole data sets. The understandable messages from these studies have unavoidable uncertainty.


Assuntos
Epigenômica/estatística & dados numéricos , Perfilação da Expressão Gênica/estatística & dados numéricos , Genômica/estatística & dados numéricos , Metabolômica/estatística & dados numéricos , Proteômica/estatística & dados numéricos , Interpretação Estatística de Dados , Epigenômica/métodos , Epigenômica/normas , Cromatografia Gasosa-Espectrometria de Massas/métodos , Cromatografia Gasosa-Espectrometria de Massas/normas , Cromatografia Gasosa-Espectrometria de Massas/estatística & dados numéricos , Perfilação da Expressão Gênica/métodos , Perfilação da Expressão Gênica/normas , Genômica/métodos , Genômica/normas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/normas , Sequenciamento de Nucleotídeos em Larga Escala/estatística & dados numéricos , Humanos , Metabolômica/métodos , Metabolômica/normas , Proteômica/métodos , Proteômica/normas , Controle de Qualidade
12.
Neurochem Res ; 46(9): 2495-2504, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34231112

RESUMO

Paired associated stimulation (PAS) has been confirmed to play a role in motor recovery after stroke, but the underlying mechanism has not been fully elucidated. In this study, we employed a comprehensive battery of measurements, including behavioral test, electrophysiology and 1H-NMR approaches, to investigate the therapeutic effects of PAS in rat model of cerebral ischemia and its underlying mechanism. Rats were randomly divided into a transient middle cerebral artery occlusion group (tMCAO group), a tMCAO + PAS group (PAS group), and a sham group. PAS was applied over 7 consecutive days in PAS group. The behavioral function of rats was evaluated by modified Garcia Scores and Rota-rod test. Electrophysiological changes were measured by motor evoked potentials (MEP). Metabolic changes of ischemic penumbra were detected by 1H-NMR. After PAS intervention, the performances on Rota-rod test and Garcia test improved and the amplitude of MEP increased significantly. The gamma-aminobutyric acid (GABA) in penumbra cortex was decreased significantly, whereas the glutamate showed the opposite changes. The results suggested that post-stroke recovery promoted by PAS may be related to the metabolites alteration in ischemic penumbra and also regulate the excitability of motor cortex.


Assuntos
Infarto da Artéria Cerebral Média/metabolismo , AVC Isquêmico/metabolismo , Metaboloma/fisiologia , Animais , Potencial Evocado Motor/fisiologia , Infarto da Artéria Cerebral Média/terapia , AVC Isquêmico/terapia , Masculino , Metabolômica/métodos , Metabolômica/estatística & dados numéricos , Córtex Motor/metabolismo , Análise de Componente Principal , Espectroscopia de Prótons por Ressonância Magnética/estatística & dados numéricos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/fisiologia , Estimulação Magnética Transcraniana/métodos
13.
Prenat Diagn ; 41(6): 743-753, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33440021

RESUMO

OBJECTIVE: Heart anomalies represent nearly one-third of all congenital anomalies. They are currently diagnosed using ultrasound. However, there is a strong need for a more accurate and less operator-dependent screening method. Here we report a metabolomics characterization of maternal serum in order to describe a metabolomic fingerprint representative of heart congenital anomalies. METHODS: Metabolomic profiles were obtained from serum of 350 mothers (280 controls and 70 cases). Nine classification models were built and optimized. An ensemble model was built based on the results from the individual models. RESULTS: The ensemble machine learning model correctly classified all cases and controls. Malonic, 3-hydroxybutyric and methyl glutaric acid, urea, androstenedione, fructose, tocopherol, leucine, and putrescine were determined as the most relevant metabolites in class separation. CONCLUSION: The metabolomic signature of second trimester maternal serum from pregnancies affected by a fetal heart anomaly is quantifiably different from that of a normal pregnancy. Maternal serum metabolomics is a promising tool for the accurate and sensitive screening of such congenital defects. Moreover, the revelation of the associated metabolites and their respective biochemical pathways allows a better understanding of the overall pathophysiology of affected pregnancies.


Assuntos
Cardiopatias Congênitas/diagnóstico , Metabolômica/métodos , Adulto , Feminino , Cardiopatias Congênitas/sangue , Cardiopatias Congênitas/epidemiologia , Humanos , Itália/epidemiologia , Metabolômica/normas , Metabolômica/estatística & dados numéricos , Teste Pré-Natal não Invasivo/métodos , Teste Pré-Natal não Invasivo/estatística & dados numéricos , Gravidez , Estudos Prospectivos
14.
Magn Reson Chem ; 59(2): 85-98, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32786028

RESUMO

Spondyloarthritis (SpA) is a common rheumatic disorder of the young, marred by delay in diagnosis, and paucity of biomarkers of disease activity. The present study aimed to explore the potential of serum metabolic profiling of patients with SpA to identify biomarker for the diagnosis and assessment of disease activity. The serum metabolic profiles of 81 patients with SpA were compared with that of 86 healthy controls (HCs) using nuclear magnetic resonance (NMR)-based metabolomics approach. Seventeen patients were followed up after 3 months of standard treatment, and paired sera were analyzed for effects of therapy. Comparisons were done using the multivariate partial least squares discriminant analysis (PLS-DA), and the discriminatory metabolic entities were identified based on variable importance in projection (VIP) statistics and further evaluated for statistical significance (p value < 0.05). We found that the serum metabolic profiles differed significantly in SpA as compared with HCs. Compared with HC, the SpA patients were characterized by increased serum levels of amino acids, acetate, choline, N-acetyl glycoproteins, Nα-acetyl lysine, creatine/creatinine, and so forth and decreased levels of low-/very low-density lipoproteins and polyunsaturated lipids. PLS-DA analysis also revealed metabolic differences between axial and peripheral SpA patients. Further metabolite profiles were found to differ with disease activity and treatment in responding patients. The results presented in this study demonstrate the potential of serum metabolic profiling of axial SpA as a useful tool for diagnosis, prediction of peripheral disease, assessment of disease activity, and treatment response.


Assuntos
Artrite Reativa/diagnóstico , Biomarcadores/sangue , Adulto , Artrite Reativa/sangue , Artrite Reumatoide/sangue , Artrite Reumatoide/diagnóstico , Diagnóstico Diferencial , Análise Discriminante , Feminino , Humanos , Análise dos Mínimos Quadrados , Masculino , Metaboloma , Metabolômica/estatística & dados numéricos , Pessoa de Meia-Idade , Ressonância Magnética Nuclear Biomolecular , Análise de Componente Principal , Adulto Jovem
15.
Molecules ; 26(5)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807505

RESUMO

Plum brandy (Slivovitz (en); Sljivovica(sr)) is an alcoholic beverage that is increasingly consumed all over the world. Its quality assessment has become of great importance. In our study, the main volatiles and aroma compounds of 108 non-aged plum brandies originating from three plum cultivars, and fermented using different conditions, were investigated. The chemical profiles obtained after two-step GC-FID-MS analysis were subjected to multivariate data analysis to reveal the peculiarity in different cultivars and fermentation process. Correlation of plum brandy chemical composition with its sensory characteristics obtained by expert commission was also performed. The utilization of PCA and OPLS-DA multivariate analysis methods on GC-FID-MS, enabled discrimination of brandy samples based on differences in plum varieties, pH of plum mash, and addition of selected yeast or enzymes during fermentation. The correlation of brandy GC-FID-MS profiles with their sensory properties was achieved by OPLS multivariate analysis. Proposed workflow confirmed the potential of GC-FID-MS in combination with multivariate data analysis that can be applied to assess the plum brandy quality.


Assuntos
Bebidas Alcoólicas/análise , Análise de Alimentos/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metabolômica/métodos , Prunus domestica , Bebidas Alcoólicas/microbiologia , Fermentação , Análise de Alimentos/estatística & dados numéricos , Cromatografia Gasosa-Espectrometria de Massas/estatística & dados numéricos , Humanos , Metabolômica/estatística & dados numéricos , Análise Multivariada , Saccharomyces cerevisiae , Paladar , Compostos Orgânicos Voláteis/análise , Leveduras
16.
Iran J Med Sci ; 46(1): 43-51, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33487791

RESUMO

Background: Cutaneous leishmaniasis caused by Leishmania species (L. spp) is one of the most important parasitic diseases in humans. To gain information on the metabolite variations and biochemical pathways between L. spp, we used the comparative metabolome of metacyclic promastigotes in the Iranian isolates of L. major and L. tropica by proton nuclear magnetic resonance (1H-NMR). Methods: L. tropica and L. major were collected from three areas of Iran, namely Gonbad, Mashhad, and Bam, between 2017 and 2018, and were cultured. The metacyclic promastigote of each species was separated, and cell metabolites were extracted. 1H-NMR spectroscopy was applied, and the data were processed using ProMatab in MATLAB (version 7.8.0.347). Multivariate statistical analyses, including the principal component analysis and the orthogonal projections to latent structures discriminant analysis, were performed to identify the discriminative metabolites between the two L. spp. Metabolites with variable influences in projection values of more than one and a P value of less than 0.05 were marked as significant differences. Results: A set of metabolites were detected, and 24 significantly differentially expressed metabolites were found between the metacyclic forms of L. major and L. tropica isolates. The top differential metabolites were methionine, aspartate, betaine, and acetylcarnitine, which were increased more in L. tropica than L. major (P<0.005), whereas asparagine, 3-hydroxybutyrate, L-proline, and kynurenine were increased significantly in L. major (P<0.01). The significantly altered metabolites were involved in eight metabolic pathways. Conclusion: Metabolomics, as an invaluable technique, yielded significant metabolites, and their biochemical pathways related to the metacyclic promastigotes of L. major and L. tropica. The findings offer greater insights into parasite biology and how pathogens adapt to their hosts.


Assuntos
Leishmaniose/fisiopatologia , Metabolômica/métodos , Humanos , Irã (Geográfico)/epidemiologia , Leishmania major/efeitos dos fármacos , Leishmania major/patogenicidade , Leishmania tropica/efeitos dos fármacos , Leishmania tropica/patogenicidade , Leishmaniose/diagnóstico , Leishmaniose/epidemiologia , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/estatística & dados numéricos
17.
Anal Chem ; 92(2): 1856-1864, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31804057

RESUMO

Small-molecule drugs and toxicants commonly interact with more than a single protein target, each of which may have unique effects on cellular phenotype. Although untargeted metabolomics is often applied to understand the mode of action of these chemicals, simple pairwise comparisons of treated and untreated samples are insufficient to resolve the effects of disrupting two or more independent protein targets. Here, we introduce a workflow for dose-response metabolomics to evaluate chemicals that potentially affect multiple proteins with different potencies. Our approach relies on treating samples with various concentrations of compound prior to analysis with mass spectrometry-based metabolomics. Data are then processed with software we developed called TOXcms, which statistically evaluates dose-response trends for each metabolomic signal according to user-defined tolerances and subsequently groups those that follow the same pattern. Although TOXcms was built upon the XCMS framework, it is compatible with any metabolomic data-processing software. Additionally, to enable correlation of dose responses beyond those that can be measured by metabolomics, TOXcms also accepts data from respirometry, cell death assays, other omic platforms, etc. In this work, we primarily focus on applying dose-response metabolomics to find off-target effects of drugs. Using metformin and etomoxir as examples, we demonstrate that each group of dose-response patterns identified by TOXcms signifies a metabolic response to a different protein target with a unique drug binding affinity. TOXcms is freely available on our laboratory website at http://pattilab.wustl.edu/software/toxcms .


Assuntos
Compostos de Epóxi/farmacologia , Metabolômica/métodos , Metformina/farmacologia , RNA Interferente Pequeno/farmacologia , Rotenona/farmacologia , Software/estatística & dados numéricos , Algoritmos , Carnitina O-Palmitoiltransferase/genética , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Metabolômica/estatística & dados numéricos , RNA Interferente Pequeno/genética
18.
Nucleic Acids Res ; 46(W1): W537-W544, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29790989

RESUMO

Galaxy (homepage: https://galaxyproject.org, main public server: https://usegalaxy.org) is a web-based scientific analysis platform used by tens of thousands of scientists across the world to analyze large biomedical datasets such as those found in genomics, proteomics, metabolomics and imaging. Started in 2005, Galaxy continues to focus on three key challenges of data-driven biomedical science: making analyses accessible to all researchers, ensuring analyses are completely reproducible, and making it simple to communicate analyses so that they can be reused and extended. During the last two years, the Galaxy team and the open-source community around Galaxy have made substantial improvements to Galaxy's core framework, user interface, tools, and training materials. Framework and user interface improvements now enable Galaxy to be used for analyzing tens of thousands of datasets, and >5500 tools are now available from the Galaxy ToolShed. The Galaxy community has led an effort to create numerous high-quality tutorials focused on common types of genomic analyses. The Galaxy developer and user communities continue to grow and be integral to Galaxy's development. The number of Galaxy public servers, developers contributing to the Galaxy framework and its tools, and users of the main Galaxy server have all increased substantially.


Assuntos
Genômica/estatística & dados numéricos , Metabolômica/estatística & dados numéricos , Imagem Molecular/estatística & dados numéricos , Proteômica/estatística & dados numéricos , Interface Usuário-Computador , Conjuntos de Dados como Assunto , Humanos , Disseminação de Informação , Cooperação Internacional , Internet , Reprodutibilidade dos Testes
19.
Nucleic Acids Res ; 46(W1): W486-W494, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29762782

RESUMO

We present a new update to MetaboAnalyst (version 4.0) for comprehensive metabolomic data analysis, interpretation, and integration with other omics data. Since the last major update in 2015, MetaboAnalyst has continued to evolve based on user feedback and technological advancements in the field. For this year's update, four new key features have been added to MetaboAnalyst 4.0, including: (1) real-time R command tracking and display coupled with the release of a companion MetaboAnalystR package; (2) a MS Peaks to Pathways module for prediction of pathway activity from untargeted mass spectral data using the mummichog algorithm; (3) a Biomarker Meta-analysis module for robust biomarker identification through the combination of multiple metabolomic datasets and (4) a Network Explorer module for integrative analysis of metabolomics, metagenomics, and/or transcriptomics data. The user interface of MetaboAnalyst 4.0 has been reengineered to provide a more modern look and feel, as well as to give more space and flexibility to introduce new functions. The underlying knowledgebases (compound libraries, metabolite sets, and metabolic pathways) have also been updated based on the latest data from the Human Metabolome Database (HMDB). A Docker image of MetaboAnalyst is also available to facilitate download and local installation of MetaboAnalyst. MetaboAnalyst 4.0 is freely available at http://metaboanalyst.ca.


Assuntos
Algoritmos , Redes e Vias Metabólicas/genética , Metaboloma/genética , Metabolômica/estatística & dados numéricos , Interface Usuário-Computador , Biomarcadores/metabolismo , Bases de Dados Factuais , Conjuntos de Dados como Assunto , Humanos , Espectrometria de Massas/estatística & dados numéricos , Metabolômica/métodos
20.
Metab Brain Dis ; 35(6): 979-990, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32440806

RESUMO

BACKGROUND: Our understanding of the molecular mechanisms of depression remains largely unclear. Previous studies have shown that the prefrontal cortex (PFC) is among most important brain regions that exhibits metabolic changes in depression. A comprehensive analysis based on candidate metabolites in the PFC of animal models of depression will provide valuable information for understanding the pathogenic mechanism underlying depression. METHODS: Candidate metabolites that are potentially involved in the metabolic changes of the PFC in animal models of depression were retrieved from the Metabolite Network of Depression Database. The significantly altered metabolic pathways were revealed by canonical pathway analysis, and the relationships among altered pathways were explored by pathway crosstalk analysis. Additionally, drug-associated pathways were investigated using drug-associated metabolite set enrichment analysis. The interrelationships among metabolites, proteins, and other molecules were analyzed by molecular network analysis. RESULTS: Among 88 candidate metabolites, 87 altered canonical pathways were identified, and the top five ranked pathways were tRNA charging, the endocannabinoid neuronal synapse pathway, (S)-reticuline biosynthesis II, catecholamine biosynthesis, and GABA receptor signaling. Pathway crosstalk analysis revealed that these altered pathways were grouped into three interlinked modules involved in amino acid metabolism, nervous system signaling/neurotransmitters, and nucleotide metabolism. In the drug-associated metabolite set enrichment analysis, the main enriched drug pathways were opioid-related and antibiotic-related action pathways. Furthermore, the most significantly altered molecular network was involved in amino acid metabolism, molecular transport, and small molecule biochemistry. CONCLUSIONS: This study provides important clues for the metabolic characteristics of the PFC in depression.


Assuntos
Bases de Dados Factuais , Depressão/metabolismo , Modelos Animais de Doenças , Redes e Vias Metabólicas/fisiologia , Metabolômica/métodos , Córtex Pré-Frontal/metabolismo , Animais , Bases de Dados Factuais/estatística & dados numéricos , Depressão/patologia , Depressão/psicologia , Metabolômica/estatística & dados numéricos , Camundongos , Córtex Pré-Frontal/patologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA