Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 541
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Eur J Neurosci ; 59(12): 3292-3308, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38650308

RESUMO

Muscle-specific kinase myasthenia gravis (MuSK MG) is caused by autoantibodies against MuSK in the neuromuscular junction (NMJ). MuSK MG patients have fluctuating, fatigable skeletal muscle weakness, in particular of bulbar muscles. Severity differs greatly between patients, in spite of comparable autoantibody levels. One explanation for inter-patient and inter-muscle variability in sensitivity might be variations in compensatory muscle responses. Previously, we developed a passive transfer mouse model for MuSK MG. In preliminary ex vivo experiments, we observed that muscle contraction of some mice, in particular those with milder myasthenia, had become partially insensitive to inhibition by µ-Conotoxin-GIIIB, a blocker of skeletal muscle NaV1.4 voltage-gated sodium channels. We hypothesised that changes in NaV channel expression profile, possibly co-expression of (µ-Conotoxin-GIIIB insensitive) NaV1.5 type channels, might lower the muscle fibre's firing threshold and facilitate neuromuscular synaptic transmission. To test this hypothesis, we here performed passive transfer in immuno-compromised mice, using 'high', 'intermediate' and 'low' dosing regimens of purified MuSK MG patient IgG4. We compared myasthenia levels, µ-Conotoxin-GIIIB resistance and muscle fibre action potential characteristics and firing thresholds. High- and intermediate-dosed mice showed clear, progressive myasthenia, not seen in low-dosed animals. However, diaphragm NMJ electrophysiology demonstrated almost equal myasthenic severities amongst all regimens. Nonetheless, low-dosed mouse diaphragms showed a much higher degree of µ-Conotoxin-GIIIB resistance. This was not explained by upregulation of Scn5a (the NaV1.5 gene), lowered muscle fibre firing thresholds or histologically detectable upregulated NaV1.5 channels. It remains to be established which factors are responsible for the observed µ-Conotoxin-GIIIB insensitivity and whether the NaV repertoire change is compensatory beneficial or a bystander effect.


Assuntos
Músculo Esquelético , Animais , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Receptores Proteína Tirosina Quinases/metabolismo , Humanos , Miastenia Gravis/metabolismo , Miastenia Gravis/fisiopatologia , Miastenia Gravis/imunologia , Modelos Animais de Doenças , Feminino , Receptores Colinérgicos/metabolismo , Receptores Colinérgicos/imunologia , Canais de Sódio Disparados por Voltagem/metabolismo , Junção Neuromuscular/metabolismo , Junção Neuromuscular/efeitos dos fármacos , Autoanticorpos , Masculino , Conotoxinas/farmacologia , Imunização Passiva
2.
J Neuroinflammation ; 21(1): 10, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178152

RESUMO

Myasthenia gravis is an autoimmune disease characterized by pathogenic antibodies that target structures of the neuromuscular junction. However, some patients also experience autonomic dysfunction, anxiety, depression, and other neurological symptoms, suggesting the complex nature of the neurological manifestations. With the aim of explaining the symptoms related to the central nervous system, we utilized a rat model to investigate the impact of dopamine signaling in the central nervous and peripheral circulation. We adopted several screening methods, including western blot, quantitative PCR, mass spectrum technique, immunohistochemistry, immunofluorescence staining, and flow cytometry. In this study, we observed increased and activated dopamine signaling in both the central nervous system and peripheral circulation of myasthenia gravis rats. Furthermore, changes in the expression of two key molecules, Claudin5 and CD31, in endothelial cells of the blood-brain barrier were also examined in these rats. We also confirmed that dopamine incubation reduced the expression of ZO1, Claudin5, and CD31 in endothelial cells by inhibiting the Wnt/ß-catenin signaling pathway. Overall, this study provides novel evidence suggesting that pathologically elevated dopamine in both the central nervous and peripheral circulation of myasthenia gravis rats impair brain-blood barrier integrity by inhibiting junction protein expression in brain microvascular endothelial cells through the Wnt/ß-catenin pathway.


Assuntos
Dopamina , Miastenia Gravis , Humanos , Ratos , Animais , Dopamina/metabolismo , Células Endoteliais/metabolismo , Encéfalo , Barreira Hematoencefálica/metabolismo , Via de Sinalização Wnt/fisiologia , Miastenia Gravis/metabolismo
3.
J Neuroinflammation ; 21(1): 197, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39113081

RESUMO

BACKGROUND: Myasthenia gravis (MG) is an autoimmune disease characterized by pathogenic antibodies that target structures of the neuromuscular junction. The evidence suggests that the regulation of long noncoding RNAs (lncRNAs) that is mediated by transcription factors (TFs) plays a key role in the pathophysiology of MG. Nevertheless, the detailed molecular mechanisms of lncRNAs in MG remain largely undetermined. METHODS: Using microarray analysis, we analyzed the lncRNA levels in MG. By bioinformatics analysis, LINC01566 was found to potentially play an important role in MG. First, qRT‒PCR was performed to verify the LINC1566 expressions in MG patients. Then, fluorescence in situ hybridization was conducted to determine the localization of LINC01566 in CD4 + T cells. Finally, the impact of LINC01566 knockdown or overexpression on CD4 + T-cell function was also analyzed using flow cytometry and CCK-8 assay. A dual-luciferase reporter assay was used to validate the binding of the TF FOSL1 to the LINC01566 promoter. RESULTS: Based on the lncRNA microarray and differential expression analyses, we identified 563 differentially expressed (DE) lncRNAs, 450 DE mRNAs and 19 DE TFs in MG. We then constructed a lncRNA-TF-mRNA network. Through network analysis, we found that LINC01566 may play a crucial role in MG by regulating T-cell-related pathways. Further experiments indicated that LINC01566 is expressed at low levels in MG patients. Functionally, LINC01566 is primarily distributed in the nucleus and can facilitate CD4 + T-cell apoptosis and inhibit cell proliferation. Mechanistically, we hypothesized that LINC01566 may negatively regulate the expressions of DUSP3, CCR2, FADD, SIRPB1, LGALS3 and SIRPB1, which are involved in the T-cell activation pathway, to further influence the cellular proliferation and apoptosis in MG. Moreover, we found that the effect of LINC01566 on CD4 + T cells in MG was mediated by the TF FOSL1, and in vitro experiments indicated that FOSL1 can bind to the promoter region of LINC01566. CONCLUSIONS: In summary, our research revealed the protective roles of LINC01566 in clinical samples and cellular experiments, illustrating the potential roles and mechanism by which FOSL1/LINC01566 negatively regulates CD4 + T-cell activation in MG.


Assuntos
Linfócitos T CD4-Positivos , Ativação Linfocitária , Miastenia Gravis , Proteínas Proto-Oncogênicas c-fos , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Miastenia Gravis/metabolismo , Miastenia Gravis/imunologia , Miastenia Gravis/genética , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/imunologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Feminino , Masculino , Pessoa de Meia-Idade , Adulto
4.
Acta Neuropathol ; 147(1): 102, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888758

RESUMO

Myasthenia gravis is a chronic antibody-mediated autoimmune disease disrupting neuromuscular synaptic transmission. Informative biomarkers remain an unmet need to stratify patients with active disease requiring intensified monitoring and therapy; their identification is the primary objective of this study. We applied mass spectrometry-based proteomic serum profiling for biomarker discovery. We studied an exploration and a prospective validation cohort consisting of 114 and 140 anti-acetylcholine receptor antibody (AChR-Ab)-positive myasthenia gravis patients, respectively. For downstream analysis, we applied a machine learning approach. Protein expression levels were confirmed by ELISA and compared to other myasthenic cohorts, in addition to myositis and neuropathy patients. Anti-AChR-Ab levels were determined by a radio receptor assay. Immunohistochemistry and immunofluorescence of intercostal muscle biopsies were employed for validation in addition to interactome studies of inter-alpha-trypsin inhibitor heavy chain H3 (ITIH3). Machine learning identified ITIH3 as potential serum biomarker reflective of disease activity. Serum levels correlated with disease activity scores in the exploration and validation cohort and were confirmed by ELISA. Lack of correlation between anti-AChR-Ab levels and clinical scores underlined the need for biomarkers. In a subgroup analysis, ITIH3 was indicative of treatment responses. Immunostaining of muscle specimens from these patients demonstrated ITIH3 localization at the neuromuscular endplates in myasthenia gravis but not in controls, thus providing a structural equivalent for our serological findings. Immunoprecipitation of ITIH3 and subsequent proteomics lead to identification of its interaction partners playing crucial roles in neuromuscular transmission. This study provides data on ITIH3 as a potential pathophysiological-relevant biomarker of disease activity in myasthenia gravis. Future studies are required to facilitate translation into clinical practice.


Assuntos
Biomarcadores , Miastenia Gravis , Humanos , Miastenia Gravis/sangue , Miastenia Gravis/diagnóstico , Miastenia Gravis/patologia , Miastenia Gravis/metabolismo , Biomarcadores/sangue , Biomarcadores/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Idoso , Autoanticorpos/sangue , Receptores Colinérgicos/imunologia , Receptores Colinérgicos/metabolismo , Proteômica/métodos , Estudos de Coortes , Adulto Jovem , Proteínas Secretadas Inibidoras de Proteinases/sangue , Aprendizado de Máquina
5.
Cell Commun Signal ; 22(1): 215, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570836

RESUMO

More than 80% of patients with myasthenia gravis (MG) are positive for anti-acetylcholine receptor (AChR) antibodies. Regulatory T cells (Tregs) suppress overproduction of these antibodies, and patients with AChR antibody-positive MG (AChR MG) exhibit impaired Treg function and reduced Treg numbers. The gut microbiota and their metabolites play a crucial role in maintaining Treg differentiation and function. However, whether impaired Tregs correlate with gut microbiota activity in patients with AChR MG remains unknown. Here, we demonstrate that butyric acid-producing gut bacteria and serum butyric acid level are reduced in patients with AChR MG. Butyrate supplementation effectively enhanced Treg differentiation and their suppressive function of AChR MG. Mechanistically, butyrate activates autophagy of Treg cells by inhibiting the mammalian target of rapamycin. Activation of autophagy increased oxidative phosphorylation and surface expression of cytotoxic T-lymphocyte-associated protein 4 on Treg cells, thereby promoting Treg differentiation and their suppressive function in AChR MG. This observed effect of butyrate was blocked using chloroquine, an autophagy inhibitor, suggesting the vital role of butyrate-activated autophagy in Tregs of patients with AChR MG. We propose that gut bacteria derived butyrate has potential therapeutic efficacy against AChR MG by restoring impaired Tregs.


Assuntos
Microbioma Gastrointestinal , Miastenia Gravis , Humanos , Receptores Colinérgicos/metabolismo , Linfócitos T Reguladores , Ácido Butírico/farmacologia , Ácido Butírico/metabolismo , Miastenia Gravis/metabolismo , Autoanticorpos/metabolismo
6.
J Immunol ; 207(8): 2005-2014, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34544801

RESUMO

Elevated N-linked glycosylation of IgG V regions (IgG-VN-Glyc) is an emerging molecular phenotype associated with autoimmune disorders. To test the broader specificity of elevated IgG-VN-Glyc, we studied patients with distinct subtypes of myasthenia gravis (MG), a B cell-mediated autoimmune disease. Our experimental design focused on examining the B cell repertoire and total IgG. It specifically included adaptive immune receptor repertoire sequencing to quantify and characterize N-linked glycosylation sites in the circulating BCR repertoire, proteomics to examine glycosylation patterns of the total circulating IgG, and an exploration of human-derived recombinant autoantibodies, which were studied with mass spectrometry and Ag binding assays to respectively confirm occupation of glycosylation sites and determine whether they alter binding. We found that the frequency of IgG-VN-Glyc motifs was increased in the total BCR repertoire of patients with MG when compared with healthy donors. The elevated frequency was attributed to both biased V gene segment usage and somatic hypermutation. IgG-VN-Glyc could be observed in the total circulating IgG in a subset of patients with MG. Autoantigen binding, by four patient-derived MG autoantigen-specific mAbs with experimentally confirmed presence of IgG-VN-Glyc, was not altered by the glycosylation. Our findings extend prior work on patterns of Ig V region N-linked glycosylation in autoimmunity to MG subtypes.


Assuntos
Autoanticorpos/metabolismo , Linfócitos B/imunologia , Imunoglobulina G/metabolismo , Região Variável de Imunoglobulina/metabolismo , Miastenia Gravis/metabolismo , Adulto , Idoso , Feminino , Glicosilação , Humanos , Masculino , Pessoa de Meia-Idade , Miastenia Gravis/diagnóstico , Fenótipo , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/metabolismo , Adulto Jovem
7.
Clin Immunol ; 245: 109184, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36372318

RESUMO

The pathogenesis and progression of myasthenia gravis (MG), an autoimmune disease, involve abnormal function and composition of several immune cell populations. However, details of this dysregulation remain unclear. We performed a cross-section analysis using cytometry time-of-flight on blood samples from 12 generalized MG without glucocorticoid or other immunosuppressant treatment, and 10 sex- and age-matched healthy controls. Combining data from an external validation cohort (MG n = 38, control n = 21), bulk-RNA sequencing and single-cell RNA sequencing, alterations in immune cell populations and differential expression of immune check point were revealed. Several switched memory B cell subsets (CD3- CD19+ CD27+ IgD- CD38+/-) were increased in MG patients. The number of HLA- DQ- CD38+ naïve B cells was higher in MG patients and correlated with the quantitative MG score (QMG). Among NK cells, the number of CD56+ CD16+ NK cells and CD56+ CD16+ CD8+ NK cells were decreased in MG patients and positively correlated with QMG. VISTA+ monocytes were increased in MG patients. Classical T cell subsets showed no significant change; however, the expression of VISTA, LAG3, CTLA4, and CXCR5 was higher in T cells from MG patients. The expression of CD38 was higher in neutrophils from MG patients. The external validation cohort validated the dysregulation of NK cell subtypes, and differences were also observed in subgroups of patients. Bulk-RNA sequencing also revealed increased mRNA expression of VSIR in monocytes of MG patients compared to those from healthy controls, and the antigen presentation and processing pathway was identified as enriched in the functional characterization of VISTA+ monocytes via single-cell RNA sequencing. Our study revealed alterations in several immune cell subsets and identified potential cellular biomarkers for MG diagnosis and disease severity assessment. In addition, the abnormal expression of multiple immune checkpoints in MG provides further rationale for the investigation of immune-checkpoint-related therapy.


Assuntos
Monócitos , Miastenia Gravis , Humanos , Citometria de Fluxo , Subpopulações de Linfócitos T , Células Matadoras Naturais , Miastenia Gravis/metabolismo
10.
J Neuroinflammation ; 18(1): 270, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789272

RESUMO

Predisposition to autoimmunity and inflammatory disorders is observed in patients with fragile X-associated syndromes. These patients have increased numbers of CGG triplets in the 5' UTR region of FMR1 (Fragile X Mental Retardation 1) gene, that affects its expression. FMR1 is decreased in the thymus of myasthenia gravis (MG) patients, a prototypical autoimmune disease. We thus analyzed the number of CGG triplets in FMR1 in MG, and explored the regulatory mechanisms affecting thymic FMR1 expression. We measured the number of CGGs using thymic DNA from MG and controls, but no abnormalities in CGGs were found in MG that could explain thymic decrease of FMR1. We next analyzed by RT-PCR the expression of FMR1 and its transcription factors in thymic samples, and in thymic epithelial cell cultures in response to inflammatory stimuli. In control thymuses, FMR1 expression was higher in males than females, and correlated with CTCF (CCCTC-binding factor) expression. In MG thymuses, decreased expression of FMR1 was correlated with both CTCF and MAX (Myc-associated factor X) expression. Changes in FMR1 expression were supported by western blot analyses for FMRP. In addition, we demonstrated that FMR1, CTCF and MAX expression in thymic epithelial cells was also sensitive to inflammatory signals. Our results suggest that FMR1 could play a central role in the thymus and autoimmunity. First, in relation with the higher susceptibility of females to autoimmune diseases. Second, due to the modulation of its expression by inflammatory signals that are known to be altered in MG thymuses.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/biossíntese , Miastenia Gravis/metabolismo , Timo/metabolismo , Adolescente , Adulto , Autoimunidade/genética , Fator de Ligação a CCCTC/biossíntese , Fator de Ligação a CCCTC/genética , Células Cultivadas , DNA/química , DNA/genética , Células Epiteliais/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Caracteres Sexuais , Adulto Jovem
11.
Clin Exp Immunol ; 203(3): 366-374, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33184844

RESUMO

Myasthenia gravis (MG) is characterized by muscle weakness and fatigue caused by the presence of autoantibodies against the acetylcholine receptor (AChR) or the muscle-specific tyrosine kinase (MuSK). Activated T, B and plasma cells, as well as cytokines, play important roles in the production of pathogenic autoantibodies and the induction of inflammation at the neuromuscular junction in MG. Many studies have focused on the role of cytokines and lymphocytes in anti-AChR antibody-positive MG. Chronic inflammation mediated by T helper type 17 (Th17) cells, the promotion of autoantibody production from B cells and plasma cells by follicular Th (Tfh) cells and the activation of the immune response by dysfunction of regulatory T (Treg ) cells may contribute to the exacerbation of the MG pathogenesis. In fact, an increased number of Th17 cells and Tfh cells and dysfunction of Treg cells have been reported in patients with anti-AChR antibody-positive MG; moreover, the number of these cells was correlated with clinical parameters in patients with MG. Regarding cytokines, interleukin (IL)-17; a Th17-related cytokine, IL-21 (a Tfh-related cytokine), the B-cell-activating factor (BAFF; a B cell-related cytokine) and a proliferation-inducing ligand (APRIL; a B cell-related cytokine) have been reported to be up-regulated and associated with clinical parameters of MG. This review focuses on the current understanding of the involvement of cytokines and lymphocytes in the immunological pathogenesis of MG, which may lead to the development of novel therapies for this disease in the near future.


Assuntos
Citocinas/imunologia , Miastenia Gravis/imunologia , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Animais , Autoanticorpos/imunologia , Linfócitos B/imunologia , Citocinas/metabolismo , Humanos , Miastenia Gravis/metabolismo , Receptores Proteína Tirosina Quinases/imunologia , Receptores Colinérgicos/imunologia , Células Th17/metabolismo
12.
Arch Biochem Biophys ; 701: 108788, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33548213

RESUMO

The cholinergic neuromuscular junction is the paradigm peripheral synapse between a motor neuron nerve ending and a skeletal muscle fiber. In vertebrates, acetylcholine is released from the presynaptic site and binds to the nicotinic acetylcholine receptor at the postsynaptic membrane. A variety of pathologies among which myasthenia gravis stands out can impact on this rapid and efficient signaling mechanism, including autoimmune diseases affecting the nicotinic receptor or other synaptic proteins. Cholesterol is an essential component of biomembranes and is particularly rich at the postsynaptic membrane, where it interacts with and modulates many properties of the nicotinic receptor. The profound changes inflicted by myasthenia gravis on the postsynaptic membrane necessarily involve cholesterol. This review analyzes some aspects of myasthenia gravis pathophysiology and associated postsynaptic membrane dysfunction, including dysregulation of cholesterol metabolism in the myocyte brought about by antibody-receptor interactions. In addition, given the extensive therapeutic use of statins as the typical cholesterol-lowering drugs, we discuss their effects on skeletal muscle and the possible implications for MG patients under chronic treatment with this type of compound.


Assuntos
Colesterol/metabolismo , Miastenia Gravis/metabolismo , Junção Neuromuscular/metabolismo , Animais , Humanos , Miastenia Gravis/patologia , Junção Neuromuscular/patologia
13.
Cell Biol Int ; 45(11): 2287-2293, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34363272

RESUMO

Myasthenia gravis (MG) is a disease involving neuromuscular transmission that causes fatigue of skeletal muscles and fluctuating weakness. It has been shown that impairment of myogenic differentiation and myofiber maturation may be the underlying cause of MG. In this study, we detected the abnormal expression of circular RNA (circRNA) using next-generation sequencing in patients with MG. We then investigated the regulatory mechanism and the relationship among circRNA, microRNA, and messenger RNA using quantitative reverse-transcription polymerase chain reaction, bioinformatics analysis, and luciferase report analysis. The expression of inflammatory cytokines and regulatory T lymphocytes was shown to be increased. Circ-FBL was significantly increased in MG patients. Bioinformatics and luciferase report analyses confirmed that miR-133 and PAX7 were the downstream targets of circ-FBL. Overexpression of circ-FBL promoted myoblast proliferation by regulation of miR-133/PAX7. Taken together, our study showed that upregulation of circ-FBL promoted myogenic proliferation in patients with MG by regulating miR-133/PAX7.


Assuntos
MicroRNAs/genética , Miastenia Gravis/genética , Fator de Transcrição PAX7/genética , Animais , Apoptose/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Desenvolvimento Muscular/genética , Miastenia Gravis/metabolismo , Fator de Transcrição PAX7/metabolismo , RNA Circular/genética , RNA Mensageiro
14.
Curr Rheumatol Rep ; 23(8): 63, 2021 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-34216297

RESUMO

PURPOSE: Myositis as a rare manifestation of COVID-19 is only recently being reported. This review examines the current literature on COVID-19-induced myositis focusing on etiopathogenesis, clinical presentations, diagnostic practices, and therapeutic challenges with immunosuppression, and the difficulties experienced by rheumatologists in established myositis in the COVID-19 era. RECENT FINDINGS: COVID-19 is associated with a viral myositis attributable to direct myocyte invasion or induction of autoimmunity. COVID-19-induced myositis may be varied in presentation, from typical dermatomyositis to rhabdomyolysis, and a paraspinal affliction with back pain. It may or may not present with acute exponential elevations of enzyme markers such as creatine kinase (CK). Virus-mediated muscle inflammation is attributed to ACE2 (angiotensin-converting enzyme) receptor-mediated direct entry and affliction of muscle fibers, leading on to innate and adaptive immune activation. A greater recognition of the stark similarity between anti-MDA5-positive myositis with COVID-19 has thrown researchers into the alley of exploration - finding common etiopathogenic basis as well as therapeutic strategies. For patients with established myositis, chronic care was disrupted during the pandemic with several logistic challenges and treatment dilemmas leading to high flare rates. Teleconsultation bridged the gap while ushering in an era of patient-led care with the digital transition to tools of remote disease assessment. COVID-19 has brought along greater insight into unique manifestations of COVID-19-related myositis, ranging from direct virus-induced muscle disease to triggered autoimmunity and other etiopathogenic links to explore. A remarkable shift in the means of delivering chronic care has led patients and caregivers worldwide to embrace a virtual shift with teleconsultation and opened doorways to a new era of patient-led care.


Assuntos
COVID-19/fisiopatologia , Miosite/fisiopatologia , Rabdomiólise/fisiopatologia , Imunidade Adaptativa/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Autoanticorpos/imunologia , Dor nas Costas/etiologia , COVID-19/complicações , COVID-19/imunologia , COVID-19/metabolismo , Creatina Quinase/metabolismo , Dermatomiosite/etiologia , Dermatomiosite/imunologia , Dermatomiosite/metabolismo , Dermatomiosite/fisiopatologia , Humanos , Imunidade Inata/imunologia , Helicase IFIH1 Induzida por Interferon/imunologia , Miastenia Gravis/etiologia , Miastenia Gravis/imunologia , Miastenia Gravis/metabolismo , Miastenia Gravis/fisiopatologia , Miosite/etiologia , Miosite/imunologia , Miosite/metabolismo , Músculos Paraespinais/fisiopatologia , Receptores de Coronavírus/metabolismo , Rabdomiólise/etiologia , Rabdomiólise/imunologia , Rabdomiólise/metabolismo , SARS-CoV-2
15.
Int J Neurosci ; 131(9): 854-863, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32419569

RESUMO

BACKGROUND: Myasthenia gravis (MG) is an antibody-mediated, autoimmune neuromuscular disease. Reports have indicated that the CD28/B7 ligand interactions play a crucial role during primary immune responses. Hence, the aim of the present study was to investigate the possible effects of the CD28/B7 pathway on the occurrence and development of MG and its associated cytokine factors. METHODS: An experimental autoimmune myasthenia gravis (EAMG) was initially established by immunization of Lewis rats with acetylcholine receptor (AChR) α97-116 peptide. Then the rats were treated with dexamethasone and CTLA4-Ig (used for inhibiting the CD28/B7 pathway). Serum levels of AChR IgG and AChR IgG2b were then detected using ELISA. The clinical features, muscle contraction function, AChR content, expression of CD28, CTLA4, B7.1 and B7.2 in mononuclear cells of peripheral blood and the secretion of cytokines (INF-γ, IL-2, IL-10 and IL-12) in serum of rats were measured. Finally, lymphocyte proliferation upon CTLA4 IgG treatment was examined in vitro. RESULTS: Inhibition of the CD28/B7 pathway and dexamethasone were found to significantly improve clinical symptoms of EAMG rats, reduce serum levels of AChR IgG, AChR IgG2b, INF-γ, IL-2, IL-10 and IL-12, the expression of CD28, CTLA4, B7.1 and B7.2 in mononuclear cells of peripheral blood, and enhance muscle contraction function and AChR content in the muscle in vivo. Meanwhile, CTLA4 IgG could abolish the increased lymphocyte proliferation following AChR stimulation in vitro. CONCLUSION: Overall, the suppression of the CD28/B7 pathway by CTLA4-Ig can have the potential to retard the occurrence and development of MG.


Assuntos
Citocinas/metabolismo , Miastenia Gravis/metabolismo , Transdução de Sinais , Animais , Antígenos B7/metabolismo , Antígenos CD28/metabolismo , Feminino , Linfócitos/metabolismo , Ratos Endogâmicos Lew
16.
J Neurochem ; 152(6): 663-674, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31777963

RESUMO

Synaptic strength depends on the number of cell-surface neurotransmitter receptors in dynamic equilibrium with intracellular pools. Dysregulation of this homeostatic balance occurs, for example in myasthenia gravis, an autoimmune disease characterized by a decrease in the number of postsynaptic nicotinic acetylcholine receptors (nAChRs). Monoclonal antibody mAb35 mimics this effect. Here we use STORM nanoscopy to characterize the individual and ensemble dynamics of monoclonal antibody-crosslinked receptors in the clonal cell line CHO-K1/A5, which robustly expresses adult muscle-type nAChRs. Antibody labeling of live cells results in 80% receptor immobilization. The remaining mobile fraction exhibits a heterogeneous combination of Brownian and anomalous diffusion. Single-molecule trajectories exhibit a two-state switching behavior between free Brownian walks and anticorrelated walks within confinement areas. The latter act as permeable fences (~34 nm radius, ~400 ms lifetime). Dynamic clustering, trapping, and immobilization also occur in larger nanocluster zones (120-180 nm radius) with longer lifetimes (11 ± 1 s), in a strongly cholesterol-sensitive manner. Cholesterol depletion increases the size of the clustering phenomenon; cholesterol enrichment has the opposite effect. The disclosed high proportion of monoclonal antibody-crosslinked immobile receptors, together with their anomalous, cholesterol-sensitive diffusion and clustering, provides new insights into the antibody-enhanced antigenic modulation that leads to physiopathological internalization and degradation of receptors in myasthenia.


Assuntos
Anticorpos Monoclonais/farmacologia , Colesterol/fisiologia , Receptores Nicotínicos/metabolismo , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Células CHO , Cricetulus , Reagentes de Ligações Cruzadas , Ciclodextrinas/farmacologia , Difusão , Camundongos , Miastenia Gravis/metabolismo , Receptores Nicotínicos/química
17.
J Neuroinflammation ; 17(1): 294, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33032631

RESUMO

BACKGROUND: Myasthenia gravis (MG) is a rare autoimmune disease mainly mediated by autoantibodies against the acetylcholine receptor (AChR) at the neuromuscular junction. The thymus is the effector organ, and its removal alleviates the symptoms of the disease. In the early-onset form of MG, the thymus displays functional and morphological abnormalities such as B cell infiltration leading to follicular hyperplasia, and the production of AChR antibodies. Type-I interferon (IFN-I), especially IFN-ß, is the orchestrator of thymic changes observed in MG. As Dicer and miR-29 subtypes play a role in modulating the IFN-I signalization in mouse thymus, we investigated their expression in MG thymus. METHODS: The expression of DICER and miR-29 subtypes were thoroughly investigated by RT-PCR in human control and MG thymuses, and in thymic epithelial cells (TECs). Using miR-29a/b-1-deficient mice, with lower miR-29a/b-1 expression, we investigated their susceptibility to experimental autoimmune MG (EAMG) as compared to wild-type mice. RESULTS: DICER mRNA and all miR-29 subtypes were down-regulated in the thymus of MG patients and DICER expression was correlated with the lower expression of miR-29a-3p. A decreased expression of miR-29 subtypes was similarly observed in MG TECs; a decrease also induced in TECs upon IFN-ß treatment. We demonstrated that miR-29a/b-1-deficient mice were more susceptible to EAMG without higher levels of anti-AChR IgG subtypes. In the thymus, if no B cell infiltration was observed, an increased expression of Ifn-ß associated with Baff expression and the differentiation of Th17 cells associated with increased expression of Il-6, Il-17a and Il-21 and decreased Tgf-ß1 mRNA were demonstrated in miR-29a/b-1-deficient EAMG mice. CONCLUSIONS: It is not clear if the decreased expression of miR-29 subtypes in human MG is a consequence or a causative factor of thymic inflammation. However, our results from the EAMG mouse model indicated that a reduction in miR-29a/b1 may contribute to the pathophysiological process involved in MG by favoring the increased expression of IFN-ß and the emergence of pro-inflammatory Th17 cells.


Assuntos
MicroRNAs/biossíntese , Miastenia Gravis Autoimune Experimental/metabolismo , Miastenia Gravis/metabolismo , Adolescente , Adulto , Animais , Autoanticorpos/imunologia , Autoanticorpos/metabolismo , Células Cultivadas , Feminino , Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Miastenia Gravis/genética , Miastenia Gravis/imunologia , Miastenia Gravis Autoimune Experimental/genética , Miastenia Gravis Autoimune Experimental/imunologia , Receptores Colinérgicos/imunologia , Receptores Colinérgicos/metabolismo , Timo/imunologia , Timo/metabolismo , Adulto Jovem
18.
J Autoimmun ; 106: 102337, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31594658

RESUMO

Thymomas are associated with a very high risk of developing Myasthenia Gravis (MG). Our objectives were to identify histological and biological parameters to allow early diagnosis of thymoma patients susceptible to developing MG. We conducted a detailed retrospective analysis from a patient database, searching for differences between patients with thymoma-associated MG (MGT, n = 409) and thymoma without MG (TOMA, n = 111) in comparison with nonthymomatous MG patients (MG, n = 1246). We also performed multiplex and single molecule arrays to measure the serum levels of cytokines in these groups of patients and controls (n = 14-22). We identified a set of parameters associated with MG development in thymoma patients: 1) detection of anti-acetylcholine receptor (AChR) antibodies, 2) development of B1 or B2 thymoma subtypes, 3) presence of ectopic thymic germinal centers (GCs), 4) local invasiveness of thymoma, and 5) being a woman under 50 years old. Among these parameters, 58.8% of MGT patients displayed GCs with a positive correlation between the number of GCs and anti-AChR titers. By immunohistochemistry, we found thymic GCs in the adjacent tissues of thymomas encircled by high endothelial venules (HEVs) that could favor peripheral cell recruitment. We also clearly associated MG symptoms with higher IFN-γ, IL-1ß and sCD40L serum levels, specifically in MGT patients compared to TOMA patients. Altogether, these analyses allowed the clear identification of histological, in particular the presence of GCs, and biological parameters that would facilitate the evaluation of the probability of the MG outcome postoperatively in thymoma patients.


Assuntos
Centro Germinativo/patologia , Miastenia Gravis/etiologia , Timoma/complicações , Neoplasias do Timo/complicações , Adulto , Autoanticorpos/metabolismo , Ligante de CD40/metabolismo , Feminino , Centro Germinativo/metabolismo , Humanos , Interferon gama/metabolismo , Interleucina-1beta/metabolismo , Masculino , Pessoa de Meia-Idade , Miastenia Gravis/metabolismo , Receptores Colinérgicos/metabolismo , Estudos Retrospectivos , Fatores de Risco , Timoma/metabolismo , Neoplasias do Timo/metabolismo
19.
Metabolomics ; 16(1): 10, 2020 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-31902059

RESUMO

INTRODUCTION: Myasthenia gravis (MG) and rheumatoid arthritis (RA) are examples of antibody-mediated chronic, progressive autoimmune diseases. Phenotypically dissimilar, MG and RA share common immunological features. However, the immunometabolomic features common to humoral autoimmune diseases remain largely unexplored. OBJECTIVES: The aim of this study was to reveal and illustrate the metabolomic profile overlap found between these two diseases and describe the immunometabolomic significance. METHODS: Metabolic analyses using acid- and dansyl-labelled was performed on serum from adult patients with seropositive MG (n = 46), RA (n = 23) and healthy controls (n = 49) presenting to the University of Alberta Hospital specialty clinics. Chemical isotope labelling liquid chromatography mass spectrometry (CIL LC-MS) methods were utilized to assess the serum metabolome in patients; 12C/13C-dansyl chloride (DnsCl) was used to label amine/phenol metabolites and 12C/13C-p-dimethylaminophenacyl bromide (DmPA) was used for carboxylic acids. Metabolites matching our criteria for significance were selected if they were present in both groups. Multivariate statistical analysis [including principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA)] and biochemical pathway analysis was then conducted to gain understanding of the principal pathways involved in antibody-mediated pathogenesis. RESULTS: We found 20 metabolites dysregulated in both MG and RA when compared to healthy controls. Most prominently, observed changes were related to pathways associated with phenylalanine metabolism, tyrosine metabolism, ubiquinone and other terpenoid-quinone biosynthesis, and pyruvate metabolism. CONCLUSION: From these results it is evident that many metabolites are common to humoral disease and exhibit significant immunometabolomic properties. This observation may lead to an enhanced understanding of the metabolic underpinnings common to antibody-mediated autoimmune disease. Further, contextualizing these findings within a larger clinical and systems biology context could provide new insights into the pathogenesis and management of these diseases.


Assuntos
Artrite Reumatoide/metabolismo , Metaboloma , Miastenia Gravis/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Artrite Reumatoide/sangue , Feminino , Humanos , Masculino , Redes e Vias Metabólicas , Pessoa de Meia-Idade , Miastenia Gravis/sangue , Fenilalanina/metabolismo , Ácido Pirúvico/metabolismo , Tirosina/metabolismo , Ubiquinona/metabolismo
20.
Clin Exp Pharmacol Physiol ; 47(6): 989-996, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32048308

RESUMO

Imbalance of T helper 17 (Th17)/regulatory T (Treg) cells is involved in the pathogenesis of myasthenia gravis with thymoma (MG-T). Long non-coding RNAs (lncRNAs) are implicated in the regulation of Th17/Treg balance. This study was designed to explore the role of XLOC_003810, a novel lncRNA, in regulating the Th17/Treg balance in MG-T. The thymic CD4+ T cells were isolated from control subjects and MG-T patients. The Th17/Treg balance was evaluated by determining proportions of Th17 and Treg cells and expression of Th17- and Treg- associated molecules. Lentivirus-mediated silencing and overexpression of XLOC_003810 in CD4+ T cells were performed. The results showed that XLOC_003810 expression was higher in MG-T thymic CD4+ T cells than that in the control group. Furthermore, the ratio of Th17/Treg cells, proportion of Th17 cells and levels of Th17-associated molecules were significantly increased, whereas the proportion of Treg cells and levels of Treg-associated molecules were decreased in MG-T thymic CD4+ T cells. Importantly, the Th17/Treg imbalance in MG-T thymic CD4+ T cells was aggravated by XLOC_003810 overexpression, whereas it was attenuated by XLOC_003810 silencing. Collectively, XLOC_003810 modulates thymic Th17/Treg balance in MG-T patients, providing the scientific basis for the clinical targeted therapy of MG-T.


Assuntos
Miastenia Gravis/metabolismo , RNA Longo não Codificante/metabolismo , Linfócitos T Reguladores/metabolismo , Células Th17/metabolismo , Timoma/metabolismo , Timo/metabolismo , Neoplasias do Timo/metabolismo , Estudos de Casos e Controles , Citocinas/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Miastenia Gravis/genética , Miastenia Gravis/imunologia , Fenótipo , Estudos Prospectivos , RNA Longo não Codificante/genética , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Timoma/genética , Timoma/imunologia , Timo/imunologia , Neoplasias do Timo/genética , Neoplasias do Timo/imunologia , Fator de Crescimento Transformador beta1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA