Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 632(8025): 686-694, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39112701

RESUMO

The dopamine transporter has a crucial role in regulation of dopaminergic neurotransmission by uptake of dopamine into neurons and contributes to the abuse potential of psychomotor stimulants1-3. Despite decades of study, the structure, substrate binding, conformational transitions and drug-binding poses of human dopamine transporter remain unknown. Here we report structures of the human dopamine transporter in its apo state, and in complex with the substrate dopamine, the attention deficit hyperactivity disorder drug methylphenidate, and the dopamine-uptake inhibitors GBR12909 and benztropine. The dopamine-bound structure in the occluded state precisely illustrates the binding position of dopamine and associated ions. The structures bound to drugs are captured in outward-facing or inward-facing states, illuminating distinct binding modes and conformational transitions during substrate transport. Unlike the outward-facing state, which is stabilized by cocaine, GBR12909 and benztropine stabilize the dopamine transporter in the inward-facing state, revealing previously unseen drug-binding poses and providing insights into how they counteract the effects of cocaine. This study establishes a framework for understanding the functioning of the human dopamine transporter and developing therapeutic interventions for dopamine transporter-related disorders and cocaine addiction.


Assuntos
Benzotropina , Proteínas da Membrana Plasmática de Transporte de Dopamina , Inibidores da Captação de Dopamina , Dopamina , Humanos , Apoproteínas/metabolismo , Apoproteínas/química , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Benzotropina/metabolismo , Benzotropina/farmacologia , Sítios de Ligação , Cocaína/farmacologia , Cocaína/metabolismo , Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/antagonistas & inibidores , Proteínas da Membrana Plasmática de Transporte de Dopamina/química , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Inibidores da Captação de Dopamina/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Metilfenidato/metabolismo , Metilfenidato/farmacologia , Modelos Moleculares , Piperazinas/metabolismo , Piperazinas/farmacologia , Ligação Proteica , Conformação Proteica
2.
J Neurochem ; 164(5): 613-623, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36420597

RESUMO

While the illicit use and misuse of stimulants like cocaine and methylphenidate (MP) has increased, there remains no FDA-approved treatments for psychostimulant use disorders (PSUD). Oxytocin (OT) has shown promise as a potential pharmacotherapy for PSUD. Dopamine (DA) neurotransmission plays a significant role in PSUD. We have recently shown that OT blunts the reinforcing effects of MP but, surprisingly, enhanced MP-induced stimulation of DA levels. Such effects have been suggested as a result of activation of OT receptors or, alternatively, could be mediated by direct actions of OT on MP blockade of the DA transporter. Here, we employed fast scan cyclic voltammetry (FSCV) to investigate the effects of systemic OT on MP-induced changes in the dynamics of DA, phasic release and uptake, in the nucleus accumbens shell (NAS) of Sprague-Dawley rats. We also tested the systemic effects of an antagonist of OT receptors, atosiban, to counteract the OT enhancement of dopaminergic effects of MP under microdialysis procedures in the NAS in rats. Administration of OT alone (2 mg/kg; i.p.) did not significantly modify evoked NAS DA dynamics measured by FSCV, and when administered 10 min before MP (0.1, 0.3, 1.0 mg/kg; i.v.), OT did not potentiate MP-induced increases in phasic DA release and did not alter DA clearance rate, suggesting no direct interactions of OT with the MP-induced blockade of DA uptake. Also, OT alone did not elicit significant changes in tonic, extracellular NAS DA levels measured by microdialysis. However, consistent with previous studies, we observed that OT pretreatments (2 mg/kg; i.p.) potentiated MP-induced (0.1, 0.3, 1.0 mg/kg; i.v.) efflux of extracellular NAS DA levels. This effect was abolished when rats were pretreated with atosiban (2 mg/kg; i.p.), suggesting that OT receptors mediate this OT action. Overall, our results suggest that OT receptors mediated OT potentiation of MP-induced stimulation of extracellular NAS DA levels, likely driven by modulation of DA receptor signaling pathways, without affecting MP blockade of DAT.


Assuntos
Estimulantes do Sistema Nervoso Central , Metilfenidato , Ratos , Animais , Metilfenidato/metabolismo , Metilfenidato/farmacologia , Dopamina/metabolismo , Ocitocina/metabolismo , Ocitocina/farmacologia , Receptores de Ocitocina/metabolismo , Ratos Sprague-Dawley , Estimulantes do Sistema Nervoso Central/farmacologia , Núcleo Accumbens
3.
Hum Mol Genet ; 29(14): 2408-2419, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32588892

RESUMO

Cyclin-dependent kinase-like 5 (CDKL5), a serine-threonine kinase encoded by an X-linked gene, is highly expressed in the mammalian forebrain. Mutations in this gene cause CDKL5 deficiency disorder, a neurodevelopmental encephalopathy characterized by early-onset seizures, motor dysfunction, and intellectual disability. We previously found that mice lacking CDKL5 exhibit hyperlocomotion and increased impulsivity, resembling the core symptoms in attention-deficit hyperactivity disorder (ADHD). Here, we report the potential neural mechanisms and treatment for hyperlocomotion induced by CDKL5 deficiency. Our results showed that loss of CDKL5 decreases the proportion of phosphorylated dopamine transporter (DAT) in the rostral striatum, leading to increased levels of extracellular dopamine and hyperlocomotion. Administration of methylphenidate (MPH), a DAT inhibitor clinically effective to improve symptoms in ADHD, significantly alleviated the hyperlocomotion phenotype in Cdkl5 null mice. In addition, the improved behavioral effects of MPH were accompanied by a region-specific restoration of phosphorylated dopamine- and cAMP-regulated phosphoprotein Mr 32 kDa, a key signaling protein for striatal motor output. Finally, mice carrying a Cdkl5 deletion selectively in DAT-expressing dopaminergic neurons, but not dopamine receptive neurons, recapitulated the hyperlocomotion phenotype found in Cdkl5 null mice. Our findings suggest that CDKL5 is essential to control locomotor behavior by regulating region-specific dopamine content and phosphorylation of dopamine signaling proteins in the striatum. The direct, as well as indirect, target proteins regulated by CDKL5 may play a key role in movement control and the therapeutic development for hyperactivity disorders.


Assuntos
Síndromes Epilépticas/genética , Hipercinese/genética , Proteínas Serina-Treonina Quinases/genética , Espasmos Infantis/genética , Animais , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Síndromes Epilépticas/patologia , Transtornos Neurológicos da Marcha/genética , Transtornos Neurológicos da Marcha/metabolismo , Transtornos Neurológicos da Marcha/patologia , Humanos , Hipercinese/metabolismo , Hipercinese/patologia , Metilfenidato/metabolismo , Camundongos , Camundongos Knockout , Espasmos Infantis/patologia
4.
Synapse ; 76(9-10): 17-30, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35730134

RESUMO

Methylphenidate (MP) is a psychostimulant chronically prescribed for the treatment of attention deficit hyperactivity disorder (ADHD). Additionally, MP users may take breaks from using the medication during "drug holidays," which may include short-term or long-term breaks from medication. The present study utilized fluorodeoxyglucose (FDG) positron emission tomography (PET) to analyze the effects of chronic oral MP use and abstinence on brain glucose metabolism (BGluM) in rats at two different doses: high dose (HD) and low dose (LD). The schedule of treatment was 3 weeks on-treatment and 1 week off-treatment for a period of 13 weeks, followed by an abstinence period of 4 total weeks. Results showed that chronic MP treatment using this schedule did not lead to significant changes in BGluM when comparing the control to HD MP groups. However, significant activation in BGluM was observed after periods of abstinence between control and HD MP rats in the following brain regions: the trigeminal nucleus, reticular nucleus, inferior olive, lemniscus, mesencephalic reticular formation, inferior colliculus, and several areas of the cerebellum. These brain regions and functional brain circuit play a role in facial sensory function, the auditory pathway, organizing connections between the thalamus and cortex, motor learning, auditory function, control over eye movement, auditory information integration, and both motor and cognitive functions. These results, when considered with previous studies, indicate that MP schedule of use may have differing effects on BGluM. BGluM following long-term MP use was dependent on MP dose and schedule of use in rats. This study was conducted in non-ADHD model rats with the aim to establish an understanding of the effects of MP itself, especially given the growing chronic off-label and prescribed use of MP. Further studies are needed for analysis of the drug's effects on an ADHD model.


Assuntos
Estimulantes do Sistema Nervoso Central , Metilfenidato , Animais , Encéfalo/metabolismo , Estimulantes do Sistema Nervoso Central/farmacologia , Glucose , Metilfenidato/metabolismo , Metilfenidato/farmacologia , Tomografia por Emissão de Pósitrons , Ratos
5.
Neurobiol Dis ; 138: 104789, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32032728

RESUMO

Loss of dopaminergic nigrostriatal neurons and fibrillary α-synuclein (α-syn) aggregation in Lewy bodies (LB) characterize Parkinson's disease (PD). We recently found that Synapsin III (Syn III), a phosphoprotein regulating dopamine (DA) release with α-syn, is another key component of LB fibrils in the brain of PD patients and acts as a crucial mediator of α-syn aggregation and toxicity. Methylphenidate (MPH), a monoamine reuptake inhibitor (MRI) efficiently counteracting freezing of gait in advanced PD patients, can bind α-syn and controls α-syn-mediated DA overflow and presynaptic compartmentalization. Interestingly, MPH results also efficient for the treatment of attention deficits and hyperactivity disorder (ADHD), a neurodevelopmental psychiatric syndrome associated with Syn III and α-syn polymorphisms and constituting a risk factor for the development of LB disorders. Here, we studied α-syn/Syn III co-deposition and longitudinal changes of α-syn, Syn III and DA transporter (DAT) striatal levels in nigrostriatal neurons of a PD model, the human C-terminally truncated (1-120) α-syn transgenic (SYN120 tg) mouse, in comparison with C57BL/6J wild type (wt) and C57BL/6JOlaHsd α-syn null littermates. Then, we analyzed the locomotor response of these animals to an acute administration of MPH (d-threo) and other MRIs: cocaine, that we previously found to stimulate Syn III-reliant DA release in the absence of α-syn, or the selective DAT blocker GBR-12935, along aging. Finally, we assessed whether these drugs modulate α-syn/Syn III interaction by fluorescence resonance energy transfer (FRET) and performed in silico studies engendering a heuristic model of the α-syn conformations stabilized upon MPH binding. We found that only MPH was able to over-stimulate a Syn III-dependent/DAT-independent locomotor activity in the aged SYN120 tg mice showing α-syn/Syn III co-aggregates. MPH enhanced full length (fl) α-syn/Syn III and even more (1-120) α-syn/Syn III interaction in cells exhibiting α-syn/Syn III inclusions. Moreover, in silico studies confirmed that MPH may reduce α-syn fibrillation by stabilizing a protein conformation with increased lipid binding predisposition. Our observations indicate that the motor-stimulating effect of MPH can be positively fostered in the presence of α-syn/Syn III co-aggregation. This evidence holds significant implications for PD and ADHD therapeutic management.


Assuntos
Metilfenidato/metabolismo , Sinapsinas/metabolismo , alfa-Sinucleína/metabolismo , Animais , Cocaína/farmacologia , Corpo Estriado/metabolismo , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Transtornos Neurológicos da Marcha/metabolismo , Corpos de Lewy/metabolismo , Metilfenidato/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Doença de Parkinson/metabolismo , Substância Negra/metabolismo , Sinucleinopatias
6.
Ther Drug Monit ; 40(4): 435-442, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29750737

RESUMO

BACKGROUND: Therapeutic drug monitoring is becoming increasingly important in psychiatric therapy, especially in children. However, for several reasons, it cannot yet be implemented as a daily routine in clinical or outpatient settings. To evaluate new, noninvasive procedures, blood and saliva (oral fluid) samples were collected from patients with attention-deficit/hyperactivity disorder (ADHD) who were also being administered methylphenidate (MPH). The study's main purposes were to correlate MPH concentrations in serum and saliva between subjects and to analyze intraindividual variation of serum concentration. METHODS: Thirty-six patients with ADHD (27 children and 9 adults) on MPH medication were included for drug analysis. MPH and its major metabolite ritalinic acid were quantified using liquid chromatography-tandem mass spectrometry measurements. The following correlations were investigated: (1) between drug concentrations in serum and saliva, and (2) between pH value and saliva to serum concentration ratio. Furthermore, the mean intraindividual MPH-concentration fluctuation in saliva under constant frame conditions was analyzed. RESULTS: After quantification, MPH concentrations were approximately 5 times higher in the saliva than in the serum, whereas the concentrations of ritalinic acid were much lower in saliva. We found significant correlations between concentrations of MPH in serum and saliva (r = 0.51, P < 0.05). Saliva MPH measures, compared with serum, were pH-dependent (r = -0.56, P < 0.01). Daily coefficient of variance of saliva concentration in children taking constant medication was 27.3% (11%-42%), whereas the coefficient of variance for the ratio of saliva to serum was 122% (2%-2060%). CONCLUSIONS: Our data indicate that the interindividual variation in saliva to serum concentrations is rather high, whereas the intraindividual variation is fairly low, as already shown in the literature for repeated citalopram serum measurements. Saliva may well serve as an alternative matrix for therapeutic drug monitoring of MPH in patients with ADHD, especially for follow-up examinations. Future research should focus on analyzing the relationship between drug levels in saliva and clinical effects as well as on understanding the mechanisms that generate saliva drug concentrations. These are essential steps before potential clinical use.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Monitoramento de Medicamentos/métodos , Metilfenidato/sangue , Metilfenidato/metabolismo , Adolescente , Adulto , Transtorno do Deficit de Atenção com Hiperatividade/sangue , Estimulantes do Sistema Nervoso Central/sangue , Estimulantes do Sistema Nervoso Central/metabolismo , Criança , Feminino , Humanos , Concentração de Íons de Hidrogênio , Masculino , Metilfenidato/análogos & derivados , Pessoa de Meia-Idade , Saliva/metabolismo , Adulto Jovem
7.
Behav Genet ; 47(5): 564-580, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28744604

RESUMO

Impulsivity, the predisposition to act prematurely without foresight, is associated with a number of neuropsychiatric disorders, including attention-deficit/hyperactivity disorder (ADHD). Identifying genetic underpinnings of impulsive behavior may help decipher the complex etiology and neurobiological factors of disorders marked by impulsivity. To identify potential genetic factors of impulsivity, we examined common differentially expressed genes (DEGs) in the prefrontal cortex (PFC) of adolescent SHR/NCrl and Wistar rats, which showed marked decrease in preference for the large but delayed reward, compared with WKY/NCrl rats, in the delay discounting task. Of these DEGs, we examined drug-responsive transcripts whose mRNA levels were altered following treatment (in SHR/NCrl and Wistar rats) with drugs that alleviate impulsivity, namely, the ADHD medications methylphenidate and atomoxetine. Prefrontal cortical genetic overlaps between SHR/NCrl and Wistar rats in comparison with WKY/NCrl included genes associated with transcription (e.g., Btg2, Fos, Nr4a2), synaptic plasticity (e.g., Arc, Homer2), and neuron apoptosis (Grik2, Nmnat1). Treatment with methylphenidate and/or atomoxetine increased choice of the large, delayed reward in SHR/NCrl and Wistar rats and changed, in varying degrees, mRNA levels of Nr4a2, Btg2, and Homer2, genes with previously described roles in neuropsychiatric disorders characterized by impulsivity. While further studies are required, we dissected potential genetic factors that may influence impulsivity by identifying genetic overlaps in the PFC of "impulsive" SHR/NCrl and Wistar rats. Notably, these are also drug-responsive transcripts which may be studied further as biomarkers to predict response to ADHD drugs, and as potential targets for the development of treatments to improve impulsivity.


Assuntos
Comportamento Impulsivo/efeitos dos fármacos , Comportamento Impulsivo/fisiologia , Córtex Pré-Frontal/efeitos dos fármacos , Animais , Cloridrato de Atomoxetina/metabolismo , Transtorno do Deficit de Atenção com Hiperatividade/genética , Comportamento de Escolha , Modelos Animais de Doenças , Masculino , Metilfenidato/metabolismo , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Endogâmicos SHR/genética , Ratos Endogâmicos SHR/metabolismo , Ratos Endogâmicos WKY/genética , Ratos Endogâmicos WKY/metabolismo , Ratos Wistar/genética , Ratos Wistar/metabolismo
8.
Drug Metab Dispos ; 44(3): 418-21, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26729760

RESUMO

The postulate that twice the milligram/kilogram dose of dl-methylphenidate (dl-MPH) would result in equal exposure to d-MPH compared with half that milligram/kilogram dose of the chiral switch product dexmethylphenidate (d-MPH) was tested. Using a randomized, crossover study design, 12 men and 12 women received either immediate-release (IR) dl-MPH (0.3 mg/kg) or IR d-MPH (0.15 mg/kg). Relative bioavailability comparisons included partial area under the plasma concentration-time curves (pAUC0-3 h) for d-MPH. The pAUC0-3 h is a new regulatory metric presently only required for bioequivalence testing of a specific dl-MPH modified-release product. The geometric mean ratios for both the Cmax and area under the plasma concentration-time curve (AUC0-∞) were within the 90% confidence interval (CI) regulatory range of 0.8-1.25, indicating that these two drugs were bioequivalent in terms of d-MPH. However, the pAUC0-3 h geometric mean ratio for d-MPH after IR dl-MPH versus IR d-MPH was 0.76 (P < 0.001; 90% CI, 0.67-0.87), showing significantly less early exposure to the d-isomer than IR d-MPH. The 1-hour d-MPH concentration after dl-MPH was 56% of that after the enantiopure drug. The maximum d-MPH plasma concentration (Cmax) for dl-MPH was also significantly lower for dl-MPH (P < 0.05; CI, 1.02-1.19), whereas the AUC0-∞ ratio of 0.89 was not significantly different (P = 0.21; CI, 0.98-1.13). The AUC0-3 h difference reported here points to the potential limitations of using bioequivalence for sound predictions of dose-response relationships. Knowledge of the greater early exposure to d-MPH after the pure d-isomer drug compared with the racemate may contribute to drug individualization/optimization in the treatment of attention deficit hyperactivity disorder.


Assuntos
Preparações de Ação Retardada/metabolismo , Cloridrato de Dexmetilfenidato/metabolismo , Metilfenidato/metabolismo , Adulto , Área Sob a Curva , Disponibilidade Biológica , Estudos Cross-Over , Feminino , Humanos , Masculino , Adulto Jovem
9.
Anal Chem ; 87(8): 4063-71, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25856152

RESUMO

We use time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging to investigate the effects of orally administrated methylphenidate on lipids in the brain of Drosophila melanogaster (fruit fly), a major invertebrate model system in biological study and neuroscience. TOF-SIMS imaging was carried out using a recently designed high energy 40 keV Ar4000(+) gas cluster ion gun which demonstrated improved sensitivity for intact lipids in the fly brain compared to the 40 keV C60(+) primary ion gun. In addition, correlation of TOF-SIMS and SEM imaging on the same fly brain showed that there is specific localization that is related to biological functions of various biomolecules. Different lipids distribute in different parts of the brain, central brain, optical lobes, and proboscis, depending on the length of the carbon chain and saturation level of fatty acid (FA) branches. Furthermore, data analysis using image principal components analysis (PCA) showed that methylphenidate dramatically affected both the distribution and abundance of lipids and their derivatives, particularly fatty acids, diacylglycerides, phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol in the fly brains. Our approach using TOF-SIMS imaging successfully visualizes the effects of methylphenidate on the chemical structure of the fly brain.


Assuntos
Encéfalo/metabolismo , Lipídeos/química , Metilfenidato/metabolismo , Administração Oral , Animais , Drosophila melanogaster , Metilfenidato/administração & dosagem , Estrutura Molecular , Análise de Componente Principal , Espectrometria de Massa de Íon Secundário , Fatores de Tempo
10.
Can Fam Physician ; 61(9): 765-6, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26623462

RESUMO

QUESTION: My patient has narcolepsy and is currently breastfeeding her 3-month-old infant. Lately she has had difficulties adjusting to caring for her baby, especially staying alert with the demands of breastfeeding. If she starts taking methylphenidate again, should I advise her to switch to formula? ANSWER: Methylphenidate is excreted in breast milk only in small amounts, and to date there have been no reports of breastfed infants demonstrating any adverse effects. Based on the available data, methylphenidate appears to be compatible with breastfeeding; however, the long-term neurodevelopmental effects have not been adequately studied.


Assuntos
Aleitamento Materno/efeitos adversos , Estimulantes do Sistema Nervoso Central/efeitos adversos , Metilfenidato/efeitos adversos , Leite Humano/metabolismo , Narcolepsia/tratamento farmacológico , Estimulantes do Sistema Nervoso Central/metabolismo , Feminino , Humanos , Lactente , Metilfenidato/metabolismo
11.
Ther Drug Monit ; 36(4): 528-34, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24452069

RESUMO

OBJECTIVES: It has been discovered recently that exogenous substances are detectable in exhaled breath after intake. Exhaled breath therefore constitutes a new possible matrix in clinical pharmacology and toxicology. The present work was aimed at exploring this possibility further by a study on patients treated for attention-deficit/hyperactivity disorder with D-amphetamine and methylphenidate. METHODS: Thirteen patients (age range: 32-61 years; 5 women) were included in the study, and breath and urine samples were collected at different times in the dose interval. Analyses of breath and urine samples were done with liquid chromatography-mass spectrometry methods. Urine was examined for amphetamine, methylphenidate, and its metabolite ritalinic acid. RESULTS: Among the 9 patients who received D-amphetamine medication in daily doses of 20-100 mg, amphetamine was detected in all subjects in amounts ranging from 1200 to 30,800 picogram per filter. Among 8 patients receiving methylphenidate medication in daily doses of 80-400 mg, it was detected and quantified in 7 of the cases in amounts ranging from 150 to 10,400 picogram per filter and ritalinic acid was detected and quantified in 3 of the cases ranging from 35 to 360 picogram per filter. In 1 case, methylphenidate was only detectable in breath and urine, whereas ritalinic acid was quantifiable in urine, which could indicate noncompliance, with the 4 hours of dose regimen prescribed. In a number of cases, the sampling was performed 24 hours after the last dose intake. Identification of amphetamine and methylphenidate was based on correct chromatographic retention time and correct product ion ratio with detection performed in selected reaction monitoring mode. CONCLUSIONS: The results confirm that amphetamine is present in exhaled breath after intake and demonstrate for the first time the presence of methylphenidate and ritalinic acid after its intake. This gives further support to the potential use of exhaled breath for detecting drug intake.


Assuntos
Anfetamina/química , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Metilfenidato/análogos & derivados , Metilfenidato/química , Adulto , Anfetamina/metabolismo , Anfetamina/urina , Cromatografia Líquida/métodos , Expiração , Feminino , Humanos , Masculino , Espectrometria de Massas/métodos , Metilfenidato/metabolismo , Metilfenidato/urina , Pessoa de Meia-Idade , Detecção do Abuso de Substâncias/métodos , Ultrassonografia
12.
J Clin Psychopharmacol ; 33(4): 491-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23771192

RESUMO

OBJECTIVES: Osmotic-release oral system (OROS)-methylphenidate (MPH) is a safe and well-tolerated drug. Some patients cannot continue this regimen with adverse drug reactions (ADRs). As drug efflux transporters of the central nervous system, ABCB1 plays an important role in the clearance of psychotropic drugs and their metabolites from brain tissues. We hypothesized that genetic variations in the ABCB1 gene may affect ADRs to OROS-MPH. METHODS: We analyzed ADRs of OROS-MPH in 134 children and adolescents with attention-deficit hyperactivity disorder who completed a 4-week trial of OROS-MPH. The ADRs of OROS-MPH were evaluated by administering the Barkley Stimulant Side Effects Rating Scale. RESULTS: Our study proved that MPH is a substrate for ABCB1 by using membrane vesicle assay. We analyzed the influence of ABCB1 polymorphisms on ADRs to OROS-MPH. From the association study between ABCB1 polymorphisms and ADRs of OROS-MPH, c.2677G>T (p.Ala893Ser, rs2032582) showed a strong association with OROS-MPH-related ADRs (P = 0.008; odds ratio, 5.72). Furthermore, logistic regression analysis indicated that the TT genotype at the ABCB1 2677 locus is an independent determinant of ADRs attributed to OROS-MPH. In a functional study, the 893Ser variant markedly reduced MPH transport across the cell membrane. CONCLUSIONS: This is the first study to demonstrate that the TT genotype at position 2677 in the ABCB1 gene is associated with ADRs to OROS-MPH.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Transtorno do Deficit de Atenção com Hiperatividade/genética , Estimulantes do Sistema Nervoso Central/efeitos adversos , Metilfenidato/efeitos adversos , Polimorfismo de Nucleotídeo Único , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Administração Oral , Adolescente , Fatores Etários , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Estimulantes do Sistema Nervoso Central/administração & dosagem , Estimulantes do Sistema Nervoso Central/metabolismo , Distribuição de Qui-Quadrado , Criança , Sistemas de Liberação de Medicamentos , Feminino , Frequência do Gene , Genótipo , Células HEK293 , Humanos , Modelos Logísticos , Masculino , Metilfenidato/administração & dosagem , Metilfenidato/metabolismo , Razão de Chances , Osmose , Fenótipo , República da Coreia , Fatores de Risco , Transfecção , Resultado do Tratamento
13.
Acta Neurobiol Exp (Wars) ; 83(1): 71-83, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37078816

RESUMO

The potential of minocycline to protect against methylphenidate­induced neurodegeneration has been extensively reported in the literature but the mechanism of action is still unknown. This study aims to determine the role of mitochondrial chain enzymes and redox homeostasis on the neuroprotective effects of minocycline in methylphenidate­induced neurodegeneration. Wistar adult male rats were randomly assigned to the seven experimental groups: Group 1 received saline solution; Group 2 received methylphenidate (10 mg/kg, i.p.); Groups 3, 4, 5, and 6 received methylphenidate and minocycline for 21 days; Group 7 received minocycline alone. Cognition was evaluated with the Morris water maze test. Activity of the hippocampal mitochondrial quadruple complexes I, II, III and IV, mitochondrial membrane potential, adenosine triphosphate (ATP) levels, total antioxidant capacity, and reactive oxygen species were determined. Treatment with minocycline inhibited methylphenidate­induced cognitive dysfunction. Minocycline treatment increased mitochondrial quadruple complex activities, mitochondrial membrane potential, total antioxidant capacity, and ATP levels in the dentate gyrus and cornu ammonis­1 (CA1) areas of the hippocampus. Minocycline is likely to confer neuroprotection against methylphenidate­induced neurodegeneration and cognition impairment by regulating mitochondrial activity and oxidative stress.


Assuntos
Disfunção Cognitiva , Metilfenidato , Fármacos Neuroprotetores , Ratos , Animais , Masculino , Minociclina/farmacologia , Minociclina/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Ratos Wistar , Disfunção Cognitiva/tratamento farmacológico , Hipocampo/metabolismo , Estresse Oxidativo , Metilfenidato/metabolismo , Metilfenidato/farmacologia , Cognição , Mitocôndrias , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
14.
Hum Mol Genet ; 19(22): 4515-28, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20826448

RESUMO

Learning and behavioral abnormalities are among the most common clinical problems in children with the neurofibromatosis-1 (NF1) inherited cancer syndrome. Recent studies using Nf1 genetically engineered mice (GEM) have been instructive for partly elucidating the cellular and molecular defects underlying these cognitive deficits; however, no current model has shed light on the more frequently encountered attention system abnormalities seen in children with NF1. Using an Nf1 optic glioma (OPG) GEM model, we report novel defects in non-selective and selective attention without an accompanying hyperactivity phenotype. Specifically, Nf1 OPG mice exhibit reduced rearing in response to novel objects and environmental stimuli. Similar to children with NF1, the attention system dysfunction in these mice is reversed by treatment with methylphenidate (MPH), suggesting a defect in brain catecholamine homeostasis. We further demonstrate that this attention system abnormality is the consequence of reduced dopamine (DA) levels in the striatum, which is normalized following either MPH or l-dopa administration. The reduction in striatal DA levels in Nf1 OPG mice is associated with reduced striatal expression of tyrosine hydroxylase, the rate-limited enzyme in DA synthesis, without any associated dopaminergic cell loss in the substantia nigra. Moreover, we demonstrate a cell-autonomous defect in Nf1+/- dopaminergic neuron growth cone areas and neurite extension in vitro, which results in decreased dopaminergic cell projections to the striatum in Nf1 OPG mice in vivo. Collectively, these data establish abnormal DA homeostasis as the primary biochemical defect underlying the attention system dysfunction in Nf1 GEM relevant to children with NF1.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/genética , Atenção , Dopamina/metabolismo , Neurofibromatose 1/genética , Neurofibromatose 1/metabolismo , Animais , Encéfalo/metabolismo , Criança , Corpo Estriado/metabolismo , Dopamina/genética , Genes da Neurofibromatose 1 , Humanos , Levodopa/genética , Levodopa/metabolismo , Metilfenidato/metabolismo , Metilfenidato/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Camundongos Transgênicos , Atividade Motora/genética , Neurofibromatose 1/enzimologia , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Neurônios/metabolismo , Glioma do Nervo Óptico/genética , Glioma do Nervo Óptico/metabolismo , Substância Negra/metabolismo
15.
Curr Pharm Des ; 28(4): 331-338, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33504296

RESUMO

INTRODUCTION: Methylphenidate (MP) is a widely used psychostimulant prescribed for Attention Deficit Hyperactivity Disorder and is also used illicitly by healthy individuals. Chronic exposure to MP has been shown to affect physiology, behavior measures, and neurochemistry. METHODS: The present study examined its effect on the endocannabinoid system. Adolescent rats had daily oral access to either water (control), low dose MP (4/10 mg/kg), or high dose MP (30/60 mg/kg). After 13 weeks of exposure, half of the rats in each group were euthanized, with the remaining rats underwent a four-week- long abstinence period. Cannabinoid receptor 1 binding (CB1) was measured with in vitro autoradiography using [3H] SR141716A. RESULTS: Rats who underwent a 4-week abstinence period after exposure to chronic HD MP showed increased CB1 binding in several cortical and basal ganglia regions of the brain compared to rats with no abstinence period. In contrast to this, rats who underwent a 4-week abstinence period after exposure to chronic LD MP showed lower CB1 binding mainly in the basal ganglia regions and the hindlimb region of the somatosensory cortex compared to rats with no abstinence period. Following 4 weeks of drug abstinence, rats who were previously given HD MP showed higher [3H] SR141716A binding in many of the cortical and basal ganglia regions examined than rats given LD MP. These results highlight the biphasic effects of MP treatment on cannabinoid receptor levels. Abstinence from HD MP seemed to increase CB1 receptor levels, while abstinence from LD MP seemed to decrease CB1 levels. CONCLUSION: Given the prolific expression of cannabinoid receptors throughout the brain, many types of behaviors may be affected as a result of MP abstinence. Further research will be needed to help identify these behavioral changes.


Assuntos
Estimulantes do Sistema Nervoso Central , Metilfenidato , Animais , Autorradiografia , Encéfalo , Humanos , Metilfenidato/metabolismo , Metilfenidato/farmacologia , Ratos , Receptor CB1 de Canabinoide , Receptores de Canabinoides/metabolismo
16.
Commun Biol ; 5(1): 1015, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163254

RESUMO

Eye-blink rate has been proposed as a biomarker of the brain dopamine system, however, findings have not been consistent. This study assessed the relationship between blink rates, measured after oral placebo) (PL) and after a challenge with oral methylphenidate (MP; 60 mg) and striatal D1 receptor (D1R) (measured at baseline) and D2 receptor (D2R) availability (measured after PL and after MP) in healthy participants. PET measures of baseline D1R ([11C]NNC112) (BL-D1R) and D2R availability ([11C]raclopride) after PL (PL-D2R) and after MP (MP-D2R) were quantified in the striatum as non-displaceable binding potential. MP reduced the number of blinks and increased the time participants kept their eyes open. Correlations with dopamine receptors were only significant for the eye blink measures obtained after MP; being positive for BL-D1R in putamen and MP-D2R in caudate (PL-D2R were not significant). MP-induced changes in blink rates (PL minus MP) were negatively correlated with BL-D1R in caudate and putamen. Our findings suggest that eye blink measures obtained while stressing the dopamine system might provide a more sensitive behavioral biomarker of striatal D1R or D2R in healthy volunteers than that obtained at baseline or after placebo.


Assuntos
Metilfenidato , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/metabolismo , Dopamina/metabolismo , Humanos , Metilfenidato/metabolismo , Metilfenidato/farmacologia , Racloprida/metabolismo , Racloprida/farmacologia , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo
17.
J Pharmacol Exp Ther ; 337(1): 83-91, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21205916

RESUMO

Methylphenidate is a psychostimulant widely used in the treatment of attention deficit hyperactivity disorder. In this study, the effects of two nonstereotypy-inducing doses of methylphenidate (2.5 and 5.0 mg/kg s.c.) were examined in periadolescent [postnatal days (P) 35 and 42] and young adult (P70), male Long-Evans rats using a three-period locomotor activity paradigm that affords inferences about exploration, habituation, and attention to a novel stimulus (an "alcove") in a familiar environment in a single test session. In the first test period, P35 and P42 rats were more active than P70 rats, and methylphenidate increased locomotion in a dose-related manner. The introduction of a novel spatial stimulus in the third test period revealed a significant interaction of dose and age such that P70 rats exhibited dose-related increases in distance traveled, but P35 rats did not. Furthermore, methylphenidate dose-relatedly disrupted the rats' tendency to spend increasing amounts of time in the alcove across the test period at P70 but not at P35. Brain and serum methylphenidate concentrations were significantly lower at P35 than at P70, with intermediate levels at P42. Developmental differences in dopaminergic neurochemistry were also observed, including increased dopamine content in the caudate-putamen, nucleus accumbens, and frontal cortex and decreased densities of D(1)-like receptors in the frontal cortex in P70 than in P42 rats. These results raise the possibility that children and adults may respond differently when treated with this drug, particularly in situations involving response to novelty and that these effects involve developmental differences in pharmacokinetics and dopaminergic neurochemistry.


Assuntos
Comportamento Exploratório/efeitos dos fármacos , Metilfenidato/farmacologia , Reconhecimento Psicológico/efeitos dos fármacos , Maturidade Sexual/fisiologia , Fatores Etários , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Comportamento Exploratório/fisiologia , Masculino , Metilfenidato/metabolismo , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Desempenho Psicomotor/efeitos dos fármacos , Desempenho Psicomotor/fisiologia , Ratos , Ratos Long-Evans , Reconhecimento Psicológico/fisiologia
18.
Anal Bioanal Chem ; 400(2): 387-93, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21318251

RESUMO

An HPLC-peroxyoxalate chemiluminescence (PO-CL) method for simultaneous determination of methylphenidate (MPH) and ritalinic acid (RA) was developed. The method was used to monitor MPH and RA after administration of MPH to rats. Deproteinized plasma spiked with 1-(3-trifluoromethylphenyl)piperazine (IS) was dried and labeled with 4-(N,N-dimethylaminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole (DBD-F). The labeled sample was cleaned with two kinds of solid-phase extraction cartridge, and the DBD-labels were separated on an ODS column with gradient elution using a mixture of CH(3)CN and imidazole-HNO(3) buffer. Separation of MPH and RA can be achieved within 33 min. The LODs of MPH and RA at a signal-to-noise ratio of 3 were 2.2 and 0.4 ng mL(-1), respectively. Moreover, monitoring of MPH and RA after MPH administration (10 mg kg(-1)) to rat could be performed. The concentration of RA 480 min after administration was eight times higher than that of MPH. The proposed HPLC-PO-CL method was useful for determination of MPH and RA in rat plasma and was successfully used to monitor these substances after MPH administration.


Assuntos
Estimulantes do Sistema Nervoso Central/sangue , Cromatografia Líquida de Alta Pressão/métodos , Medições Luminescentes/métodos , Metilfenidato/análogos & derivados , Metilfenidato/sangue , Oxalatos/química , Animais , Estimulantes do Sistema Nervoso Central/metabolismo , Medições Luminescentes/instrumentação , Masculino , Metilfenidato/metabolismo , Ratos , Ratos Wistar
19.
Dev Neurosci ; 32(2): 125-38, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20523024

RESUMO

Characterization of the ontogeny of the cerebral dopaminergic system is crucial for gaining a greater understanding of normal brain development and its alterations in response to drugs of abuse or conditions such as attention-deficit hyperactivity disorder. Pharmacological MRI (phMRI) was used to determine the response to dopamine transporter (DAT) blockers cocaine and methylphenidate (MPH), the dopamine releaser D-amphetamine (AMPH), the selective D1 agonist dihydrexidine, and the D2/D3 agonist quinpirole in young (<30 days old) and adult (>60 days old) rats. In adult rats, cocaine (0.5 mg/kg i.v.) or MPH (2 mg/kg) induced primarily positive cerebral blood volume (rCBV) changes in the dopaminergic circuitry, but negative rCBV changes in the young animals. Microdialysis measurements in the striatum showed that young rats have a smaller increase in extracellular dopamine in response to cocaine than adults. The young rats showed little rCBV response to the selective D1 agonist dihydrexidine in contrast to robust rCBV increases observed in the adults, whereas there was a similar negative rCBV response in the young and adult rats to the D2 agonist quinpirole. We also performed a meta-analysis of literature data on the development of D1 and D2 receptors and the DAT. These data suggest a predominance of D2-like over D1-like function between 20 and 30 days of age. These combined results suggested that the dopamine D1 receptor is functionally inhibited at young age.


Assuntos
Envelhecimento/fisiologia , Encéfalo , Imageamento por Ressonância Magnética , Receptores de Dopamina D1 , Receptores de Dopamina D2 , Adolescente , Adulto , Anfetamina/metabolismo , Anfetamina/farmacologia , Animais , Encéfalo/anatomia & histologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Circulação Cerebrovascular/efeitos dos fármacos , Cocaína/metabolismo , Cocaína/farmacologia , Agonistas de Dopamina/metabolismo , Agonistas de Dopamina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/agonistas , Proteínas da Membrana Plasmática de Transporte de Dopamina/antagonistas & inibidores , Inibidores da Captação de Dopamina/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Humanos , Masculino , Metilfenidato/metabolismo , Metilfenidato/farmacologia , Microdiálise , Fenantridinas/metabolismo , Fenantridinas/farmacologia , Quimpirol/metabolismo , Quimpirol/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/fisiologia , Receptores de Dopamina D1/ultraestrutura , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D2/fisiologia , Receptores de Dopamina D2/ultraestrutura , Fluxo Sanguíneo Regional
20.
J Anal Toxicol ; 44(2): 156-162, 2020 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-31355413

RESUMO

The distribution of so-called new psychoactive substances (NPS) as substitute for common drug of abuse was steadily increasing in the last years, but knowledge about their toxicodynamic and toxicokinetic properties is lacking. However, a comprehensive knowledge of their toxicokinetics, particularly their metabolism, is crucial for developing reliable screening procedures and to verify their intake, e.g., in case of intoxications. The aim of this study was therefore to tentatively identify the metabolites of the methylphenidate-derived NPS isopropylphenidate (isopropyl 2-phenyl-2-(2-piperidyl) acetate, IPH), 4-fluoromethylphenidate (methyl 2-(4-fluorophenyl)-2-(piperidin-2-yl) acetate, 4-FMPH) and 3,4-dichloromethylphenidate (methyl 2-(3,4-dichlorophenyl)-2-(piperidin-2-yl) acetate, 3,4-CTMP) using different in vivo and in vitro techniques and ultra-high performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS/MS). Urine samples of male rats were analyzed, and the transfer to human metabolism was done by using pooled human S9 fraction (pS9), which contains the microsomal fraction of liver homogenisate as well as its cytosol. UHPLC-HRMS/MS analysis of rat urine revealed 17 metabolites for IPH (14 phase I and 3 phase II metabolites), 13 metabolites were found for 4-FMPH (12 phase I metabolites and 1 phase II metabolite) and 7 phase I metabolites and no phase II metabolites were found for 3,4-CTMP. pS9 incubations additionally indicated that all investigated substances were primarily hydrolyzed, resulting in the corresponding carboxy metabolites. Finally, these carboxy metabolites should be used as additional analytical targets besides the parent compounds for comprehensive mass spectrometry-based screening procedures.


Assuntos
Metilfenidato/metabolismo , Psicotrópicos/metabolismo , Animais , Cromatografia Líquida , Drogas Desenhadas/metabolismo , Humanos , Masculino , Ratos , Detecção do Abuso de Substâncias , Espectrometria de Massas em Tandem , Toxicocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA