Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(8): 4676-4690, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38567732

RESUMO

SRSF1 governs splicing of over 1500 mRNA transcripts. SRSF1 contains two RNA-recognition motifs (RRMs) and a C-terminal Arg/Ser-rich region (RS). It has been thought that SRSF1 RRMs exclusively recognize single-stranded exonic splicing enhancers, while RS lacks RNA-binding specificity. With our success in solving the insolubility problem of SRSF1, we can explore the unknown RNA-binding landscape of SRSF1. We find that SRSF1 RS prefers purine over pyrimidine. Moreover, SRSF1 binds to the G-quadruplex (GQ) from the ARPC2 mRNA, with both RRMs and RS being crucial. Our binding assays show that the traditional RNA-binding sites on the RRM tandem and the Arg in RS are responsible for GQ binding. Interestingly, our FRET and circular dichroism data reveal that SRSF1 unfolds the ARPC2 GQ, with RS leading unfolding and RRMs aiding. Our saturation transfer difference NMR results discover that Arg residues in SRSF1 RS interact with the guanine base but not other nucleobases, underscoring the uniqueness of the Arg/guanine interaction. Our luciferase assays confirm that SRSF1 can alleviate the inhibitory effect of GQ on gene expression in the cell. Given the prevalence of RNA GQ and SR proteins, our findings unveil unexplored SR protein functions with broad implications in RNA splicing and translation.


Assuntos
Quadruplex G , Ligação Proteica , Fatores de Processamento de Serina-Arginina , Fatores de Processamento de Serina-Arginina/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/química , Humanos , Sítios de Ligação , Splicing de RNA , Motivo de Reconhecimento de RNA/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/química , RNA/metabolismo , RNA/genética , RNA/química
2.
J Biol Chem ; 299(1): 102773, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36481269

RESUMO

Loss of function of the RNA-binding protein FMRP causes fragile X syndrome, the most common inherited form of intellectual disability and autism spectrum disorders. FMRP is suggested to modulate synaptic plasticity by regulating the synthesis of proteins involved in neuronal and synaptic function; however, the mechanism underlying FMRP mRNA targeting specificity remains unclear. Intriguing recent work published in JBC by Scarpitti and colleagues identifies and characterizes a noncanonical RNA-binding domain that is required for FMRP-mediated translation regulation, shedding light on FMRP function.


Assuntos
Proteína do X Frágil da Deficiência Intelectual , Motivo de Reconhecimento de RNA , Humanos , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Ribossomos/metabolismo , Motivo de Reconhecimento de RNA/genética
3.
J Biol Chem ; 299(12): 105392, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37890778

RESUMO

Fused in sarcoma (FUS) is an abundant RNA-binding protein, which drives phase separation of cellular condensates and plays multiple roles in RNA regulation. The RNA-binding ability of FUS protein is crucial to its cellular function. Here, our molecular simulation study on the FUS-RNA complex provides atomic resolution insights into the observations from biochemical studies and also illuminates our understanding of molecular driving forces that mediate the structure, stability, and interaction of the RNA recognition motif (RRM) and RGG domains of FUS with a stem-loop junction RNA. We observe clear cooperativity and division of labor among the ordered (RRM) and disordered domains (RGG1 and RGG2) of FUS that leads to an organized and tighter RNA binding. Irrespective of the length of RGG2, the RGG2-RNA interaction is confined to the stem-loop junction and the proximal stem regions. On the other hand, the RGG1 interactions are primarily with the longer RNA stem. We find that the C terminus of RRM, which make up the "boundary residues" that connect the folded RRM with the long disordered RGG2 stretch of the protein, plays a critical role in FUS-RNA binding. Our study provides high-resolution molecular insights into the FUS-RNA interactions and forms the basis for understanding the molecular origins of full-length FUS interaction with RNA.


Assuntos
Motivo de Reconhecimento de RNA , RNA , Domínios Proteicos , RNA/metabolismo , Motivo de Reconhecimento de RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Humanos
4.
Nucleic Acids Res ; 50(21): 12480-12496, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36454011

RESUMO

Recognition of single-stranded RNA (ssRNA) by RNA recognition motif (RRM) domains is an important class of protein-RNA interactions. Many such complexes were characterized using nuclear magnetic resonance (NMR) and/or X-ray crystallography techniques, revealing ensemble-averaged pictures of the bound states. However, it is becoming widely accepted that better understanding of protein-RNA interactions would be obtained from ensemble descriptions. Indeed, earlier molecular dynamics simulations of bound states indicated visible dynamics at the RNA-RRM interfaces. Here, we report the first atomistic simulation study of spontaneous binding of short RNA sequences to RRM domains of HuR and SRSF1 proteins. Using a millisecond-scale aggregate ensemble of unbiased simulations, we were able to observe a few dozen binding events. HuR RRM3 utilizes a pre-binding state to navigate the RNA sequence to its partially disordered bound state and then to dynamically scan its different binding registers. SRSF1 RRM2 binding is more straightforward but still multiple-pathway. The present study necessitated development of a goal-specific force field modification, scaling down the intramolecular van der Waals interactions of the RNA which also improves description of the RNA-RRM bound state. Our study opens up a new avenue for large-scale atomistic investigations of binding landscapes of protein-RNA complexes, and future perspectives of such research are discussed.


Assuntos
Proteínas de Ligação a RNA , RNA , RNA/química , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Motivo de Reconhecimento de RNA/genética , Proteína Semelhante a ELAV 1/metabolismo , Ligação Proteica , Sítios de Ligação
5.
Nucleic Acids Res ; 48(18): 10542-10554, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32870271

RESUMO

hnRNPA2 is a major component of mRNA transport granules in oligodendrocytes and neurons. However, the structural details of how hnRNPA2 binds the A2 recognition element (A2RE) and if this sequence stimulates granule formation by enhancing phase separation of hnRNPA2 has not yet been studied. Using solution NMR and biophysical studies, we find that each of the two individual RRMs retain the domain structure observed in complex with RNA but are not rigidly confined (i.e. they move independently) in solution in the absence of RNA. hnRNPA2 RRMs bind the minimal rA2RE11 weakly but at least, and most likely, two hnRNPA2 molecules are able to simultaneously bind the longer 21mer myelin basic protein A2RE. Upon binding of the RNA, NMR chemical shift deviations are observed in both RRMs, suggesting both play a role in binding the A2RE11. Interestingly, addition of short A2RE RNAs or longer RNAs containing this sequence completely prevents in vitro phase separation of full-length hnRNPA2 and aggregation of the disease-associated mutants. These findings suggest that RRM interactions with specific recognition sequences alone do not account for nucleating granule formation, consistent with models where multivalent protein:RNA and protein:protein contacts form across many sites in granule proteins and long RNA transcripts.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Motivo de Reconhecimento de RNA/genética , Proteínas de Ligação a RNA/genética , Elementos de Resposta/genética , Sítios de Ligação/genética , Fenômenos Biofísicos , Humanos , Extração Líquido-Líquido , Espectroscopia de Ressonância Magnética , Neurônios/metabolismo , Oligodendroglia/metabolismo , Agregados Proteicos/genética , Ligação Proteica/genética , RNA/genética
6.
Proc Natl Acad Sci U S A ; 116(8): 2935-2944, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30718402

RESUMO

Human antigen R (HuR) is a key regulator of cellular mRNAs containing adenylate/uridylate-rich elements (AU-rich elements; AREs). These are a major class of cis elements within 3' untranslated regions, targeting these mRNAs for rapid degradation. HuR contains three RNA recognition motifs (RRMs): a tandem RRM1 and 2, followed by a flexible linker and a C-terminal RRM3. While RRM1 and 2 are structurally characterized, little is known about RRM3. Here we present a 1.9-Å-resolution crystal structure of RRM3 bound to different ARE motifs. This structure together with biophysical methods and cell-culture assays revealed the mechanism of RRM3 ARE recognition and dimerization. While multiple RNA motifs can be bound, recognition of the canonical AUUUA pentameric motif is possible by binding to two registers. Additionally, RRM3 forms homodimers to increase its RNA binding affinity. Finally, although HuR stabilizes ARE-containing RNAs, we found that RRM3 counteracts this effect, as shown in a cell-based ARE reporter assay and by qPCR with native HuR mRNA targets containing multiple AUUUA motifs, possibly by competing with RRM12.


Assuntos
Proteínas ELAV/química , Proteína Semelhante a ELAV 1/química , Motivo de Reconhecimento de RNA/genética , Proteínas de Ligação a RNA/química , Regiões 3' não Traduzidas , Elementos Ricos em Adenilato e Uridilato/genética , Cristalografia por Raios X , Dimerização , Proteína Semelhante a ELAV 1/genética , Humanos , Espectroscopia de Ressonância Magnética , Proteínas de Ligação a RNA/genética , Ribonucleosídeo Difosfato Redutase/química , Proteínas Supressoras de Tumor/química
7.
Biophys J ; 120(9): 1765-1776, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33705755

RESUMO

Amyotrophic lateral sclerosis (ALS) and frontotemporal lobe degeneration (FTLD) are two inter-related intractable diseases of motor neuron degeneration. Fused in sarcoma (FUS) is found in cytoplasmic accumulation of ALS and FTLD patients, which readily link the protein with the diseases. The RNA recognition motif (RRM) of FUS has the canonical α-ß folds along with an unusual lysine-rich loop (KK-loop) between α1 and ß2. This KK-loop is highly conserved among FET family proteins. Another contrasting feature of FUS RRM is the absence of critical binding residues, which are otherwise highly conserved in canonical RRMs. These residues in FUS RRM are Thr286, Glu336, Thr338, and Ser367, which are substitutions of lysine, phenylalanine, phenylalanine, and lysine, respectively, in other RRMs. Considering the importance of FUS in RNA regulation and metabolism, and its implication in ALS and FTLD, it is important to elucidate the underlying molecular mechanism of RNA recognition. In this study, we have performed molecular dynamics simulation with enhanced sampling to understand the conformational dynamics of noncanonical FUS RRM and its binding with RNA. We studied two sets of mutations: one with alanine mutation of KK-loop and another with KK-loop mutations along with critical binding residues mutated back to their canonical form. We find that concerted movement of KK-loop and loop between ß2 and ß3 facilitates the folding of the partner RNA, indicating an induced-fit mechanism of RNA binding. Flexibility of the RRM is highly restricted upon mutating the lysine residues of the KK-loop, resulting in weaker binding with the RNA. Our results also suggest that absence of the canonical residues in FUS RRM along with the KK-loop is equally important in regulating its binding dynamics. This study provides a significant structural insight into the binding of FUS RRM with its cognate RNA, which may further help in designing potential drugs targeting noncanonical RNA recognition.


Assuntos
Esclerose Lateral Amiotrófica , Degeneração Lobar Frontotemporal , Esclerose Lateral Amiotrófica/genética , Humanos , Simulação de Dinâmica Molecular , RNA/genética , Motivo de Reconhecimento de RNA/genética , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo
8.
Nucleic Acids Res ; 47(4): 2130-2142, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30544166

RESUMO

Kinetoplastid RNA (kRNA) editing takes place in the mitochondria of kinetoplastid protists and creates translatable mRNAs by uridine insertion/deletion. Extensively edited (pan-edited) transcripts contain quadruplex forming guanine stretches, which must be remodeled to promote uridine insertion/deletion. Here we show that the RRM domain of the essential kRNA-editing factor TbRGG2 binds poly(G) and poly(U) RNA and can unfold both. A region C-terminal to the RRM mediates TbRGG2 dimerization, enhancing RNA binding. A RRM-U4 RNA structure reveals a unique RNA-binding mechanism in which the two RRMs of the dimer employ aromatic residues outside the canonical RRM RNA-binding motifs to encase and wrench open the RNA, while backbone atoms specify the uridine bases. Notably, poly(G) RNA is bound via a different binding surface. Thus, these data indicate that TbRGG2 RRM can bind and remodel several RNA substrates suggesting how it might play multiple roles in the kRNA editing process.


Assuntos
Mitocôndrias/genética , RNA de Protozoário/química , RNA/química , Uridina/química , Quadruplex G , Kinetoplastida/química , Kinetoplastida/genética , Mitocôndrias/química , RNA/genética , Edição de RNA , Motivo de Reconhecimento de RNA/genética , RNA de Protozoário/genética , Trypanosoma brucei brucei/genética , Uridina/genética
9.
Biochemistry ; 59(3): 315-328, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31898895

RESUMO

TDP-43 protein travels between the cytosol and the nucleus to perform its nucleic acid binding functions through its two tandem RNA recognition motif domains (TDP-43tRRM). When exposed to various environmental stresses, it forms abnormal aggregates in the cytosol of neurons, which are the hallmarks of amyotrophic lateral sclerosis and other TDP-43 proteinopathies. However, the nature of early structural changes upon stress sensing and the consequent steps during the course of aggregation are not well understood. In this study, we show that under low-pH conditions, mimicking starvation stress, TDP-43tRRM undergoes a conformational opening reaction linked to the protonation of buried ionizable residues and grows into a metastable oligomeric assembly (called the "low-pH form" or the "L form"). In the L form, the protein molecules have disrupted tertiary structure, solvent-exposed hydrophobic patches, and mobile side chains but the native-like secondary structure remains intact. The L form structure is held by weak interactions and has a steep dependence on ionic strength. In the presence of as little as 15 mM KCl, it fully misfolds and further oligomerizes to form a ß-sheet rich "ß form" in at least two distinct steps. The ß form has an ordered, stable structure that resembles worm-like amyloid fibrils. The unstructured regions of the protein gain structure during L ⇌ ß conversion. Our results suggest that TDP-43tRRM could function as a stress sensor and support a recent model in which stress sensing during neurodegeneration occurs by assembly of proteins into metastable assemblies that are precursors to the solid aggregates.


Assuntos
Amiloide/genética , Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a DNA/genética , Proteinopatias TDP-43/genética , Amiloide/química , Esclerose Lateral Amiotrófica/patologia , Fenômenos Biofísicos , Núcleo Celular/química , Núcleo Celular/genética , Citosol/química , Citosol/metabolismo , Proteínas de Ligação a DNA/química , Humanos , Agregados Proteicos/genética , Dobramento de Proteína , Estabilidade Proteica , Estrutura Secundária de Proteína/genética , Motivo de Reconhecimento de RNA/genética , Estresse Fisiológico/genética , Proteinopatias TDP-43/patologia
10.
RNA ; 24(12): 1659-1666, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30135093

RESUMO

The IMP family of RNA binding proteins, also named as insulin-like growth factor 2 (IGF2) mRNA-binding proteins (IGF2BPs), are highly conserved RNA regulators that are involved in many RNA processing stages, including mRNA stability, localization, and translation. There are three paralogs in the IMP family, IMP1-3, in mammals that all adopt the same domain arrangement with two RNA recognition motifs (RRM) in the N terminus and four KH domains in the C terminus. Here, we report the structure and biochemical characterization of IMP3 RRM12 and its complex with two short RNAs. These structures show that both RRM domains of IMP3 adopt the canonical RRM topology with two α-helices packed on an anti-parallel four stranded ß-sheet. The spatial orientation of RRM1 to RRM2 is unique compared with other known tandem RRM structures. In the IMP3 RRM12 complex with RNA, only RRM1 is involved in RNA binding and recognizes a dinucleotide sequence.


Assuntos
Motivo de Reconhecimento de RNA/genética , Proteínas de Ligação a RNA/química , RNA/química , Sequência de Aminoácidos/genética , Sítios de Ligação , Cristalografia por Raios X , Humanos , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Ligação Proteica , Conformação Proteica , Domínios Proteicos/genética , Estrutura Terciária de Proteína , RNA/genética , Proteínas de Ligação a RNA/genética
11.
Nucleic Acids Res ; 46(22): 12022-12039, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30257008

RESUMO

Cleavage and polyadenylation (C/P) of mRNA is an important cellular process that promotes increased diversity of mRNA isoforms and could change their stability in different cell types. The cleavage stimulation factor (CstF) complex, part of the C/P machinery, binds to U- and GU-rich sequences located downstream from the cleavage site through its RNA-binding subunit, CstF-64. Less is known about the function of the other two subunits of CstF, CstF-77 and CstF-50. Here, we show that the carboxy-terminus of CstF-77 plays a previously unrecognized role in enhancing C/P by altering how the RNA recognition motif (RRM) of CstF-64 binds RNA. In support of this finding, we also show that CstF-64 relies on CstF-77 to be transported to the nucleus; excess CstF-64 localizes to the cytoplasm, possibly via interaction with cytoplasmic RNAs. Reverse genetics and nuclear magnetic resonance studies of recombinant CstF-64 (RRM-Hinge) and CstF-77 (monkeytail-carboxy-terminal domain) indicate that the last 30 amino acids of CstF-77 increases the stability of the RRM, thus altering the affinity of the complex for RNA. These results provide new insights into the mechanism by which CstF regulates the location of the RNA cleavage site during C/P.


Assuntos
Fator Estimulador de Clivagem/química , Fator Estimulador de Clivagem/fisiologia , Poliadenilação , Clivagem do RNA , Proteínas de Ligação a RNA/metabolismo , Células HeLa , Humanos , Conformação de Ácido Nucleico , Poliadenilação/genética , Domínios e Motivos de Interação entre Proteínas/genética , Clivagem do RNA/genética , Motivo de Reconhecimento de RNA/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Relação Estrutura-Atividade
12.
PLoS Comput Biol ; 14(12): e1006642, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30521520

RESUMO

The RNA recognition motif (RRM) is the most common RNA binding domain across eukaryotic proteins. It is therefore of great value to engineer its specificity to target RNAs of arbitrary sequence. This was recently achieved for the RRM in Rbfox protein, where four mutations R118D, E147R, N151S, and E152T were designed to target the precursor to the oncogenic miRNA 21. Here, we used a variety of molecular dynamics-based approaches to predict specific interactions at the binding interface. Overall, we have run approximately 50 microseconds of enhanced sampling and plain molecular dynamics simulations on the engineered complex as well as on the wild-type Rbfox·pre-miRNA 20b from which the mutated systems were designed. Comparison with the available NMR data on the wild type molecules (protein, RNA, and their complex) served to establish the accuracy of the calculations. Free energy calculations suggest that further improvements in affinity and selectivity are achieved by the S151T replacement.


Assuntos
Motivo de Reconhecimento de RNA , Proteínas de Ligação a RNA/química , RNA/química , Sequência de Aminoácidos , Sítios de Ligação/genética , Biologia Computacional , Humanos , MicroRNAs/química , MicroRNAs/genética , MicroRNAs/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , Ligação Proteica , Engenharia de Proteínas , RNA/metabolismo , Motivo de Reconhecimento de RNA/genética , Estabilidade de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
13.
Nucleic Acids Res ; 45(8): 4944-4957, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28184449

RESUMO

TIA-1 (T-cell restricted intracellular antigen-1) is an RNA-binding protein involved in splicing and translational repression. It mainly interacts with RNA via its second and third RNA recognition motifs (RRMs), with specificity for U-rich sequences directed by RRM2. It has recently been shown that RRM3 also contributes to binding, with preferential binding for C-rich sequences. Here we designed UC-rich and CU-rich 10-nt sequences for engagement of both RRM2 and RRM3 and demonstrated that the TIA-1 RRM23 construct preferentially binds the UC-rich RNA ligand (5΄-UUUUUACUCC-3΄). Interestingly, this binding depends on the presence of Lys274 that is C-terminal to RRM3 and binding to equivalent DNA sequences occurs with similar affinity. Small-angle X-ray scattering was used to demonstrate that, upon complex formation with target RNA or DNA, TIA-1 RRM23 adopts a compact structure, showing that both RRMs engage with the target 10-nt sequences to form the complex. We also report the crystal structure of TIA-1 RRM2 in complex with DNA to 2.3 Šresolution providing the first atomic resolution structure of any TIA protein RRM in complex with oligonucleotide. Together our data support a specific mode of TIA-1 RRM23 interaction with target oligonucleotides consistent with the role of TIA-1 in binding RNA to regulate gene expression.


Assuntos
Proteínas de Ligação a DNA/química , DNA/química , Proteínas de Ligação a Poli(A)/química , Ribonucleosídeo Difosfato Redutase/química , Cristalografia por Raios X , DNA/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Humanos , Oligonucleotídeos/química , Proteínas de Ligação a Poli(A)/genética , Ligação Proteica/genética , Mapas de Interação de Proteínas/genética , Motivo de Reconhecimento de RNA/genética , Ribonucleosídeo Difosfato Redutase/genética , Antígeno-1 Intracelular de Células T
14.
Nucleic Acids Res ; 45(13): 8046-8063, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28505313

RESUMO

The Fox-1 RNA recognition motif (RRM) domain is an important member of the RRM protein family. We report a 1.8 Å X-ray structure of the free Fox-1 containing six distinct monomers. We use this and the nuclear magnetic resonance (NMR) structure of the Fox-1 protein/RNA complex for molecular dynamics (MD) analyses of the structured hydration. The individual monomers of the X-ray structure show diverse hydration patterns, however, MD excellently reproduces the most occupied hydration sites. Simulations of the protein/RNA complex show hydration consistent with the isolated protein complemented by hydration sites specific to the protein/RNA interface. MD predicts intricate hydration sites with water-binding times extending up to hundreds of nanoseconds. We characterize two of them using NMR spectroscopy, RNA binding with switchSENSE and free-energy calculations of mutant proteins. Both hydration sites are experimentally confirmed and their abolishment reduces the binding free-energy. A quantitative agreement between theory and experiment is achieved for the S155A substitution but not for the S122A mutant. The S155 hydration site is evolutionarily conserved within the RRM domains. In conclusion, MD is an effective tool for predicting and interpreting the hydration patterns of protein/RNA complexes. Hydration is not easily detectable in NMR experiments but can affect stability of protein/RNA complexes.


Assuntos
Fatores de Processamento de RNA/química , Fatores de Processamento de RNA/metabolismo , RNA/metabolismo , Substituição de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Humanos , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Motivo de Reconhecimento de RNA/genética , Fatores de Processamento de RNA/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Água/química
15.
Biochemistry ; 57(50): 6878-6887, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30452242

RESUMO

Smk1 is a mitogen-activated protein kinase (MAPK) family member in the yeast Saccharomyces cerevisiae that controls the postmeiotic program of spore formation. Ssp2 is a meiosis-specific protein that activates Smk1 and triggers the autophosphorylation of its activation loop. A fragment of Ssp2 that is sufficient to activate Smk1 contains two segments that resemble RNA recognition motifs (RRMs). Mutations in either of these motifs eliminated Ssp2's ability to activate Smk1. In contrast, deletions and insertions within the segment linking the RRM-like motifs only partially reduced the activity of Ssp2. Moreover, when the two RRM-like motifs were expressed as separate proteins in bacteria, they activated Smk1. We also find that both motifs can be cross-linked to Smk1 and that at least one of the motifs binds near the ATP-binding pocket of the MAPK. These findings demonstrate that motifs related to RRMs can directly activate protein kinases.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Motivo de Reconhecimento de RNA/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sítios de Ligação/genética , Ativação Enzimática/genética , Meiose/genética , Proteínas Quinases Ativadas por Mitógeno/química , Modelos Moleculares , Mutação , Conformação Proteica , RNA Fúngico/genética , RNA Fúngico/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo
16.
Nucleic Acids Res ; 44(13): 6452-70, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27193998

RESUMO

RNA recognition motif (RRM) proteins represent an abundant class of proteins playing key roles in RNA biology. We present a joint atomistic molecular dynamics (MD) and experimental study of two RRM-containing proteins bound with their single-stranded target RNAs, namely the Fox-1 and SRSF1 complexes. The simulations are used in conjunction with NMR spectroscopy to interpret and expand the available structural data. We accumulate more than 50 µs of simulations and show that the MD method is robust enough to reliably describe the structural dynamics of the RRM-RNA complexes. The simulations predict unanticipated specific participation of Arg142 at the protein-RNA interface of the SRFS1 complex, which is subsequently confirmed by NMR and ITC measurements. Several segments of the protein-RNA interface may involve competition between dynamical local substates rather than firmly formed interactions, which is indirectly consistent with the primary NMR data. We demonstrate that the simulations can be used to interpret the NMR atomistic models and can provide qualified predictions. Finally, we propose a protocol for 'MD-adapted structure ensemble' as a way to integrate the simulation predictions and expand upon the deposited NMR structures. Unbiased µs-scale atomistic MD could become a technique routinely complementing the NMR measurements of protein-RNA complexes.


Assuntos
Motivo de Reconhecimento de RNA/genética , Fatores de Processamento de RNA/química , RNA/química , Fatores de Processamento de Serina-Arginina/química , Sequência de Aminoácidos/genética , Sítios de Ligação , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Simulação de Dinâmica Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Conformação Proteica , RNA/genética , Fatores de Processamento de RNA/genética , Fatores de Processamento de Serina-Arginina/genética
17.
Biochimie ; 209: 116-130, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36716848

RESUMO

RNA-binding proteins (RBPs) are structurally and functionally diverse macromolecules with significant involvement in several post-transcriptional gene regulatory processes and human diseases. RNA recognition motif (RRM) is one of the most abundant RNA-binding domains in human RBPs. The unique modular architecture of each RBP containing RRM is crucial for its diverse target recognition and function. Genome-wide study of these structurally conserved and functionally diverse domains can enhance our understanding of their functional implications. In this study, modular architecture of RRM containing RBPs in human proteome is identified and systematically analysed. We observe that 30% of human RBPs with RNA-binding function contain RRM in single or multiple repeats or with other domains with maximum of six repeats. Zinc-fingers are the most frequently co-occurring domain partner of RRMs. Human RRM containing RBPs mostly belong to RNA metabolism class of proteins and are significantly enriched in two functional pathways including spliceosome and mRNA surveillance. Various human diseases are associated with 18% of the RRM containing RBPs. Single RRM containing RBPs are highly enriched in disorder regions. Gene ontology (GO) molecular functions including poly(A), poly(U) and miRNA binding are highly depleted in RBPs with single RRM, indicating the significance of modular nature of RRMs in specific function. The current study reports all the possible domain architectures of RRM containing human RBPs and their functional enrichment. The idea of domain architecture, and how they confer specificity and new functionalities to RBPs, can help in re-designing of modular RRM containing RBPs with re-engineered function.


Assuntos
Estudo de Associação Genômica Ampla , Motivo de Reconhecimento de RNA , Humanos , Motivo de Reconhecimento de RNA/genética , Proteínas de Ligação a RNA/metabolismo , Genoma , RNA/química
18.
Sci Rep ; 13(1): 5982, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37046025

RESUMO

TDP-43 is a major pathological protein in sporadic and familial amyotrophic lateral sclerosis (ALS) and mediates mRNA fate. TDP-43 dysfunction leads to causes progressive degeneration of motor neurons, the details of which remain elusive. Elucidation of the molecular mechanisms of RNA binding could enhance our understanding of this devastating disease. We observed the involvement of the glycine-rich (GR) region of TDP-43 in the initial recognition and binding of G-quadruplex (G4)-RNA in conjunction with its RNA recognition motifs (RRM). We performed a molecular dissection of these intramolecular RNA-binding modules in this study. We confirmed that the ALS-linked mutations in the GR region lead to alteration in the G4 structure. In contrast, amino acid substitutions in the GR region alter the protein structure but do not void the interaction with G4-RNA. Based on these observations, we concluded that the structural distortion of G4 caused by these mutations interferes with RRM recruitment and leads to TDP-43 dysfunction. This intramolecular organization between RRM and GR regions modulates the overall G4-binding properties.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mutação , RNA/genética , RNA/metabolismo , Motivo de Reconhecimento de RNA/genética
19.
Nat Commun ; 13(1): 5892, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202814

RESUMO

Dead End (DND1) is an RNA-binding protein essential for germline development through its role in post-transcriptional gene regulation. The molecular mechanisms behind selection and regulation of its targets are unknown. Here, we present the solution structure of DND1's tandem RNA Recognition Motifs (RRMs) bound to AU-rich RNA. The structure reveals how an NYAYUNN element is specifically recognized, reconciling seemingly contradictory sequence motifs discovered in recent genome-wide studies. RRM1 acts as a main binding platform, including atypical extensions to the canonical RRM fold. RRM2 acts cooperatively with RRM1, capping the RNA using an unusual binding pocket, leading to an unusual mode of tandem RRM-RNA recognition. We show that the consensus motif is sufficient to mediate upregulation of a reporter gene in human cells and that this process depends not only on RNA binding by the RRMs, but also on DND1's double-stranded RNA binding domain (dsRBD), which is dispensable for binding of a subset of targets in cellulo. Our results point to a model where DND1 target selection is mediated by a non-canonical mode of AU-rich RNA recognition by the tandem RRMs and a role for the dsRBD in the recruitment of effector complexes responsible for target regulation.


Assuntos
Motivo de Reconhecimento de RNA , RNA , Sítios de Ligação , Humanos , Proteínas de Neoplasias/metabolismo , Ligação Proteica , RNA/metabolismo , Motivo de Reconhecimento de RNA/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo
20.
Biomolecules ; 12(7)2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35883478

RESUMO

Acinetobacter baumannii is a Gram-negative pathogen, known to acquire resistance to antibiotics used in the clinic. The RNA-binding proteome of this bacterium is poorly characterized, in particular for what concerns the proteins containing RNA Recognition Motif (RRM). Here, we browsed the A. baumannii proteome for homologous proteins to the human HuR(ELAVL1), an RNA binding protein containing three RRMs. We identified a unique locus that we called AB-Elavl, coding for a protein with a single RRM with an average of 34% identity to the first HuR RRM. We also widen the research to the genomes of all the bacteria, finding 227 entries in 12 bacterial phyla. Notably we observed a partial evolutionary divergence between the RNP1 and RNP2 conserved regions present in the prokaryotes in comparison to the metazoan consensus sequence. We checked the expression at the transcript and protein level, cloned the gene and expressed the recombinant protein. The X-ray and NMR structural characterization of the recombinant AB-Elavl revealed that the protein maintained the typical ß1α1ß2ß3α2ß4 and three-dimensional organization of eukaryotic RRMs. The biochemical analyses showed that, although the RNP1 and RNP2 show differences, it can bind to AU-rich regions like the human HuR, but with less specificity and lower affinity. Therefore, we identified an RRM-containing RNA-binding protein actually expressed in A. baumannii.


Assuntos
Acinetobacter baumannii , Motivo de Reconhecimento de RNA , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Animais , Proteínas de Transporte/metabolismo , Humanos , Ligação Proteica/genética , Proteoma/metabolismo , RNA/metabolismo , Motivo de Reconhecimento de RNA/genética , Proteínas de Ligação a RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA