Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glycobiology ; 33(5): 423-431, 2023 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-36988396

RESUMO

A novel Gal-binding lectin from mussels (Crenomytilus grayanus, CGL) with 6 binding sites in the dimeric structure has been previously shown to have antifungal, anticancer, and antibacterial activities. In this study, a glycan array was used to confirm that CGL recognizes a range of non-reducing end α- or ß-linked Gal glycans on normal cells but not sialic acid-capped glycans. This finding suggests that CGL has potential in the tumor detection due to the hyper-sialylation present in cell surface glycans from cancer cells. To evaluate the feasibility of this possibility, we labeled CGL with biotin and then mixed it with streptavidin-horseradish peroxidase (HRP) to create a CGL-biotin-SP complex as a probe for use in enzyme-linked lectin assays. CGL-biotin-SP successfully distinguished not only HeLa cells and de-sialylated HeLa cells that mimic normal cell surface glycans but also lung and breast cancer cells with different metastatic abilities. This work provides the insights into a new Gal-binding lectin by establishing its specificity and also demonstrates practical applications in cancer diagnosis greater than other reported lectins.


Assuntos
Lectinas , Mytilidae , Animais , Humanos , Lectinas/química , Células HeLa , Biotina , Mytilidae/metabolismo , Polissacarídeos/metabolismo
2.
Mol Ecol ; 32(2): 444-459, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36326559

RESUMO

Symbioses between invertebrates and chemosynthetic bacteria are of fundamental importance in deep-sea ecosystems, but the mechanisms that enable their symbiont associations are still largely undescribed, owing to the culturable difficulties of deep-sea lives. Bathymodiolinae mussels are remarkable in their ability to overcome decompression and can be maintained successfully for an extended period under atmospheric pressure, thus providing a model for investigating the molecular basis of symbiotic interactions. Herein, we conducted metatranscriptome sequencing and gene co-expression network analysis of Gigantidas platifrons under laboratory maintenance with gradual loss of symbionts. The results revealed that one-day short-term maintenance triggered global transcriptional perturbation in symbionts, but little gene expression changes in mussel hosts, which were mainly involved in responses to environmental changes. Long-term maintenance with depleted symbionts induced a metabolic shift in the mussel host. The most notable changes were the suppression of sterol biosynthesis and the complementary activation of terpenoid backbone synthesis in response to the reduction of bacteria-derived terpenoid sources. In addition, we detected the upregulation of host proteasomes responsible for amino acid deprivation caused by symbiont depletion. Additionally, a significant correlation between host microtubule motor activity and symbiont abundance was revealed, suggesting the possible function of microtubule-based intracellular trafficking in the nutritional interaction of symbiosis. Overall, by analyzing the dynamic transcriptomic changes during the loss of symbionts, our study highlights the nutritional importance of symbionts in supplementing terpenoid compounds and essential amino acids and provides insight into the molecular mechanisms and strategies underlying the symbiotic interactions in deep-sea ecosystems.


Assuntos
Ecossistema , Mytilidae , Animais , Simbiose/genética , Mytilidae/genética , Mytilidae/metabolismo , Mytilidae/microbiologia , Bactérias/genética , Perfilação da Expressão Gênica
3.
Mar Drugs ; 20(8)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36005532

RESUMO

Five new aromatic polyketides, including a unique benzofuran derivative, talarominine A (1), and four chromone analogs talamins A-D (2-5), along with one known related metabolite, 5-hydroxy-7-methoxy-2,3-dimethylchromone (6), were isolated and identified from the Talaromyces minioluteus CS-138, an endozoic fungus obtained from the deep-sea cold seep mussel Gigantidas platifrons. Their chemical structures were elucidated by detailed analysis of their NMR spectra, HRESIMS and X-ray crystallographic data, and by comparison with literature data as well. The antibacterial and DPPH scavenging activities of compounds 1-6 were evaluated. Compounds 1-3 showed inhibitory activity against some of the tested bacteria whereas compounds 2 and 5 showed potent DPPH radical scavenging activities, which were better than that of the positive control butylated hydroxytoluene (BHT). This work is likely the first report on marine natural products of mussel-derived fungus living in cold seep environments.


Assuntos
Mytilidae , Policetídeos , Talaromyces , Animais , Bactérias , Estrutura Molecular , Mytilidae/metabolismo , Policetídeos/química , Talaromyces/química
4.
Biochem Biophys Res Commun ; 533(4): 800-805, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-32993964

RESUMO

In this paper, we tried to create a contractile model from proteins of the catch muscle of the Gray mussel, similar to the well-described suspension contractile model of vertebrate skeletal muscles. This model makes it possible to characterize the processes in the reconstructed contractile apparatus with the help of monitoring the two characteristics of muscle suspensions - the optical density and the particle size. Contractile model of the catch muscle we constructed was the simplest model consisting of two proteins, actin and myosin. During this work we compared the optical manifestations of the contraction and relaxation states of constructed model with earlier data on the actomyosin suspension of skeletal muscles. It appeared that the approach used in the study of skeletal muscle actomyosin relaxing - the use of an increased amount of ATP - cannot be applied to the contractile model of the molluscan catch muscle. Nevertheless we managed to reach relaxed state of this model with modifying calcium concentration. As a result, we laid the foundation for further reconstruction of the third state of the catch muscle - the catch tone.


Assuntos
Actomiosina/metabolismo , Contração Muscular , Músculos/fisiologia , Mytilidae/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Modelos Biológicos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Músculos/metabolismo , Mytilidae/metabolismo , Coelhos
5.
Ecotoxicol Environ Saf ; 201: 110794, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32526590

RESUMO

The intensive use of glyphosate in industrial agriculture may lead to freshwater contamination, encouraging studies of its toxic effect on non-target aquatic organisms. Glyphosate-based commercial formulations contain adjuvants, making them even more toxic than the active ingredient (a.i.) itself. The golden mussel Limnoperna fortunei is a freshwater invasive species which has been found to increase glyphosate dissipation in water and to accelerate eutrophication. The aim of this study is to evaluate the capability of L. fortunei to reduce the concentration of glyphosate in two commercial formulations, Roundup Max® and Glifosato Atanor®. Results were compared with the decay of the a.i. alone and in presence of mussels. Evasive response and toxicity tests were performed in a first set of trials to analyze the response of L. fortunei exposed to Roundup Max® and Glifosato Atanor®. Subsequently, we conducted a 21-day degradation experiment in 2.6-L microcosms applying the following treatments: 6 mg L-1 of technical-grade glyphosate (G), Glifosato Atanor® (A), Roundup Max® (R), 20 mussels in dechlorinated tap water (M), and the combination of mussels and herbicide either in the technical-grade (MG) or formulated form (MA and MR) (all by triplicate). Samples were collected at days 0, 1, 7, 14 and 21. No significant differences in glyphosate decay were found between treatments with mussels (MG: 2.03 ± 0.40 mg L-1; MA: 1.60 ± 0.32 mg L-1; MR: 1.81 ± 0.21 mg L-1), between glyphosate as a.i. and the commercial formulations, and between the commercial formulations, suggesting that the adjuvants did not affect the degrading potential of L. fortunei. In addition to the acceleration of glyphosate dissipation in water, there was an increase in the concentration of dissolved nutrients in water (N-NH4+ and P-PO43-) even higher than that caused by the filtering activity of the mussels, probably resulting from stress or from the degradation of glyphosate and adjuvants. We believe that a larger bioavailability of these nutrients due to glyphosate metabolization mediated by mussels would accelerate eutrophication processes in natural water bodies. The approach used here, where L. fortunei was exposed to two commercial formulations actually used in agricultural practices, sheds light on the potential impact of glyphosate decay on water bodies invaded by this species.


Assuntos
Água Doce/química , Glicina/análogos & derivados , Herbicidas/toxicidade , Espécies Introduzidas/tendências , Mytilidae/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Argininossuccinato Sintase , Biodegradação Ambiental , Proteínas de Escherichia coli , Glicina/toxicidade , Mytilidae/metabolismo , Testes de Toxicidade , Glifosato
6.
Biochem Biophys Res Commun ; 520(3): 634-639, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31627898

RESUMO

In the work, we performed densitometry of thick filaments of the Gray's mussel catch muscle; densitometry included determination of electrophoretic dye binding constants of proteins. The results of densitometry showed that the content of twitchin in thick filaments is significantly (10 times) lower than the content of myosin. We performed an in vitro simulation of the contractile apparatus of the catch muscle and showed that with such content, links formed by twitchin cannot stop "relaxation". So, we doubt that the role of twitchin in the formation of the catch state is to form load-bearing links between thin and thick filaments that keep the muscle in the contracted state. At the same time, densitometry has shown that the content of the unique catch-muscle protein - myorod - significantly exceeds the content of twitchin and reaches the level of myosin. Like twitchin, myorod is capable of forming regulated cross-links between thick and thin filaments. Such a high content of this protein may indicate that it is myorod, and not twitchin, that is responsible for the formation of catch load-bearing cross-links.


Assuntos
Proteínas Musculares/metabolismo , Mytilidae/metabolismo , Animais , Reagentes de Ligações Cruzadas , Densitometria , Técnicas In Vitro , Modelos Biológicos , Contração Muscular/fisiologia , Proteínas Musculares/química , Miosinas/metabolismo , Fosforilação , Coelhos
7.
Fish Shellfish Immunol ; 86: 246-252, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30458311

RESUMO

Deep-sea Bathymodiolus mussels depend on the organic carbon supplied by symbionts inside their gills. In this study, optimized methods of quantitative real-time PCR and fluorescence in situ hybridization targeted to both mRNA and 16S rRNA were used to investigate the gill symbionts of the cold-seep mussel Bathymodiolus platifrons, including species composition, environmental dependency and immune control by the host. Our results showed that methanotrophs were the major symbiotic bacteria in the gills of B. platifrons, while thiotrophs were scarce. In the mussels freshly collected from the deep sea, methanotrophs were housed in bacteriocytes in a unique circular pattern, and a lysosome-related gene (VAMP) encoding a vesicle-associated membrane protein was expressed at a high level and presented exactly where the methanotrophs occurred. After the mussels were reared for three months in aquaria without methane supply, the abundance of methanotrophs decreased significantly and their circle-shaped distribution pattern disappeared; in addition, the expression of VAMP decreased significantly. These results suggest that the symbiosis between B. platifrons and methanotrophs is influenced by the environment and that the lysosomal system plays an important immune role in controlling the abundance of endosymbionts in host. This study provides a reliable method for investigating symbionts in deep-sea mussels and enriches the knowledge about symbionts in B. platifrons.


Assuntos
Brânquias/microbiologia , Mytilidae/microbiologia , Simbiose/fisiologia , Animais , Bactérias/classificação , Bactérias/metabolismo , Expressão Gênica , Brânquias/metabolismo , Metano/metabolismo , Mytilidae/imunologia , Mytilidae/metabolismo , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , RNA Mensageiro , RNA Ribossômico 16S
8.
Artigo em Inglês | MEDLINE | ID: mdl-30195015

RESUMO

Mammalian γ-aminobutyric acid (GABA) transporter subtype 1 (GAT-1) is a specific transporter for GABA, an inhibitory neurotransmitter in GABA-ergic neurons. GAT-1 belongs to the GAT group, in which five related transporters, GAT-2, GAT-3, GAT-4, CT1, and TAUT are known in mammals. By contrast, the deep-sea mussel, Bathymodiolus septemdierum has only two GAT group members, BsGAT-1 and BsTAUT, and their function in environmental adaptation is of interest to better understand the physiology of deep-sea organisms. Compared with BsTAUT, the function of BsGAT-1 is unknown. Here, we report the functional characterization of BsGAT-1. Analyses of BsGAT-1 expressed in Xenopus oocytes showed that it could transport GABA in a Na+- and Cl--dependent manner, with Km and Vmax values of 0.58 µM and 1.97 pmol/oocyte/h, respectively. BsGAT-1 activity was blocked by the GAT-1 selective inhibitors SKF89976A and ACHC. Competition assays indicated that BsGAT-1 has no affinity for taurine and thiotaurine. These characteristics were common with those of mammalian GAT-1, suggesting its conserved function in the nervous system. However, BsGAT-1 showed a certain affinity for hypotaurine, which is involved in sulfide detoxification in hydrothermal vent-specific animals. This result suggests an additional role for BsGAT-1 in sulfide detoxification, which may be specific to the deep-sea mussel. In a tissue distribution analysis, BsGAT-1 mRNA expression was observed in various tissues. The expression in the adductor and byssus retractor muscles, labial palp, and foot, which possibly contain ganglia, suggested a function in the neural system, while BsGAT-1 expression in other tissues might be related to sulfide detoxification.


Assuntos
Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Mytilidae/metabolismo , Animais , Transporte Biológico , Proteínas da Membrana Plasmática de Transporte de GABA/genética , Oócitos/metabolismo , Transporte Proteico , RNA Mensageiro/genética , Especificidade por Substrato , Xenopus laevis/genética , Ácido gama-Aminobutírico/metabolismo
9.
Ecotoxicol Environ Saf ; 171: 621-630, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-30658297

RESUMO

Proteomic changes in the "gill-bacteria complex" of the hydrothermal vent mussel B. azoricus exposed to cadmium in pressurized chambers ((Incubateurs Pressurises pour l'Observation en Culture d'Animaux Marins Profonds - IPOCAMP) were analyzed and compared with the non-exposed control group. 2-D Fluorescence Difference Gel Electrophoresis (2D-DIGE) showed that less than 1.5% of the proteome of mussels and symbiotic bacteria were affected by a short-term (24 h) Cd exposure. Twelve proteins of the more abundant differentially expressed proteins of which six were up-regulated and six were down-regulated were excised, digested and identified by mass spectrometry. The identified proteins included structural proteins (actin/actin like proteins), metabolic proteins (calreticulin/calnexin, peptidyl-prolyl cis-trans isomerase, aminotransferase class-III, electron transfer flavoprotein, proteasome, alpha-subunit and carbonic anhydrase) and stress response proteins (chaperone protein htpG, selenium-binding protein and glutathione transferases). All differently expressed proteins are tightly connected to Cd exposure and are affected by oxidative stress. It was also demonstrated that B. azoricus was well adapted to Cd contamination therefore B. azoricus from hydrothermal vent areas may be considered a good bioindicator.


Assuntos
Cádmio/toxicidade , Mytilidae/efeitos dos fármacos , Proteoma , Animais , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Eletroforese em Gel Bidimensional , Regulação da Expressão Gênica , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Brânquias/microbiologia , Fontes Hidrotermais , Mytilidae/metabolismo , Mytilidae/microbiologia , Estresse Oxidativo/efeitos dos fármacos , Proteoma/metabolismo , Simbiose
10.
Molecules ; 25(1)2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31905927

RESUMO

A GalNAc/Gal-specific lectins named CGL and MTL were isolated and characterized from the edible mussels Crenomytilus grayanus and Mytilus trossulus. Amino acid sequence analysis of these lectins showed that they, together with another lectin MytiLec-1, formed a novel lectin family, adopting ß-trefoil fold. In this mini review we discuss the structure, oligomerization, and carbohydrate-binding properties of a novel lectin family. We describe also the antibacterial, antifungal, and antiproliferative activities of these lectins and report about dependence of activities on molecular properties. Summarizing, CGL, MTL, and MytiLec-1 could be involved in the immunity in mollusks and may become a basis for the elaboration of new diagnostic tools or treatments for a variety of cancers.


Assuntos
Galactose/metabolismo , Lectinas/química , Lectinas/metabolismo , Mytilidae/metabolismo , Sequência de Aminoácidos , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Lectinas/genética , Lectinas/farmacologia , Família Multigênica , Mytilidae/genética , Mytilus/genética , Mytilus/metabolismo , Ligação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína
11.
Mar Drugs ; 16(12)2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30486373

RESUMO

The GalNAc/Gal-specific lectin from the sea mussel Crenomytilus grayanus (CGL) with anticancer activity represents а novel lectin family with ß-trefoil fold. Earlier, the crystal structures of CGL complexes with globotriose, galactose and galactosamine, and mutagenesis studies have revealed that the lectin contained three carbohydrate-binding sites. The ability of CGL to recognize globotriose (Gb3) on the surface of breast cancer cells and bind mucin-type glycoproteins, which are often associated with oncogenic transformation, makes this compound to be perspective as a biosensor for cancer diagnostics. In this study, we describe results on in silico analysis of binding mechanisms of CGL to ligands (galactose, globotriose and mucin) and evaluate the individual contribution of the amino acid residues from carbohydrate-binding sites to CGL activity by site-directed mutagenesis. The alanine substitutions of His37, His129, Glu75, Asp127, His85, Asn27 and Asn119 affect the CGL mucin-binding activity, indicating their importance in the manifestation of lectin activity. It has been found that CGL affinity to ligands depends on their structure, which is determined by the number of hydrogen bonds in the CGL-ligand complexes. The obtained results should be helpful for understanding molecular machinery of CGL functioning and designing a synthetic analog of CGL with enhanced carbohydrate-binding properties.


Assuntos
Organismos Aquáticos/metabolismo , Lectinas/metabolismo , Mutagênese Sítio-Dirigida , Mytilidae/metabolismo , Acetilgalactosamina/química , Acetilgalactosamina/metabolismo , Sequência de Aminoácidos/genética , Animais , Organismos Aquáticos/genética , Sítios de Ligação/genética , Galactose/química , Galactose/metabolismo , Lectinas/química , Lectinas/genética , Ligantes , Simulação de Acoplamento Molecular , Mucinas/química , Mucinas/metabolismo , Mytilidae/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Trissacarídeos/química , Trissacarídeos/metabolismo
12.
Ecotoxicol Environ Saf ; 155: 152-161, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29510310

RESUMO

This study investigated metal accumulation and oxidative effects in mantle, gill and digestive gland of the ribbed mussel Aulacomya atra from the Argentinean North Patagonian coastline. Mussels were transplanted over an 18-month period from a site with low anthropogenic impact to a harbor site with higher seawater concentration of aluminum, chromium, copper, manganese, nickel and zinc. Total trace metal concentration in seawater did not change throughout the 18-month transplant in either site. A. atra bioaccumulated metals in digestive gland, gills and mantle at different levels. Digestive gland had the highest concentration of metals, especially towards the end of the transplant experiment in the harbor area. Mussels transplanted to the harbor site experienced an upregulation in their antioxidant system, which likely explains the lack of oxidative damage to lipids despite higher metal accumulation. These results demonstrate that A. atra selectively accumulates metals from the water column and their prooxidant effects depend on the tissue antioxidant defenses and the exposure time.


Assuntos
Trato Gastrointestinal/metabolismo , Brânquias/metabolismo , Metais/metabolismo , Mytilidae/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Argentina , Monitoramento Ambiental , Metais/análise , Estresse Oxidativo , Água do Mar/análise , Poluentes Químicos da Água/análise
13.
Ecotoxicol Environ Saf ; 163: 69-75, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30041128

RESUMO

The aim of this study was to analyze the biochemical alterations in the golden mussel Limnoperna fortunei under dietary glyphosate exposure. Mussels were fed during 4 weeks with the green algae Scenedesmus vacuolatus previously exposed to a commercial formulation of glyphosate (6 mg L-1 active principle) with the addition of alkyl aryl polyglycol ether surfactant. After 1, 7, 14, 21 and 28 days of dietary exposure, glutathione-S-transferase (GST), catalase (CAT), superoxide dismutase (SOD), acetylcholinesterase (AChE), carboxylesterases (CES) and alkaline phosphatase (ALP) activities, glutathione (GSH) content and damage to lipids and proteins levels were analyzed. A significant increase (72%) in the GST activity and a significant decrease (26%) in the CES activity in the mussels fed on glyphosate exposed algae for 28 days were observed. The ALP activity was significantly increased at 21 and 28 days of dietary exposure (48% and 72%, respectively). GSH content and CAT, SOD and AchE activities did not show any differences between the exposed and non exposed bivalves. No oxidative damage to lipids and proteins, measured as TBARS and carbonyl content respectively, was observed in response to glyphosate dietary exposure. The decrease in the CES activity and the increases in GST and ALP activities observed in L. fortunei indicate that dietary exposure to glyphosate provokes metabolic alterations, related with detoxification mechanisms.


Assuntos
Glicina/análogos & derivados , Herbicidas/toxicidade , Mytilidae/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Hidrolases de Éster Carboxílico/metabolismo , Catalase/metabolismo , Dieta/veterinária , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Glicina/toxicidade , Mytilidae/metabolismo , Estresse Oxidativo , Scenedesmus , Alimentos Marinhos , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Glifosato
14.
Mar Drugs ; 15(10)2017 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-29064453

RESUMO

A DTX-1-producing microalga, Prorocentrum foraminosum, from Peter the Great Bay, Sea of Japan, was fed to Gray's mussels, Crenomytilus grayanus, for 12 days. An increase in DTX-1 and 7-O-acyl-DTX-1 (DTX-3) was observed in the digestive gland, kidneys, and gills. The digestive gland accumulated 91-100% of DTX-1 + DTX-3; and kidneys and gills accumulated, up to 8.5% and 4.3%, respectively. The kidneys had a distinctive pattern of toxin accumulation where the concentration of DTX-1 did not grow significantly after the eighth day of feeding, indicating the potential of DTX-1 elimination. The digestive gland and gills predominantly accumulated DTX-1, with a dramatic increase between Days 8 and 12. The DTX-3 content was highest in the digestive gland. The composition of DTX-3 in the acyl groups was similar for the digestive gland and kidneys, and did not change during feeding. The total toxin uptake of mussels exceeded the total toxin content from ingested cells by 2.4 times, showing that toxins may have accumulated from the seawater. This assumption needs to be further proved. The muscle, gonads, and mantle remained free of toxins. No genotoxic effect was observed in the gills and digestive gland.


Assuntos
Dinoflagellida/metabolismo , Toxinas Marinhas/farmacologia , Mytilidae/metabolismo , Alimentos Marinhos/toxicidade , Animais , Diarreia/etiologia , Trato Gastrointestinal/metabolismo , Brânquias/metabolismo , Humanos , Japão , Rim/metabolismo , Testes de Mutagenicidade , Oceanos e Mares , Ácido Okadáico , Piranos/farmacologia , Água do Mar/química , Distribuição Tecidual
15.
Ecotoxicol Environ Saf ; 142: 222-229, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28412626

RESUMO

Waterways in urban areas often act as repositories for sewage, industrial waste, and environmental contaminants. In response, inhabitants of these watersheds undergo physiological adaptations specific to their respective environments. Effects of these stressors can be assayed by quantification of various well-documented biomarkers in sentinel species such as the Atlantic Ribbed mussel, Geukensia demissa, a native to the Bronx River Estuary, Bronx, NY, USA. Heat shock protein 70 (Hsp70) is a universally expressed biomarker for an array of environmental stressors including toxins and low dissolved oxygen. To better understand the mechanisms by which organisms tolerate their contaminated environments, we monitored the constitutive and heat shock-induced levels of two proteins: Hsp70 and acetylcholinesterase (AChE) in natural populations of G. demissa from differentially impacted sites: the Bronx River and Greenwich Cove estuaries. We show that G. demissa from the Bronx River exhibits a higher level of constitutive Hsp70, and launches a more rapid and robust heat shock response than does its Greenwich Cove counterpart. In addition, AChE levels are recovered more quickly in Bronx River mussels. Based on response pattern investigations from heat stress as well as constitutive expression, we suggest that the Hsp70/AChE chaperone/client relationship exemplifies the unique adaptive mechanisms utilized by organisms in order to tolerate environmentally impacted habitats. Results from this study offer important insights from an ecological perspective into the molecular and cellular basis of stress response and provide valuable information regarding adaptation to the increased demands of challenging environments.


Assuntos
Acetilcolinesterase/metabolismo , Adaptação Fisiológica/efeitos dos fármacos , Monitoramento Ambiental/métodos , Proteínas de Choque Térmico HSP70/metabolismo , Mytilidae/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Acetilcolinesterase/análise , Animais , Biomarcadores/análise , Ecossistema , Poluição Ambiental , Estuários , Proteínas de Choque Térmico HSP70/análise , Mytilidae/metabolismo , New York , Rios/química , Urbanização , Poluentes Químicos da Água/toxicidade
16.
Biochim Biophys Acta ; 1854(10 Pt A): 1444-50, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26213227

RESUMO

Muscles of bivalve molluscs have double calcium regulation--myosin-linked and actin-linked. While the mechanism of myosin-linked regulation is sufficiently studied, there is still no consensus on the mechanism of actin-linked regulation. Earlier we showed a high degree of Ca2+-sensitivity of thin filaments from the adductor muscle of the mussel Crenomytilus grayanus (Mytiloida). In order to elucidate the nature of this regulation, we isolated the fraction of minor proteins from the mussel thin filaments, which confers Ca2+-sensitivity to reconstituted actomyosin-tropomyosin. Proteins of this fraction, ABP-19, ABP-20, and ABP-28, were chromatographically purified and identified. According to the results of mass spectrometry and Western blot analysis, as well as by their functional properties, these mussel actin-binding proteins appeared to correspond to the troponin components from the skeletal muscles of vertebrates (TnC, TnI and TnT). The reconstituted mussel troponin complex confers to actomyosin-tropomyosin more than 80% Ca2+-sensitivity. The in vivo molar ratio of actin/tropomyosin/troponin was calculated to be 7:1:0.5, i.e., the content of troponin in mussel thin filaments is two times lower than in thin filaments of skeletal muscles of vertebrates. These data demonstrate that troponin-like regulation found in the catch muscle of the mussel C. grayanus is present at least in two suborders of bivalves: Pectinoida and Mytiloida.


Assuntos
Actomiosina/metabolismo , Cálcio/metabolismo , Miofibrilas/metabolismo , Mytilidae/metabolismo , Tropomiosina/metabolismo , Troponina/metabolismo , Actinas/genética , Actinas/metabolismo , Actomiosina/genética , Sequência de Aminoácidos , Animais , Sinalização do Cálcio , Proteínas de Ligação a Calmodulina/genética , Proteínas de Ligação a Calmodulina/metabolismo , Regulação da Expressão Gênica , Dados de Sequência Molecular , Miofibrilas/genética , Miofibrilas/ultraestrutura , Miosinas/genética , Miosinas/metabolismo , Mytilidae/genética , Ligação Proteica , Coelhos , Alinhamento de Sequência , Tropomiosina/genética , Troponina/genética
17.
Fish Shellfish Immunol ; 47(2): 962-77, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26529571

RESUMO

Menez Gwen (MG) and Lucky Strike (LS) deep-sea hydrothermal vents are located at 850 m and 1730 m depths respectively and support chemosynthesis-based ecosystems partially differing in heavy metal concentration, temperature range, and faunistic composition. The successfully adapted deep-sea vent mussel Bathymodiolus azoricus is found at both vent locations. In such inhospitable environments survival strategies rely on the establishment of bacteria-vent animal symbiosis In spite of the toxic nature of deep-sea vents, the problem of microbial threat and the need for immunity exist in B. azoricus. This study aims at investigating the immune system of B. azoricus from MG and LS populations by comparing immune gene expressions profiles using the deep-sea vent-related Vibrio diabolicus. Expression of nineteen immune genes was analyzed from gill, digestive gland and mantle tissues upon 3 h, 12 h and 24 h V. diabolicus challenges. Based on quantitative-Polymerase Chain Reaction (qPCR) significant gene expression differences were found among MG and LS populations and challenge times MG mussels revealed that gill and digestive gland gene expression levels were remarkably higher than those from LS mussels. Expression of Carcinolectin, Serpin-2, SRCR, IRGs, RTK, TLR2, NF-κB, HSP70 and Ferritin genes was greater in MG than LS mussels. In contrast, mantle tissue from LS mussels revealed the highest peak of expression at 24 h for most genes analyzed. The activation of immune signaling pathways demonstrated that gene expression profiles are distinct between the two mussel populations. These differences may possibly ensue from intrinsic immune transcriptional activities upon which host responses are modulated in presence of V. diabolicus. mRNA transcript variations were assessed during 24 h acclimatization taking into account the partial depuration to which mussels were subjected to. Additionally, gene expression differences may reflect still accountable effects from the presence of vent remaining microfluidic environments within the tissues analyzed.


Assuntos
Imunidade Inata , Mytilidae/genética , Mytilidae/imunologia , Transcriptoma , Vibrio/fisiologia , Animais , Oceano Atlântico , Açores , Fontes Hidrotermais , Mytilidae/metabolismo , Especificidade de Órgãos
18.
Fish Shellfish Immunol ; 47(1): 565-71, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26439416

RESUMO

The GalNAc/Gal-specific lectin from the sea mussel Crenomytilus grayanus (CGL) was shown to represent a novel family of lectins and to be characterized by three amino acid tandem repeats with high (up to 73%) sequence similarities to each other. We have used homology modeling approach to predict CGL sugar-binding sites. In silico analysis of CGL-GalNAc complexes showed that CGL contained three binding sites, each of which included conserved HPY(K)G motif. In silico substitutions of histidine, proline and glycine residues by alanine in the HPY(K)G motifs of the Sites 1-3 was shown to lead to loss of hydrogen bonds between His and GalNAc and to the increasing the calculated CGL-GalNAc binding energies. We have obtained recombinant CGL and used site-specific mutagenesis to experimentally examine the role of HPK(Y)G motifs in hemagglutinating and carbohydrate binding activities of CGL. Substitutions of histidine, proline and glycine residues by alanine in the HPYG motif of Site 1 and Site 2 was found to led to complete loss of CGL hemagglutinating and mucin-binding activities. The same mutations in HPKG motif of the Site 3 resulted in decreasing the mucin-binding activity in 6-folds in comparison with the wild type lectin. The mutagenesis and in silico analysis indicates the importance of the all three HPY(K)G motifs in the carbohydrate-binding and hemagglutinating activities of CGL.


Assuntos
Lectinas/genética , Mytilidae/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Lectinas/química , Lectinas/metabolismo , Mutagênese Sítio-Dirigida , Mytilidae/metabolismo , Alinhamento de Sequência
19.
Fish Shellfish Immunol ; 42(2): 503-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25482060

RESUMO

Lectins (carbohydrate-binding proteins) are well known to actively participate in the defense functions of vertebrates and invertebrates where they play an important role in the recognition of foreign particles. In this study, we investigated of in vitro antifungal activity of lectin from the mussel Crenomytilus grayanus (CGL). Enzyme-linked immunosorbent assay indicated that CGL was predominantly detectable in tissues of mantle and to a lesser degree in the tissues of muscle, hepatopancreas, gill and hemocytes. After challenged by Pichia pastoris the level of CGL was upregulated and reached the maximum level at 12 h post challenge and recovered to the original level at 24 h. The lectin was capable of inhibiting the germination of spores and hyphal growth in the fungi. All these results indicated that CGL is involved in the innate immune response in mollusc animals.


Assuntos
Galanina/genética , Lectinas/genética , Mytilidae/genética , Mytilidae/imunologia , Pichia/fisiologia , Animais , Antifúngicos/metabolismo , Galanina/metabolismo , Lectinas/metabolismo , Mytilidae/metabolismo , Especificidade de Órgãos
20.
Ecotoxicology ; 24(2): 381-90, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25424349

RESUMO

The capacity and mechanism of Limnoperna fortunei to reduce the concentration of forchlorfenuron [or 1-(2-chloropyridin-4-yl)-3-phenylurea (CPPU)] in water has been studied under laboratory conditions. Firstly, the evasive response of mussels to CPPU (10, 20, 40 and 60 mg L(-1)) was evaluated, and a toxicity test was carried out at these concentrations. Secondly, the effect of two different sizes of mussels on CPPU concentrations was investigated in a 24-day experiment. Thirdly, the role of intact mussels and valvae only were respectively evaluated in another 24-day experiment. The CPPU concentration decreased by about 40 % in the presence of large mussels and about 20 % in the presence of valvae only. Finally, nucleic acid extracts from the gut and biofilm microbial communities of L. fortunei were analyzed, and the number of copies of the bacterial genes amoA, nirK and nirS were determined. Based on these results, we propose possible mechanisms for CPPU degradation involving bacteria-associated nitrification and denitrification reactions. In summary, we found that the CPPU half-life depended on the presence of mussels, their size and their associated microorganisms.


Assuntos
Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Biofilmes , Mytilidae/metabolismo , Mytilidae/microbiologia , Compostos de Fenilureia/metabolismo , Piridinas/metabolismo , Poluentes Químicos da Água/metabolismo , Exoesqueleto/microbiologia , Animais , Bactérias/isolamento & purificação , Desnitrificação , Sistema Digestório/metabolismo , Meia-Vida , Nitrificação , Reguladores de Crescimento de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA