Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(2)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33450990

RESUMO

The current emergence of multi-, extensively-, extremely-, and total-drug resistant strains of Mycobacterium tuberculosis poses a major health, social, and economic threat, and stresses the need to develop new therapeutic strategies. The notion of phage therapy against bacteria has been around for more than a century and, although its implementation was abandoned after the introduction of drugs, it is now making a comeback and gaining renewed interest in Western medicine as an alternative to treat drug-resistant pathogens. Mycobacteriophages are genetically diverse viruses that specifically infect mycobacterial hosts, including members of the M. tuberculosis complex. This review describes general features of mycobacteriophages and their mechanisms of killing M. tuberculosis, as well as their advantages and limitations as therapeutic and prophylactic agents against drug-resistant M. tuberculosis strains. This review also discusses the role of human lung micro-environments in shaping the availability of mycobacteriophage receptors on the M. tuberculosis cell envelope surface, the risk of potential development of bacterial resistance to mycobacteriophages, and the interactions with the mammalian host immune system. Finally, it summarizes the knowledge gaps and defines key questions to be addressed regarding the clinical application of phage therapy for the treatment of drug-resistant tuberculosis.


Assuntos
Micobacteriófagos/fisiologia , Mycobacterium tuberculosis/virologia , Terapia por Fagos , Tuberculose Resistente a Múltiplos Medicamentos/terapia , Tuberculose/terapia , Animais , Carga Bacteriana , Especificidade de Hospedeiro , Interações Hospedeiro-Patógeno/imunologia , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Pulmão/imunologia , Pulmão/microbiologia , Mycobacterium tuberculosis/imunologia , Terapia por Fagos/métodos , Resultado do Tratamento , Tuberculose/imunologia , Tuberculose/microbiologia , Tuberculose Resistente a Múltiplos Medicamentos/imunologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
2.
J Bacteriol ; 202(22)2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32900827

RESUMO

Phenotypic testing for drug susceptibility of Mycobacterium tuberculosis is critical to basic research and managing the evolving problem of antimicrobial resistance in tuberculosis management, but it remains a specialized technique to which access is severely limited. Here, we report on the development and validation of an improved phage-mediated detection system for M. tuberculosis We incorporated a nanoluciferase (Nluc) reporter gene cassette into the TM4 mycobacteriophage genome to create phage TM4-nluc. We assessed the performance of this reporter phage in the context of cellular limit of detection and drug susceptibility testing using multiple biosafety level 2 drug-sensitive and -resistant auxotrophs as well as virulent M. tuberculosis strains. For both limit of detection and drug susceptibility testing, we developed a standardized method consisting of a 96-hour cell preculture followed by a 72-hour experimental window for M. tuberculosis detection with or without antibiotic exposure. The cellular limit of detection of M. tuberculosis in a 96-well plate batch culture was ≤102 CFU. Consistent with other phenotypic methods for drug susceptibility testing, we found TM4-nluc to be compatible with antibiotics representing multiple classes and mechanisms of action, including inhibition of core central dogma functions, cell wall homeostasis, metabolic inhibitors, compounds currently in clinical trials (SQ109 and Q203), and susceptibility testing for bedaquiline, pretomanid, and linezolid (components of the BPaL regimen for the treatment of multi- and extensively drug-resistant tuberculosis). Using the same method, we accurately identified rifampin-resistant and multidrug-resistant M. tuberculosis strains.IMPORTANCEMycobacterium tuberculosis, the causative agent of tuberculosis disease, remains a public health crisis on a global scale, and development of new interventions and identification of drug resistance are pillars in the World Health Organization End TB Strategy. Leveraging the tractability of the TM4 mycobacteriophage and the sensitivity of the nanoluciferase reporter enzyme, the present work describes an evolution of phage-mediated detection and drug susceptibility testing of M. tuberculosis, adding a valuable tool in drug discovery and basic biology research. With additional validation, this system may play a role as a quantitative phenotypic reference method and complement to genotypic methods for diagnosis and antibiotic susceptibility testing.


Assuntos
Antituberculosos/farmacologia , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana/métodos , Micobacteriófagos/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Rifampina/farmacologia , Humanos , Luciferases/genética , Luciferases/metabolismo , Medições Luminescentes , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/virologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Tuberculose Pulmonar/microbiologia
3.
J Biol Chem ; 294(19): 7615-7631, 2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-30894414

RESUMO

Mycobacteriophages express various peptides/proteins to infect Mycobacterium tuberculosis (M. tb). Particular attention has been paid to mycobacteriophage-derived endolysin proteins. We herein characterized a small mycobacteriophage-derived peptide designated AK15 with potent anti-M. tb activity. AK15 adopted cationic amphiphilic α-helical structure, and on the basis of this structure, we designed six isomers with increased hydrophobic moment by rearranging amino acid residues of the helix. We found that one of these isomers, AK15-6, exhibits enhanced anti-mycobacterial efficiency. Both AK15 and AK15-6 directly inhibited M. tb by trehalose 6,6'-dimycolate (TDM) binding and membrane disruption. They both exhibited bactericidal activity, cell selectivity, and synergistic effects with rifampicin, and neither induced drug resistance to M. tb They efficiently attenuated mycobacterial load in the lungs of M. tb-infected mice. We observed that lysine, arginine, tryptophan, and an α-helix are key structural requirements for their direct anti-mycobacterial action. Of note, they also exhibited immunomodulatory effects, including inhibition of proinflammatory response in TDM-stimulated or M. tb-infected murine bone marrow-derived macrophages (BMDMs) and M.tb-infected mice and induction of only a modest level of cytokine (tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6)) production in murine BMDMs and a T-cell cytokine (interferin-γ (IFN-γ) and TNF-α) response in murine lung and spleen. In summary, characterization of a small mycobacteriophage-derived peptide and its improved isomer revealed that both efficiently restrain M. tb infection via dual mycobactericidal-immunoregulatory activities. Our work provides clues for identifying small mycobacteriophage-derived anti-mycobacterial peptides and improving those that have cationic amphiphilic α-helices.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Micobacteriófagos/química , Mycobacterium tuberculosis/imunologia , Tuberculose Pulmonar/tratamento farmacológico , Proteínas Virais/farmacologia , Animais , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/agonistas , Peptídeos Catiônicos Antimicrobianos/química , Sinergismo Farmacológico , Humanos , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium tuberculosis/virologia , Rifampina/agonistas , Rifampina/farmacologia , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/patologia , Proteínas Virais/química
4.
Biochem Soc Trans ; 47(3): 847-860, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31085613

RESUMO

Tuberculosis (TB) is recognised as one of the most pressing global health threats among infectious diseases. Bacteriophages are adapted for killing of their host, and they were exploited in antibacterial therapy already before the discovery of antibiotics. Antibiotics as broadly active drugs overshadowed phage therapy for a long time. However, owing to the rapid spread of antibiotic resistance and the increasing complexity of treatment of drug-resistant TB, mycobacteriophages are being studied for their antimicrobial potential. Besides phage therapy, which is the administration of live phages to infected patients, the development of drugs of phage origin is gaining interest. This path of medical research might provide us with a new pool of previously undiscovered inhibition mechanisms and molecular interactions which are also of interest in basic research of cellular processes, such as transcription. The current state of research on mycobacteriophage-derived anti-TB treatment is reviewed in comparison with inhibitors from other phages, and with focus on transcription as the host target process.


Assuntos
Antibacterianos/farmacologia , Micobacteriófagos/metabolismo , Tuberculose/terapia , Proteínas Virais/farmacologia , Antibacterianos/uso terapêutico , Humanos , Mycobacterium tuberculosis/virologia , Transcrição Gênica , Proteínas Virais/uso terapêutico
5.
Microbiology (Reading) ; 164(9): 1168-1179, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30024363

RESUMO

Mycobacteriophage D29 is a lytic phage that infects various species of Mycobacterium including M. tuberculosis. Its genome has 77 genes distributed almost evenly between two converging operons designated as left and right. Transcription of the phage genome is negatively regulated by multiple copies of an operator-like element known as stoperator that acts by binding the phage repressor Gp71. The function of the D29 genes and their expression status are poorly understood and therefore we undertook a transcriptome analysis approach to address these issues. The results indicate that the average transcript intensity of the right arm genes was higher than of those on the left, at the early stage of infection. Moreover, the fold increase from early to the late stage was found to be less for the right arm genes than for the left. Both observations support the prediction that the right arm genes are expressed early whereas the left arm ones are expressed late. The analysis further revealed a break in the continuity of the right arm operon between 89, the first gene in it, and 88, the next. Gene 88 was found to be expressed from a newly identified promoter located between 88 and 89. Another new promoter was found upstream of 89. Thus, the promoter Pleft, identified earlier, is not the only one that drives expression of the right arm genes. All these promoters overlap with stoperators, with which they share a conserved sequence motif, TTGACA, commonly known as the -35 promoter element. We demonstrate mutually exclusive binding of RNA polymerase and Gp71 to the stoperator-promoters and conclude that stoperators can function as -35 promoter elements and that they can control gene expression not only negatively as was believed earlier but in many cases positively as well.


Assuntos
Perfilação da Expressão Gênica , Micobacteriófagos/genética , Mycobacterium tuberculosis/virologia , Óperon , Regiões Promotoras Genéticas , Genes Virais , Proteínas Virais/biossíntese , Proteínas Virais/genética
6.
Can J Microbiol ; 64(7): 483-491, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29544082

RESUMO

Bacteriophages are being considered as a promising natural resource for the development of alternative strategies against mycobacterial diseases, especially in the context of the wide-spread occurrence of drug resistance among the clinical isolates of Mycobacterium tuberculosis. However, there is not much information documented on mycobacteriophages from India. Here, we report the isolation of 17 mycobacteriophages using Mycobacterium smegmatis as the bacterial host, where 9 phages also lyse M. tuberculosis H37Rv. We present detailed analysis of one of these mycobacteriophages - PDRPv. Transmission electron microscopy and polymerase chain reaction analysis (of a conserved region within the TMP gene) show PDRPv to belong to the Siphoviridae family and B1 subcluster, respectively. The genome (69 110 bp) of PDRPv is circularly permuted double-stranded DNA with ∼66% GC content and has 106 open reading frames (ORFs). On the basis of sequence similarity and conserved domains, we have assigned function to 28 ORFs and have broadly categorized them into 6 groups that are related to replication and genome maintenance, DNA packaging, virion release, structural proteins, lysogeny-related genes and endolysins. The present study reports the occurrence of novel antimycobacterial phages in India and highlights their potential to contribute to our understanding of these phages and their gene products as potential antimicrobial agents.


Assuntos
Bacteriólise/fisiologia , Micobacteriófagos/isolamento & purificação , Micobacteriófagos/metabolismo , Mycobacterium tuberculosis/virologia , Composição de Bases , DNA Viral/genética , Genes Virais/genética , Genoma Viral , Índia , Micobacteriófagos/classificação , Micobacteriófagos/genética , Mycobacterium smegmatis/virologia , Fases de Leitura Aberta , Siphoviridae/classificação , Siphoviridae/genética , Siphoviridae/isolamento & purificação
7.
Bull Exp Biol Med ; 164(3): 344-346, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29313233

RESUMO

Culture of mouse macrophages (RAW 264.7 ATCC strain) in wells of a 6-well plate was infected with M. tuberculosis in proportion of 15 mycobacteria per one macrophage and then treated with a lytic strain of mycobacteriophage D29. Antibacterial efficacy of mycobacteriophages was studied using D29 phage (activity 108 plaque-forming units/ml) previously purified by ion exchange chromatography. After single and double 24-h treatment, the lysed cultures of macrophages were inoculated onto Middlebrook 7H10 agar medium. The number of mycobacterial colonies in control and test wells (at least 3 wells in each group) was 300.178±12.500 and 36.0±5.4, respectively (p<0.01).


Assuntos
Lisogenia/fisiologia , Micobacteriófagos/patogenicidade , Mycobacterium tuberculosis/virologia , Animais , Cromatografia por Troca Iônica , Camundongos , Micobacteriófagos/fisiologia , Células RAW 264.7 , Ensaio de Placa Viral
8.
J Bacteriol ; 198(23): 3220-3232, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27672191

RESUMO

Mycobacteriophage DS6A is unique among the more than 8,000 isolated mycobacteriophages due to its ability to form plaques exclusively on mycobacteria belonging to the Mycobacterium tuberculosis complex (MTBC). Speculation surrounding this specificity has led to unsupported assertions in published studies and patents that nontuberculous mycobacteria (NTM) are wholly resistant to DS6A infection. In this study, we identified two independent nonessential regions in the DS6A genome and replaced them with an mVenus-expressing plasmid to generate fluorescent reporter phages Φ2GFP12 and Φ2GFP13. We show that even though DS6A is able to form plaques only on MTBC bacteria, infection of various NTM results in mVenus expression in transduced cells. The efficiency of DS6A in delivering DNA varied between NTM species. Additionally, we saw a striking difference in the efficiency of DNA delivery between the closely related members of the Mycobacterium abscessus complex, M. abscessus and Mycobacterium massiliense We also demonstrated that TM4 and DS6A, two phages that do not form plaques on M. massiliense, differ in their ability to deliver DNA, suggesting that there is a phage-specific restriction between mycobacterial species. Phylogenetic analysis reveals that the DS6A genome has a characteristically mosaic structure but provided few insights into the basis for the specificity for MTBC hosts. This study demonstrates that the inability of the MTBC-specific phage DS6A to form plaques on NTM is more complex than previously thought. Moreover, the DS6A-derived fluorophages provide important new tools for the study of mycobacterial biology. IMPORTANCE: The coevolution of bacteria and their infecting phages involves a constant arms race for bacteria to prevent phage infection and phage to overcome these preventions. Although a diverse array of phage defense systems is well characterized in bacteria, very few phage restriction systems are known in mycobacteria. The DS6A mycobacteriophage is unique in the mycobacterial world in that it forms plaques only on members of the Mycobacterium tuberculosis complex. However, the novel DS6A reporter phages developed in this work demonstrate that DS6A can infect nontuberculous mycobacteria at various efficiencies. By comparing the abilities of DS6A and another phage, TM4, to infect and form plaques on various mycobacterial species, we can begin to discern new phage restriction systems employed within the genus.


Assuntos
Micobacteriófagos/fisiologia , Mycobacterium tuberculosis/virologia , Micobactérias não Tuberculosas/virologia , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Micobacteriófagos/classificação , Micobacteriófagos/genética , Micobacteriófagos/crescimento & desenvolvimento , Filogenia
9.
J Immunol ; 193(4): 1799-811, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25024382

RESUMO

Development of a vaccine against pulmonary tuberculosis may require immunization strategies that induce a high frequency of Ag-specific CD4 and CD8 T cells in the lung. The nonhuman primate model is essential for testing such approaches because it has predictive value for how vaccines elicit responses in humans. In this study, we used an aerosol vaccination strategy to administer AERAS-402, a replication-defective recombinant adenovirus (rAd) type 35 expressing Mycobacterium tuberculosis Ags Ag85A, Ag85B, and TB10.4, in bacillus Calmette-Guérin (BCG)-primed or unprimed rhesus macaques. Immunization with BCG generated low purified protein derivative-specific CD4 T cell responses in blood and bronchoalveolar lavage. In contrast, aerosolized AERAS-402 alone or following BCG induced potent and stable Ag85A/b-specific CD4 and CD8 effector T cells in bronchoalveolar lavage that largely produced IFN-γ, as well as TNF and IL-2. Such responses induced by BCG, AERAS-402, or both failed to confer overall protection following challenge with 275 CFUs M. tuberculosis Erdman, although vaccine-induced responses associated with reduced pathology were observed in some animals. Anamnestic T cell responses to Ag85A/b were not detected in blood of immunized animals after challenge. Overall, our data suggest that a high M. tuberculosis challenge dose may be a critical factor in limiting vaccine efficacy in this model. However, the ability of aerosol rAd immunization to generate potent cellular immunity in the lung suggests that using different or more immunogens, alternative rAd serotypes with enhanced immunogenicity, and a physiological challenge dose may achieve protection against M. tuberculosis.


Assuntos
Mycobacterium tuberculosis/imunologia , Vacinas contra a Tuberculose/imunologia , Tuberculose Pulmonar/prevenção & controle , Vacinação/métodos , Vacinas Sintéticas/imunologia , Aciltransferases/imunologia , Administração por Inalação , Animais , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Imunidade Celular , Interferon gama/biossíntese , Interleucina-2/biossíntese , Pulmão/imunologia , Pulmão/microbiologia , Macaca mulatta , Masculino , Mycobacterium bovis/imunologia , Mycobacterium tuberculosis/virologia , Vacinas contra a Tuberculose/administração & dosagem , Tuberculose Pulmonar/imunologia , Fator de Necrose Tumoral alfa/biossíntese , Vacinas de DNA , Vacinas Sintéticas/administração & dosagem
10.
Biotechnol Appl Biochem ; 63(6): 820-826, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26275158

RESUMO

The anomalous distribution of adhesive proteins throughout on the cell surface of the Mycobacterium tuberculosis H37 Rv and their contribution in cell surface adhesion and host-pathogen interaction remain elusive. The completion of M. tuberculosis H37 Rv genome sequence analysis gives some interesting information about polymorphic GC-rich repetitive sequence (PGRS) subfamily of M. tuberculosis that encodes fibronectin binding proteins (FnBP), which have been extensively studied, but the function in the pathogenesis of most of these proteins remains unknown and unclear. This review addresses the M. tuberculosis entry mechanism in the host cell. In particular, an effort has been made to focus on several aspects, (a) association of FnBP encodes by PE_PGRS protein family of M. tuberculosis during host-pathogen interactions. (b) Effect of calcium ions in and outside of the host cell is overriding to maintenance of calcium trafficking in phagocytosis. Furthermore, FnBP may be a potential source of antigenic variation that participating in evoking immune response. M. tuberculosis entry mechanism does not have a major influence alone, involvement of calcium ions, perhaps shed light on host-pathogen interaction relationship, and could open up new avenues for development of novel drug by targeting M. tuberculosis FnBP and blockade of selective adhesions could be useful for therapeutics.


Assuntos
Proteínas de Bactérias/metabolismo , Cálcio/metabolismo , Fibronectinas/metabolismo , Mycobacterium tuberculosis/metabolismo , Animais , Humanos , Lisossomos/microbiologia , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/patogenicidade , Mycobacterium tuberculosis/virologia , Fagossomos/microbiologia
11.
J Bacteriol ; 197(15): 2508-16, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25986902

RESUMO

UNLABELLED: Mycobacteriophages are viruses that infect mycobacterial hosts and are prevalent in the environment. Nearly 700 mycobacteriophage genomes have been completely sequenced, revealing considerable diversity and genetic novelty. Here, we have determined the protein complement of mycobacteriophage Giles by mass spectrometry and mapped its genome-wide protein interactome to help elucidate the roles of its 77 predicted proteins, 50% of which have no known function. About 22,000 individual yeast two-hybrid (Y2H) tests with four different Y2H vectors, followed by filtering and retest screens, resulted in 324 reproducible protein-protein interactions, including 171 (136 nonredundant) high-confidence interactions. The complete set of high-confidence interactions among Giles proteins reveals new mechanistic details and predicts functions for unknown proteins. The Giles interactome is the first for any mycobacteriophage and one of just five known phage interactomes so far. Our results will help in understanding mycobacteriophage biology and aid in development of new genetic and therapeutic tools to understand Mycobacterium tuberculosis. IMPORTANCE: Mycobacterium tuberculosis causes over 9 million new cases of tuberculosis each year. Mycobacteriophages, viruses of mycobacterial hosts, hold considerable potential to understand phage diversity, evolution, and mycobacterial biology, aiding in the development of therapeutic tools to control mycobacterial infections. The mycobacteriophage Giles protein-protein interaction network allows us to predict functions for unknown proteins and shed light on major biological processes in phage biology. For example, Giles gp76, a protein of unknown function, is found to associate with phage packaging and maturation. The functions of mycobacteriophage-derived proteins may suggest novel therapeutic approaches for tuberculosis. Our ORFeome clone set of Giles proteins and the interactome data will be useful resources for phage interactomics.


Assuntos
Regulação Viral da Expressão Gênica/fisiologia , Micobacteriófagos/metabolismo , Mycobacterium smegmatis/virologia , Domínios e Motivos de Interação entre Proteínas/fisiologia , Proteínas Virais/metabolismo , Biologia Computacional , Espectrometria de Massas , Micobacteriófagos/genética , Mycobacterium tuberculosis/virologia , Mapas de Interação de Proteínas , Técnicas do Sistema de Duplo-Híbrido , Proteínas Virais/genética
12.
J Biol Chem ; 289(17): 12085-12095, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24627486

RESUMO

Mycobacterium tuberculosis has always been recognized as one of the most successful pathogens. Bacteriophages that attack and kill mycobacteria offer an alternate mechanism for the curtailment of this bacterium. Upon infection, mycobacteriophages produce lysins that catalyze cell wall peptidoglycan hydrolysis and mycolic acid layer breakdown of the host resulting in bacterial cell rupture and virus release. The ability to lyse bacterial cells make lysins extremely significant. We report here a detailed molecular dissection of the function and regulation of mycobacteriophage D29 Lysin A. Several truncated versions of Lysin A were constructed, and their activities were analyzed by zymography and by expressing them in both Escherichia coli and Mycobacterium smegmatis. Our experiments establish that Lysin A harbors two catalytically active domains, both of which show E. coli cell lysis upon their expression exclusively in the periplasmic space. However, the expression of only one of these domains and the full-length Lysin A caused M. smegmatis cell lysis. Interestingly, full-length protein remained inactive in E. coli periplasm. Our data suggest that the inactivity is ensued by a C-terminal domain that interacts with the N-terminal domain. This interaction was affirmed by surface plasmon resonance. Our experiments also demonstrate that the C-terminal domain of Lysin A selectively binds to M. tuberculosis and M. smegmatis peptidoglycans. Our methodology of studying E. coli cell lysis by Lysin A and its truncations after expressing these proteins in the bacterial periplasm with the help of signal peptide paves the way for a large scale identification and analysis of such proteins obtained from other bacteriophages.


Assuntos
Endopeptidases/metabolismo , Interações Hospedeiro-Patógeno , Micobacteriófagos/fisiologia , Sequência de Bases , Domínio Catalítico , Endopeptidases/química , Escherichia coli/fisiologia , Hidrólise , Mycobacterium tuberculosis/virologia , Oligonucleotídeos , Fases de Leitura Aberta
13.
Antimicrob Agents Chemother ; 59(1): 407-13, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25367910

RESUMO

We previously reported the development of a prototype antibiotic sensitivity assay to detect drug-resistant Mycobacterium tuberculosis using infection by mycobacteriophage to create a novel nucleic acid transcript, a surrogate marker of mycobacterial viability, detected by reverse transcriptase PCR (M. C. Mulvey et al., mBio 3: e00312-11, 2012). This assay detects antibiotic resistance to all drugs, even drugs for which the resistance mechanism is unknown or complex: it is a phenotypic readout using nucleic acid detection. In this report, we describe development and characteristics of an optimized reporter system that directed expression of the RNA cyclase ribozyme, which generated circular RNA through an intramolecular splicing reaction and led to accumulation of a new nucleic acid sequence in phage-infected bacteria. These modifications simplified the assay, increased the limit of detection from 10(4) to <10(2) M. tuberculosis cells, and correctly identified the susceptibility profile of M. tuberculosis strains exposed for 16 h to either first-line or second-line antitubercular drugs. In addition to phenotypic drug resistance or susceptibility, the assay reported streptomycin MICs and clearly detected 10% drug-resistant cells in an otherwise drug-susceptible population.


Assuntos
Antituberculosos/farmacologia , RNA Polimerases Dirigidas por DNA/genética , Testes de Sensibilidade Microbiana/métodos , Mycobacterium tuberculosis/efeitos dos fármacos , RNA Polimerases Dirigidas por DNA/biossíntese , Farmacorresistência Bacteriana Múltipla/genética , Genes Reporter/genética , Micobacteriófagos/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/virologia , RNA/genética , RNA Circular , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
14.
Microbiology (Reading) ; 161(8): 1539-1551, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26066798

RESUMO

Mycobacteriophages provide an abundance of systems for use in mycobacterial genetics, including manipulation of Mycobacterium tuberculosis. Because of the dearth of antibiotic resistance cassettes and biosafety concerns in constructing recombinant virulent M. tuberculosis strains, we developed the use of mycobacteriophage-encoded repressor genes that can be selected in the presence of lytic versions of their cognate phages. The phage Adephagia repressor gene (43) was identified through its ability to confer immunity to Adephagia superinfection, together with the mapping of mutations in gene 43 that confer a clear-phage phenotype. Plasmid transformants containing either Adephagia 43 or the previously identified BPs repressor 33 can be readily selected following electroporation using engineered lytic derivatives of Adephagia and BPs, respectively. Selection is as efficient as antibiotic selection, can be used with either single-copy integration vectors or with extrachromosomal vectors, and works similarly in both Mycobacterium smegmatis and M. tuberculosis.


Assuntos
Micobacteriófagos/genética , Mycobacterium smegmatis/imunologia , Mycobacterium smegmatis/virologia , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/virologia , Proteínas Repressoras/genética , Proteínas Virais/genética , Marcadores Genéticos , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Micobacteriófagos/imunologia , Micobacteriófagos/fisiologia , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Plasmídeos/genética , Plasmídeos/metabolismo , Proteínas Repressoras/imunologia , Proteínas Virais/imunologia
15.
J Clin Microbiol ; 53(7): 2188-94, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25926493

RESUMO

Improved diagnostics and drug susceptibility testing for Mycobacterium tuberculosis are urgently needed. We developed a more powerful mycobacteriophage (Φ(2)GFP10) with a fluorescent reporter. Fluorescence-activated cell sorting (FACS) allows for rapid enumeration of metabolically active bacilli after phage infection. We compared the reporter phage assay to GeneXpert MTB/RIF for detection of M. tuberculosis and rifampin (RIF) resistance in sputum. Patients suspected to have tuberculosis were prospectively enrolled in Durban, South Africa. Sputum was incubated with Φ(2)GFP10, in the presence and absence of RIF, and bacilli were enumerated using FACS. Sensitivity and specificity were compared to those of GeneXpert MTB/RIF with an M. tuberculosis culture as the reference standard. A total of 158 patients were prospectively enrolled. Overall sensitivity for M. tuberculosis was 95.90% (95% confidence interval (CI), 90.69% to 98.64%), and specificity was 83.33% (95% CI, 67.18% to 93.59%). In acid-fast bacillus (AFB)-negative sputum, sensitivity was 88.89% (95% CI, 73.92% to 96.82%), and specificity was 83.33% (95% CI, 67.18% to 93.59%). Sensitivity for RIF-resistant M. tuberculosis in AFB-negative sputum was 90.00% (95% CI, 55.46% to 98.34%), and specificity was 91.94% (95% CI, 82.16% to 97.30%). Compared to GeneXpert, the reporter phage was more sensitive in AFB smear-negative sputum, but specificity was lower. The Φ(2)GFP10 reporter phage showed high sensitivity for detection of M. tuberculosis and RIF resistance, including in AFB-negative sputum, and has the potential to improve phenotypic testing for complex drug resistance, paucibacillary sputum, response to treatment, and detection of mixed infection in clinical specimens.


Assuntos
Antituberculosos/farmacologia , Técnicas Bacteriológicas/métodos , Micobacteriófagos/crescimento & desenvolvimento , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/isolamento & purificação , Rifampina/farmacologia , Tuberculose/diagnóstico , Adolescente , Adulto , Farmacorresistência Bacteriana , Feminino , Citometria de Fluxo , Fluorescência , Fluorometria/métodos , Genes Reporter , Proteínas de Fluorescência Verde/análise , Humanos , Masculino , Pessoa de Meia-Idade , Mycobacterium tuberculosis/virologia , Estudos Retrospectivos , Sensibilidade e Especificidade , África do Sul , Escarro/microbiologia , Coloração e Rotulagem/métodos , Adulto Jovem
16.
J Clin Microbiol ; 52(5): 1523-8, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24574299

RESUMO

Phenotypic culture-based drug susceptibility testing (DST) for Mycobacterium tuberculosis is a valuable tool to identify four to six active drugs for individualized multidrug-resistant (MDR) tuberculosis (TB) regimens. Current culture-based methods are slow, however; therefore, we evaluated a rapid mycobacteriophage-based quantitative PCR (qPCR) assay for use directly on M. tuberculosis-positive MGIT broths. We compared phage qPCRs, using a simple cutoff of 3 for the ΔCq value (where Cq is quantification cycle, and ΔCq is calculated as the Cq of starting phage minus the Cq of TB isolates in drug-containing medium), on 325 clinical M. tuberculosis MGIT broth cultures versus the respective subcultured isolates tested by agar proportion. The median accuracy for the 13 drugs/concentrations tested was 98%, with most discrepancies being false-resistant results. Evaluation of phage qPCR on greater numbers of resistant strains of 393 isolates grown on Löwenstein-Jensen medium showed similar findings, with a median accuracy, sensitivity, and specificity of 97%, 90%, and 99%, respectively. This rapid culture-based DST methodology can be performed for any drug on TB-positive MGIT broths, with a specimen-to-antibiogram turnaround time of approximately 23.9 days, compared with waiting 58.6 days for isolate growth on solid medium followed by agar proportion DST.


Assuntos
Testes de Sensibilidade Microbiana/métodos , Micobacteriófagos/genética , Mycobacterium tuberculosis/virologia , Antituberculosos/farmacologia , Meios de Cultura/metabolismo , Humanos , Micobacteriófagos/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Reação em Cadeia da Polimerase/métodos , Sensibilidade e Especificidade , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Tuberculose Resistente a Múltiplos Medicamentos/virologia
17.
Arch Microbiol ; 196(3): 209-18, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24504137

RESUMO

Mycobacteriophage therapy is a potential alternative treatment for Mycobacterium tuberculosis infection. Here, we further characterized a mycobacteriophage, Bo4, and evaluated its ability to infect and kill M. tuberculosis. We first found that Bo4 can infect M. tuberculosis and Mycobacterium smegmatis. The observed clear plaques created by Bo4 infection indicated that Bo4 might be a lytic phage able to lyse mycobacterial strains, which was confirmed by phage antimicrobial activity. Bo4 formed clear zones in a medium with pH values of 7.4 or 5.0, suggesting the possibility that Bo4 could lyse mycobacteria, such as M. tuberculosis, in blood as well as in lysosomal macrophages. Further investigation into the Bo4 genome revealed that Bo4 had a dsDNA genome. Moreover, Bo4 contained ~39,318 bp comprised of 66.76 % G+C content. Complete genome sequencing showed high nucleotide identity with cluster G mycobacteriophages, thus classifying Bo4 as a member of the cluster G family. Additionally, annotation of the Bo4 genome indicated that it was a lytic bacteriophage and did not contain any harmful genes that increased mycobacterial virulence or decreased human immunity. Overall, the results of investigation indicate that the Bo4 possesses the potential to destroy M. tuberculosis, making it a potentially useful tool for diagnosing and treating tuberculosis.


Assuntos
Micobacteriófagos/classificação , Mycobacterium tuberculosis/virologia , Tipagem de Bacteriófagos , Composição de Bases , Genoma Viral/genética , Especificidade de Hospedeiro , Humanos , Concentração de Íons de Hidrogênio , Micobacteriófagos/genética , Mycobacterium/virologia , Filogenia , Sintenia , Tuberculose/microbiologia , Tuberculose/terapia , Replicação Viral
18.
BMC Infect Dis ; 13: 44, 2013 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-23356428

RESUMO

BACKGROUND: Phage lysin, extracted from three bacteriophages was used in place of antibiotics to control the overgrowth of normal flora in processed sputum samples leading to the sensitive detection of Mycobacterium tuberculosis using diagnostic luciferase reporter phage assay (DLRPA). METHODS: A total of 129 sputum samples were processed by modified Petroff's method. Two Lowenstein Jensen slopes were inoculated from the processed sputum deposit thus obtained. The remaining deposits were transferred to 7 ml of Middlebrook 7H9 complete medium supplemented with phage lysin and incubated at 37°C. DLRPA was done using phAE129 at days 7, 9, 14 and 21. At the end of day 21, the samples were centrifuged and the pellets were inoculated on to 2 more LJ slopes to validate DLRPA results. RESULTS: The sensitivity and specificity of DLRPA in detecting M. tuberculosis from sputum specimens was 90% and 81% respectively compared to conventional LJ culture. The agreement between the methods was 87%. The rate of contamination for DLRPA using phage lysin was 9.3%. CONCLUSION: Phage lysin can be used to decontaminate sputum samples for the detection of M. tuberculosis by DLRPA directly from processed sputum specimens.


Assuntos
Bacteriófagos/enzimologia , Mucoproteínas/metabolismo , Micobacteriófagos/fisiologia , Mycobacterium tuberculosis/isolamento & purificação , Escarro/microbiologia , Tuberculose/diagnóstico , Bacteriólise , Humanos , Luciferases/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/virologia , Sensibilidade e Especificidade
19.
J Clin Microbiol ; 50(3): 754-61, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22170929

RESUMO

Managing drug-resistant Mycobacterium tuberculosis requires drug susceptibility testing, yet conventional drug susceptibility testing is slow, and molecular testing does not yield results for all antituberculous drugs. We addressed these challenges by utilizing real-time PCR of mycobacteriophage D29 DNA to evaluate the drug resistance of clinical M. tuberculosis isolates. Mycobacteriophages infect and replicate in viable bacterial cells faster than bacterial cells replicate and have been used for detection and drug resistance testing for M. tuberculosis either by using reporter cells or phages with engineered reporter constructs. Our primary protocol involved culturing M. tuberculosis isolates for 48 h with and without drugs at critical concentrations, followed by incubation with 10(3) PFU/ml of D29 mycobacteriophage for 24 h and then real-time PCR. Many drugs could be incubated instantly with M. tuberculosis and phage for 24 h alone. The change in phage DNA real-time PCR cycle threshold (C(T)) between control M. tuberculosis and M. tuberculosis treated with drugs was calculated and correlated with conventional agar proportion drug susceptibility results. Specifically, 9 susceptible clinical isolates, 22 multidrug-resistant (MDR), and 1 extensively drug-resistant (XDR) M. tuberculosis strains were used and C(T) control-C(T) drug cutoffs of between +0.3 and -6.0 yielded 422/429 (98%) accurate results for isoniazid, rifampin, streptomycin, ethambutol, amikacin, kanamycin, capreomycin, ofloxacin, moxifloxacin, ethionamide, para-aminosalicylic acid, cycloserine, and linezolid. Moreover, the ΔC(T) values correlated with isolate MIC for most agents. This D29 quantitative PCR assay offers a rapid, accurate, 1- to 3-day phenotypic drug susceptibility test for first- and second-line drugs and may suggest an approximate MIC.


Assuntos
Antituberculosos/farmacologia , DNA Viral/análise , Micobacteriófagos/crescimento & desenvolvimento , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/virologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , DNA Viral/genética , Humanos , Testes de Sensibilidade Microbiana/métodos , Micobacteriófagos/genética
20.
J Clin Microbiol ; 50(4): 1362-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22278833

RESUMO

The difficulty of diagnosing active tuberculosis (TB) and lack of rapid drug susceptibility testing (DST) at the point of care remain critical obstacles to TB control. This report describes a high-intensity mycobacterium-specific-fluorophage (φ(2)GFP10) that for the first time allows direct visualization of Mycobacterium tuberculosis in clinical sputum samples. Engineered features distinguishing φ(2)GFP10 from previous reporter phages include an improved vector backbone with increased cloning capacity and superior expression of fluorescent reporter genes through use of an efficient phage promoter. φ(2)GFP10 produces a 100-fold increase in fluorescence per cell compared to existing reporter phages. DST for isoniazid and oxofloxacin, carried out in cultured samples, was complete within 36 h. Use of φ(2)GFP10 detected M. tuberculosis in clinical sputum samples collected from TB patients. DST for rifampin and kanamycin from sputum samples yielded results after 12 h of incubation with φ(2)GFP10. Fluorophage φ(2)GFP10 has potential for clinical development as a rapid, sensitive, and inexpensive point-of-care diagnostic tool for M. tuberculosis infection and for rapid DST.


Assuntos
Bacteriófagos/genética , Mycobacterium tuberculosis/metabolismo , Escarro/microbiologia , Tuberculose Pulmonar/diagnóstico , Antituberculosos/farmacologia , Genes Reporter , Vetores Genéticos , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Humanos , Isoniazida/farmacologia , Canamicina/farmacologia , Testes de Sensibilidade Microbiana/métodos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/virologia , Ofloxacino/farmacologia , Regiões Promotoras Genéticas , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Rifampina/farmacologia , Razão Sinal-Ruído , Tuberculose Pulmonar/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA