Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.584
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 619(7971): 801-810, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37438528

RESUMO

The function of a cell is defined by its intrinsic characteristics and its niche: the tissue microenvironment in which it dwells. Here we combine single-cell and spatial transcriptomics data to discover cellular niches within eight regions of the human heart. We map cells to microanatomical locations and integrate knowledge-based and unsupervised structural annotations. We also profile the cells of the human cardiac conduction system1. The results revealed their distinctive repertoire of ion channels, G-protein-coupled receptors (GPCRs) and regulatory networks, and implicated FOXP2 in the pacemaker phenotype. We show that the sinoatrial node is compartmentalized, with a core of pacemaker cells, fibroblasts and glial cells supporting glutamatergic signalling. Using a custom CellPhoneDB.org module, we identify trans-synaptic pacemaker cell interactions with glia. We introduce a druggable target prediction tool, drug2cell, which leverages single-cell profiles and drug-target interactions to provide mechanistic insights into the chronotropic effects of drugs, including GLP-1 analogues. In the epicardium, we show enrichment of both IgG+ and IgA+ plasma cells forming immune niches that may contribute to infection defence. Overall, we provide new clarity to cardiac electro-anatomy and immunology, and our suite of computational approaches can be applied to other tissues and organs.


Assuntos
Microambiente Celular , Coração , Multiômica , Miocárdio , Humanos , Comunicação Celular , Fibroblastos/citologia , Ácido Glutâmico/metabolismo , Coração/anatomia & histologia , Coração/inervação , Canais Iônicos/metabolismo , Miocárdio/citologia , Miocárdio/imunologia , Miocárdio/metabolismo , Miócitos Cardíacos/citologia , Neuroglia/citologia , Pericárdio/citologia , Pericárdio/imunologia , Plasmócitos/imunologia , Receptores Acoplados a Proteínas G/metabolismo , Nó Sinoatrial/anatomia & histologia , Nó Sinoatrial/citologia , Nó Sinoatrial/fisiologia , Sistema de Condução Cardíaco/anatomia & histologia , Sistema de Condução Cardíaco/citologia , Sistema de Condução Cardíaco/metabolismo
2.
Circ Res ; 134(10): 1348-1378, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38723033

RESUMO

Loss or dysregulation of the normally precise control of heart rate via the autonomic nervous system plays a critical role during the development and progression of cardiovascular disease-including ischemic heart disease, heart failure, and arrhythmias. While the clinical significance of regulating changes in heart rate, known as the chronotropic effect, is undeniable, the mechanisms controlling these changes remain not fully understood. Heart rate acceleration and deceleration are mediated by increasing or decreasing the spontaneous firing rate of pacemaker cells in the sinoatrial node. During the transition from rest to activity, sympathetic neurons stimulate these cells by activating ß-adrenergic receptors and increasing intracellular cyclic adenosine monophosphate. The same signal transduction pathway is targeted by positive chronotropic drugs such as norepinephrine and dobutamine, which are used in the treatment of cardiogenic shock and severe heart failure. The cyclic adenosine monophosphate-sensitive hyperpolarization-activated current (If) in pacemaker cells is passed by hyperpolarization-activated cyclic nucleotide-gated cation channels and is critical for generating the autonomous heartbeat. In addition, this current has been suggested to play a central role in the chronotropic effect. Recent studies demonstrate that cyclic adenosine monophosphate-dependent regulation of HCN4 (hyperpolarization-activated cyclic nucleotide-gated cation channel isoform 4) acts to stabilize the heart rate, particularly during rapid rate transitions induced by the autonomic nervous system. The mechanism is based on creating a balance between firing and recently discovered nonfiring pacemaker cells in the sinoatrial node. In this way, hyperpolarization-activated cyclic nucleotide-gated cation channels may protect the heart from sinoatrial node dysfunction, secondary arrhythmia of the atria, and potentially fatal tachyarrhythmia of the ventricles. Here, we review the latest findings on sinoatrial node automaticity and discuss the physiological and pathophysiological role of HCN pacemaker channels in the chronotropic response and beyond.


Assuntos
Frequência Cardíaca , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Nó Sinoatrial , Humanos , Animais , Nó Sinoatrial/metabolismo , Nó Sinoatrial/fisiopatologia , Nó Sinoatrial/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Relógios Biológicos
3.
Proc Natl Acad Sci U S A ; 120(28): e2210152120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37406102

RESUMO

Sepsis has emerged as a global health burden associated with multiple organ dysfunction and 20% mortality rate in patients. Numerous clinical studies over the past two decades have correlated the disease severity and mortality in septic patients with impaired heart rate variability (HRV), as a consequence of impaired chronotropic response of sinoatrial node (SAN) pacemaker activity to vagal/parasympathetic stimulation. However, the molecular mechanism(s) downstream to parasympathetic inputs have not been investigated yet in sepsis, particularly in the SAN. Based on electrocardiography, fluorescence Ca2+ imaging, electrophysiology, and protein assays from organ to subcellular level, we report that impaired muscarinic receptor subtype 2-G protein-activated inwardly-rectifying potassium channel (M2R-GIRK) signaling in a lipopolysaccharide-induced proxy septic mouse model plays a critical role in SAN pacemaking and HRV. The parasympathetic responses to a muscarinic agonist, namely IKACh activation in SAN cells, reduction in Ca2+ mobilization of SAN tissues, lowering of heart rate and increase in HRV, were profoundly attenuated upon lipopolysaccharide-induced sepsis. These functional alterations manifested as a direct consequence of reduced expression of key ion-channel components (GIRK1, GIRK4, and M2R) in the mouse SAN tissues and cells, which was further evident in the human right atrial appendages of septic patients and likely not mediated by the common proinflammatory cytokines elevated in sepsis.


Assuntos
Lipopolissacarídeos , Sepse , Humanos , Animais , Camundongos , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Nó Sinoatrial/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Sepse/induzido quimicamente , Sepse/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(49): e2305135120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38032931

RESUMO

In a family with inappropriate sinus tachycardia (IST), we identified a mutation (p.V240M) of the hyperpolarization-activated cyclic nucleotide-gated type 4 (HCN4) channel, which contributes to the pacemaker current (If) in human sinoatrial node cells. Here, we clinically study fifteen family members and functionally analyze the p.V240M variant. Macroscopic (IHCN4) and single-channel currents were recorded using patch-clamp in cells expressing human native (WT) and/or p.V240M HCN4 channels. All p.V240M mutation carriers exhibited IST that was accompanied by cardiomyopathy in adults. IHCN4 generated by p.V240M channels either alone or in combination with WT was significantly greater than that generated by WT channels alone. The variant, which lies in the N-terminal HCN domain, increased the single-channel conductance and opening frequency and probability of HCN4 channels. Conversely, it did not modify the channel sensitivity for cAMP and ivabradine or the level of expression at the membrane. Treatment with ivabradine based on functional data reversed the IST and the cardiomyopathy of the carriers. In computer simulations, the p.V240M gain-of-function variant increases If and beating rate and thus explains the IST of the carriers. The results demonstrate the importance of the unique HCN domain in HCN4, which stabilizes the channels in the closed state.


Assuntos
Cardiomiopatias , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Adulto , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Taquicardia Sinusal , Canais de Potássio/genética , Ivabradina/farmacologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Mutação com Ganho de Função , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Nó Sinoatrial , Cardiomiopatias/genética
5.
PLoS Comput Biol ; 20(2): e1011907, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38408116

RESUMO

Strong circadian (~24h) rhythms in heart rate (HR) are critical for flexible regulation of cardiac pacemaking function throughout the day. While this circadian flexibility in HR is sustained in diverse conditions, it declines with age, accompanied by reduced maximal HR performance. The intricate regulation of circadian HR involves the orchestration of the autonomic nervous system (ANS), circadian rhythms of body temperature (CRBT), and local circadian rhythmicity (LCR), which has not been fully understood. Here, we developed a mathematical model describing ANS, CRBT, and LCR in sinoatrial nodal cells (SANC) that accurately captures distinct circadian patterns in adult and aged mice. Our model underscores how the alliance among ANS, CRBT, and LCR achieves circadian flexibility to cover a wide range of firing rates in SANC, performance to achieve maximal firing rates, while preserving robustness to generate rhythmic firing patterns irrespective of external conditions. Specifically, while ANS dominates in promoting SANC flexibility and performance, CRBT and LCR act as primary and secondary boosters, respectively, to further enhance SANC flexibility and performance. Disruption of this alliance with age results in impaired SANC flexibility and performance, but not robustness. This unexpected outcome is primarily attributed to the age-related reduction in parasympathetic activities, which maintains SANC robustness while compromising flexibility. Our work sheds light on the critical alliance of ANS, CRBT, and LCR in regulating time-of-day cardiac pacemaking function and dysfunction, offering insights into novel therapeutic targets for the prevention and treatment of cardiac arrhythmias.


Assuntos
Temperatura Corporal , Nó Sinoatrial , Animais , Camundongos , Nó Sinoatrial/fisiologia , Ritmo Circadiano , Frequência Cardíaca , Modelos Teóricos
6.
Proc Natl Acad Sci U S A ; 119(36): e2206708119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36044551

RESUMO

The sinoatrial node (SAN), the leading pacemaker region, generates electrical impulses that propagate throughout the heart. SAN dysfunction with bradyarrhythmia is well documented in heart failure (HF). However, the underlying mechanisms are not completely understood. Mitochondria are critical to cellular processes that determine the life or death of the cell. The release of Ca2+ from the ryanodine receptors 2 (RyR2) on the sarcoplasmic reticulum (SR) at mitochondria-SR microdomains serves as the critical communication to match energy production to meet metabolic demands. Therefore, we tested the hypothesis that alterations in the mitochondria-SR connectomics contribute to SAN dysfunction in HF. We took advantage of a mouse model of chronic pressure overload-induced HF by transverse aortic constriction (TAC) and a SAN-specific CRISPR-Cas9-mediated knockdown of mitofusin-2 (Mfn2), the mitochondria-SR tethering GTPase protein. TAC mice exhibited impaired cardiac function with HF, cardiac fibrosis, and profound SAN dysfunction. Ultrastructural imaging using electron microscope (EM) tomography revealed abnormal mitochondrial structure with increased mitochondria-SR distance. The expression of Mfn2 was significantly down-regulated and showed reduced colocalization with RyR2 in HF SAN cells. Indeed, SAN-specific Mfn2 knockdown led to alterations in the mitochondria-SR microdomains and SAN dysfunction. Finally, disruptions in the mitochondria-SR microdomains resulted in abnormal mitochondrial Ca2+ handling, alterations in localized protein kinase A (PKA) activity, and impaired mitochondrial function in HF SAN cells. The current study provides insights into the role of mitochondria-SR microdomains in SAN automaticity and possible therapeutic targets for SAN dysfunction in HF patients.


Assuntos
Conectoma , Insuficiência Cardíaca , Mitocôndrias Cardíacas , Retículo Sarcoplasmático , Síndrome do Nó Sinusal , Nó Sinoatrial , Animais , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Camundongos , Mitocôndrias Cardíacas/ultraestrutura , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/patologia , Síndrome do Nó Sinusal/patologia , Síndrome do Nó Sinusal/fisiopatologia , Nó Sinoatrial/fisiopatologia
7.
J Cell Physiol ; 239(1): 212-226, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38149479

RESUMO

Our study was conducted to investigate whether cadherin-5 (CDH5), a vascular endothelial cell adhesion glycoprotein, could facilitate the differentiation of human induced pluripotent stem cells (hiPSCs) into sinoatrial node-like pacemaker cells (SANLPCs), following previous findings of silk-fibroin hydrogel-induced direct conversion of quiescent cardiomyocytes into pacemaker cells in rats through the activation of CDH5. In this study, the differentiating hiPSCs were treated with CDH5 (40 ng/mL) between Day 5 and 7 during cardiomyocytes differentiation. The findings in the present study demonstrated that CDH5 stimulated the expression of pacemaker-specific markers while suppressing markers associated with working cardiomyocytes, resulting in an increased proportion of SANLPCs among hiPSCs-derived cardiomyocytes (hiPSC-CMs) population. Moreover, CDH5 induced typical electrophysiological characteristics resembling cardiac pacemaker cells in hiPSC-CMs. Further mechanistic investigations revealed that the enriched differentiation of hiPSCs into SANLPCs induced by CDH5 was partially reversed by iCRT14, an inhibitor of ß-catenin. Therefore, based on the aforementioned findings, it could be inferred that the regulation of ß-catenin by CDH5 played a crucial role in promoting the enriched differentiation of hiPSCs into SANLPCs, which presents a novel avenue for the construction of biological pacemakers in forthcoming research.


Assuntos
Caderinas , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , beta Catenina , Animais , Humanos , Ratos , Antígenos CD , beta Catenina/metabolismo , Caderinas/farmacologia , Diferenciação Celular , Miócitos Cardíacos/metabolismo , Nó Sinoatrial
8.
Annu Rev Pharmacol Toxicol ; 61: 757-778, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33017571

RESUMO

The spontaneous activity of the sinoatrial node initiates the heartbeat. Sino-atrial node dysfunction (SND) and sick sinoatrial (sick sinus) syndrome are caused by the heart's inability to generate a normal sinoatrial node action potential. In clinical practice, SND is generally considered an age-related pathology, secondary to degenerative fibrosis of the heart pacemaker tissue. However, other forms of SND exist, including idiopathic primary SND, which is genetic, and forms that are secondary to cardiovascular or systemic disease. The incidence of SND in the general population is expected to increase over the next half century, boosting the need to implant electronic pacemakers. During the last two decades, our knowledge of sino-atrial node physiology and of the pathophysiological mechanisms underlying SND has advanced considerably. This review summarizes the current knowledge about SND mechanisms and discusses the possibility of introducing new pharmacologic therapies for treating SND.


Assuntos
Síndrome do Nó Sinusal , Nó Sinoatrial , Sistema de Condução Cardíaco , Humanos
9.
J Cardiovasc Electrophysiol ; 35(7): 1393-1400, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38741382

RESUMO

INTRODUCTION: Inappropriate sinus tachycardia (IST) is a common condition with frequently not tolerated beta-blockers or ivabradine and a high rate of complication in ablation strategy; we describe an alternative anatomical approach of sinus node (SN) modulation. METHODS: This retrospective study describes a case series of 6 patients from two centers diagnosed with symptomatic IST undergoing SN ablation. RESULTS: The mean age was 40.6 ± 13.9 years; five of the six patients were female, 100% of patients reported heart palpitations, and 66% reported dizziness, the average heart rate (HR) on a 24-h Holter was 93.2 ± 7.9 bpm. HR during the first stage of a stress test using a standard Bruce protocol was 150 ± 70 bpm, The average HR on 24-h Holter postablation was 75 ± 5.6 bpm, the sinus rate HR during stage 1 of a Bruce protocol exercise stress test was 120 ± 10 bpm. CONCLUSION: This is the first case series reporting the acute and long-term results of a novel anatomical approach for SN modulation to treat IST targeting the arcuate ridge (AR) under intracardiac echography (ICE) guidance. The novel anatomic ICE-guided catheter ablation approach aimed to identify the earliest activation at the AR with an extension of RF lesions toward its septal region seems effective and safe to modulate the SN in symptomatic patients with IST refractory to medical treatment.


Assuntos
Ablação por Cateter , Frequência Cardíaca , Taquicardia Sinusal , Humanos , Feminino , Taquicardia Sinusal/cirurgia , Taquicardia Sinusal/fisiopatologia , Estudos Retrospectivos , Masculino , Pessoa de Meia-Idade , Adulto , Resultado do Tratamento , Potenciais de Ação , Valor Preditivo dos Testes , Antiarrítmicos/uso terapêutico , Fatores de Tempo , Ultrassonografia de Intervenção , Eletrocardiografia Ambulatorial , Resistência a Medicamentos , Nó Sinoatrial/cirurgia , Nó Sinoatrial/fisiopatologia , Ecocardiografia
10.
Circ Res ; 130(7): 963-977, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35255712

RESUMO

BACKGROUND: Increasing evidence suggests that cardiac arrhythmias are frequent clinical features of coronavirus disease 2019 (COVID-19). Sinus node damage may lead to bradycardia. However, it is challenging to explore human sinoatrial node (SAN) pathophysiology due to difficulty in isolating and culturing human SAN cells. Embryonic stem cells (ESCs) can be a source to derive human SAN-like pacemaker cells for disease modeling. METHODS: We used both a hamster model and human ESC (hESC)-derived SAN-like pacemaker cells to explore the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on the pacemaker cells of the heart. In the hamster model, quantitative real-time polymerase chain reaction and immunostaining were used to detect viral RNA and protein, respectively. We then created a dual knock-in SHOX2:GFP;MYH6:mCherry hESC reporter line to establish a highly efficient strategy to derive functional human SAN-like pacemaker cells, which was further characterized by single-cell RNA sequencing. Following exposure to SARS-CoV-2, quantitative real-time polymerase chain reaction, immunostaining, and RNA sequencing were used to confirm infection and determine the host response of hESC-SAN-like pacemaker cells. Finally, a high content chemical screen was performed to identify drugs that can inhibit SARS-CoV-2 infection, and block SARS-CoV-2-induced ferroptosis. RESULTS: Viral RNA and spike protein were detected in SAN cells in the hearts of infected hamsters. We established an efficient strategy to derive from hESCs functional human SAN-like pacemaker cells, which express pacemaker markers and display SAN-like action potentials. Furthermore, SARS-CoV-2 infection causes dysfunction of human SAN-like pacemaker cells and induces ferroptosis. Two drug candidates, deferoxamine and imatinib, were identified from the high content screen, able to block SARS-CoV-2 infection and infection-associated ferroptosis. CONCLUSIONS: Using a hamster model, we showed that primary pacemaker cells in the heart can be infected by SARS-CoV-2. Infection of hESC-derived functional SAN-like pacemaker cells demonstrates ferroptosis as a potential mechanism for causing cardiac arrhythmias in patients with COVID-19. Finally, we identified candidate drugs that can protect the SAN cells from SARS-CoV-2 infection.


Assuntos
COVID-19 , Ferroptose , Humanos , Miócitos Cardíacos/metabolismo , SARS-CoV-2 , Nó Sinoatrial/metabolismo
11.
Circ Res ; 131(1): 6-20, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35611699

RESUMO

BACKGROUND: The sino atrial node (SAN) is characterized by the microenvironment of pacemaker cardiomyocytes (PCs) encased with fibroblasts. An altered microenvironment leads to rhythm failure. Operable cell or tissue models are either generally lacking or difficult to handle. The biological process behind the milieu of SANs to evoke pacemaker rhythm is unknown. We explored how fibroblasts interact with PCs and regulate metabolic reprogramming and rhythmic activity in the SAN. METHODS: Tbx18 (T-box transcription factor 18)-induced PCs and fibroblasts were used for cocultures and engineered tissues, which were used as the in vitro models to explore how fibroblasts regulate the functional integrity of SANs. RNA-sequencing, metabolomics, and cellular and molecular techniques were applied to characterize the molecular signals underlying metabolic reprogramming and identify its critical regulators. These pathways were further validated in vivo in rodents and induced human pluripotent stem cell-derived cardiomyocytes. RESULTS: We observed that rhythmicity in Tbx18-induced PCs was regulated by aerobic glycolysis. Fibroblasts critically activated metabolic reprogramming and aerobic glycolysis within PCs, and, therefore, regulated pacemaker activity in PCs. The metabolic reprogramming was attributed to the exclusive induction of Aldoc (aldolase c) within PCs after fibroblast-PC integration. Fibroblasts activated the integrin-dependent mitogen-activated protein kinase-E2F1 signal through cell-cell contact and turned on Aldoc expression in PCs. Interruption of fibroblast-PC interaction or Aldoc knockdown nullified electrical activity. Engineered Tbx18-PC tissue sheets were generated to recapitulate the microenvironment within SANs. Aldoc-driven rhythmic machinery could be replicated within tissue sheets. Similar machinery was faithfully validated in de novo PCs of adult mice and rats, and in human PCs derived from induced pluripotent stem cells. CONCLUSIONS: Fibroblasts drive Aldoc-mediated metabolic reprogramming and rhythmic regulation in SANs. This work details the cellular machinery behind the complex milieu of vertebrate SANs and opens a new direction for future therapy.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Animais , Reprogramação Celular , Técnicas de Cocultura , Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , Ratos , Nó Sinoatrial/metabolismo
12.
PLoS Comput Biol ; 19(12): e1011708, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38109436

RESUMO

The sinoatrial node (SAN), the primary pacemaker of the heart, is responsible for the initiation and robust regulation of sinus rhythm. 3D mapping studies of the ex-vivo human heart suggested that the robust regulation of sinus rhythm relies on specialized fibrotically-insulated pacemaker compartments (head, center and tail) with heterogeneous expressions of key ion channels and receptors. They also revealed up to five sinoatrial conduction pathways (SACPs), which electrically connect the SAN with neighboring right atrium (RA). To elucidate the role of these structural-molecular factors in the functional robustness of human SAN, we developed comprehensive biophysical computer models of the SAN based on 3D structural, functional and molecular mapping of ex-vivo human hearts. Our key finding is that the electrical insulation of the SAN except SACPs, the heterogeneous expression of If, INa currents and adenosine A1 receptors (A1R) across SAN pacemaker-conduction compartments are required to experimentally reproduce observed SAN activation patterns and important phenomena such as shifts of the leading pacemaker and preferential SACP. In particular, we found that the insulating border between the SAN and RA, is required for robust SAN function and protection from SAN arrest during adenosine challenge. The heterogeneity in the expression of A1R within the human SAN compartments underlies the direction of pacemaker shift and preferential SACPs in the presence of adenosine. Alterations of INa current and fibrotic remodelling in SACPs can significantly modulate SAN conduction and shift the preferential SACP/exit from SAN. Finally, we show that disease-induced fibrotic remodeling, INa suppression or increased adenosine make the human SAN vulnerable to pacing-induced exit blocks and reentrant arrhythmia. In summary, our computer model recapitulates the structural and functional features of the human SAN and can be a valuable tool for investigating mechanisms of SAN automaticity and conduction as well as SAN arrhythmia mechanisms under different pathophysiological conditions.


Assuntos
Sistema de Condução Cardíaco , Nó Sinoatrial , Humanos , Nó Sinoatrial/fisiologia , Arritmias Cardíacas , Adenosina , Simulação por Computador
13.
BMC Cardiovasc Disord ; 24(1): 217, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643100

RESUMO

BACKGROUND: During normal sinus rhythm, atrial depolarization is conducted from right atrium to left atrium through Bachmann's bundle, and a normal P wave axis which is measured on the frontal plane is between 0º and + 75º. The change of P wave polarity is helpful for the analysis of origin point. CASE PRESENTATION: We report a patient with negative P wave in lead I. The characteristics of QRS complex in leads V1 to V6 are helpful to preliminarily differential diagnosis. The 12-lead electrocardiogram (ECG) with correct limb leads (right arm-left arm) placement shows sinus rhythm with complete right bundle branch block (RBBB). CONCLUSIONS: The change of P wave polarity as well as characteristics of QRS complex can help identify limb-lead reversals.


Assuntos
Bloqueio de Ramo , Eletrocardiografia , Humanos , Bloqueio de Ramo/diagnóstico , Nó Sinoatrial , Átrios do Coração , Nó Atrioventricular
14.
Pacing Clin Electrophysiol ; 47(3): 437-439, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37260106

RESUMO

We report a case of atrial fibrillation (AF) recurrence after pulmonary vein isolation, which patient had AF trigger in the superior vena cava (SVC) near the sinus node (SN). The ultra-high-resolution mapping revealed that SN located within the SVC and the atrial activation from the SN to SVC propagated in both septal and lateral direction, then upward with circumventing the spontaneous conduction block identified just above and lateral SN (upper hemisphere). We successfully isolated SVC including the ectopic origin at the same level as the SN by utilizing the spontaneous conduction block line around the SN without any complication.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Veias Pulmonares , Humanos , Veia Cava Superior/cirurgia , Fibrilação Atrial/cirurgia , Nó Sinoatrial , Átrios do Coração , Bloqueio Cardíaco , Veias Pulmonares/cirurgia
15.
BMC Anesthesiol ; 24(1): 263, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085782

RESUMO

BACKGROUND: Dexmedetomidine and propofol are common sedatives in intensive care units and for interventional procedures. Both may compromise sinus node function and atrioventricular conduction. The objective of this prospective, randomized study is to compare the effect of dexmedetomidine with propofol on sinus node function and atrioventricular conduction. METHODS: In a tertiary care center in Switzerland we included from September 2019 to October 2020 160 patients (65 ± 11 years old; 32% female) undergoing first ablation for atrial fibrillation by cryoballoon ablation or by radiofrequency ablation. Patients were randomly assigned to deep sedation with dexmedetomidine (DEX group) versus propofol (PRO group). A standard electrophysiological study was performed after pulmonary vein isolation with the patients still deeply sedated and hemodynamically stable. RESULTS: Eighty patients each were randomized to the DEX and PRO group. DEX group patients had higher baseline sinus cycle length (1022 vs. 1138 ms; p = 0.003) and longer sinus node recovery time (SNRT400; 1597 vs. 1412 ms; p = 0.042). However, both corrected SNRT and normalized SNRT did not differ. DEX group patients had longer PR interval (207 vs. 186 ms; p = 0.002) and AH interval (111 vs. 95 ms, p = 0.008), longer Wenckebach cycle length of the atrioventricular node (512 vs. 456 ms; p = 0.005), and longer atrioventricular node effective refractory period (390 vs. 344 ms; p = 0.009). QRS width and HV interval were not different. An arrhythmia, mainly atrial fibrillation, was induced in 33 patients during the electrophysiological study, without differences among groups (20% vs. 15%, p = 0.533). CONCLUSIONS: Dexmedetomidine has a more pronounced slowing effect on sinus rate and suprahissian AV conduction than propofol, but not on infrahissian AV conduction and ventricular repolarization. These differences need to be taken into account when using these sedatives. TRIAL REGISTRATION: ClinicalTrials.gov number NCT03844841, 19/02/2019.


Assuntos
Fibrilação Atrial , Sedação Profunda , Dexmedetomidina , Hipnóticos e Sedativos , Propofol , Humanos , Dexmedetomidina/farmacologia , Dexmedetomidina/administração & dosagem , Propofol/administração & dosagem , Propofol/farmacologia , Feminino , Masculino , Estudos Prospectivos , Hipnóticos e Sedativos/administração & dosagem , Hipnóticos e Sedativos/farmacologia , Idoso , Fibrilação Atrial/cirurgia , Fibrilação Atrial/fisiopatologia , Fibrilação Atrial/tratamento farmacológico , Pessoa de Meia-Idade , Sedação Profunda/métodos , Nó Sinoatrial/efeitos dos fármacos
16.
Adv Exp Med Biol ; 1441: 185-200, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884712

RESUMO

The electrical impulses that coordinate the sequential, rhythmic contractions of the atria and ventricles are initiated and tightly regulated by the specialized tissues of the cardiac conduction system. In the mature heart, these impulses are generated by the pacemaker cardiomyocytes of the sinoatrial node, propagated through the atria to the atrioventricular node where they are delayed and then rapidly propagated to the atrioventricular bundle, right and left bundle branches, and finally, the peripheral ventricular conduction system. Each of these specialized components arise by complex patterning events during embryonic development. This chapter addresses the origins and transcriptional networks and signaling pathways that drive the development and maintain the function of the cardiac conduction system.


Assuntos
Sistema de Condução Cardíaco , Animais , Humanos , Nó Atrioventricular/fisiologia , Nó Atrioventricular/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Sistema de Condução Cardíaco/fisiologia , Miócitos Cardíacos/fisiologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Transdução de Sinais , Nó Sinoatrial/fisiologia , Nó Sinoatrial/embriologia
17.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33443158

RESUMO

The sinus node (SAN) is the primary pacemaker of the human heart, and abnormalities in its structure or function cause sick sinus syndrome, the most common reason for electronic pacemaker implantation. Here we report that transcription factor GATA6, whose mutations in humans are linked to arrhythmia, is highly expressed in the SAN and its haploinsufficiency in mice results in hypoplastic SANs and rhythm abnormalities. Cell-specific deletion reveals a requirement for GATA6 in various SAN lineages. Mechanistically, GATA6 directly activates key regulators of the SAN genetic program in conduction and nonconduction cells, such as TBX3 and EDN1, respectively. The data identify GATA6 as an important regulator of the SAN and provide a molecular basis for understanding the conduction abnormalities associated with GATA6 mutations in humans. They also suggest that GATA6 may be a potential modifier of the cardiac pacemaker.


Assuntos
Fator de Transcrição GATA6/metabolismo , Frequência Cardíaca/fisiologia , Nó Sinoatrial/embriologia , Animais , Arritmias Cardíacas/fisiopatologia , Diferenciação Celular/genética , Fator de Transcrição GATA6/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Organogênese , Nó Sinoatrial/fisiologia , Proteínas com Domínio T/genética
18.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260402

RESUMO

Sinoatrial node myocytes (SAMs) act as cardiac pacemaker cells by firing spontaneous action potentials (APs) that initiate each heartbeat. The funny current (If) is critical for the generation of these spontaneous APs; however, its precise role during the pacemaking cycle remains unresolved. Here, we used the AP-clamp technique to quantify If during the cardiac cycle in mouse SAMs. We found that If is persistently active throughout the sinoatrial AP, with surprisingly little voltage-dependent gating. As a consequence, it carries both inward and outward current around its reversal potential of -30 mV. Despite operating at only 2 to 5% of its maximal conductance, If carries a substantial fraction of both depolarizing and repolarizing net charge movement during the firing cycle. We also show that ß-adrenergic receptor stimulation increases the percentage of net depolarizing charge moved by If, consistent with a contribution of If to the fight-or-flight increase in heart rate. These properties were confirmed by heterologously expressed HCN4 channels and by mathematical models of If Modeling further suggested that the slow rates of activation and deactivation of the HCN4 isoform underlie the persistent activity of If during the sinoatrial AP. These results establish a new conceptual framework for the role of If in pacemaking, in which it operates at a very small fraction of maximal activation but nevertheless drives membrane potential oscillations in SAMs by providing substantial driving force in both inward and outward directions.


Assuntos
Relógios Biológicos/fisiologia , Fenômenos Eletrofisiológicos , Miócitos Cardíacos/fisiologia , Nó Sinoatrial/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Relógios Biológicos/efeitos dos fármacos , Simulação por Computador , Diástole/efeitos dos fármacos , Diástole/fisiologia , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Células HEK293 , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Ivabradina/farmacologia , Moduladores de Transporte de Membrana/farmacologia , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Nó Sinoatrial/efeitos dos fármacos
19.
Annu Rev Physiol ; 82: 21-43, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31756134

RESUMO

A progressive decline in maximum heart rate (mHR) is a fundamental aspect of aging in humans and other mammals. This decrease in mHR is independent of gender, fitness, and lifestyle, affecting in equal measure women and men, athletes and couch potatoes, spinach eaters and fast food enthusiasts. Importantly, the decline in mHR is the major determinant of the age-dependent decline in aerobic capacity that ultimately limits functional independence for many older individuals. The gradual reduction in mHR with age reflects a slowing of the intrinsic pacemaker activity of the sinoatrial node of the heart, which results from electrical remodeling of individual pacemaker cells along with structural remodeling and a blunted ß-adrenergic response. In this review, we summarize current evidence about the tissue, cellular, and molecular mechanisms that underlie the reduction in pacemaker activity with age and highlight key areas for future work.


Assuntos
Relógios Biológicos/fisiologia , Coração/crescimento & desenvolvimento , Coração/fisiologia , Envelhecimento/fisiologia , Animais , Feminino , Frequência Cardíaca , Humanos , Masculino , Nó Sinoatrial/crescimento & desenvolvimento , Nó Sinoatrial/fisiologia
20.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542361

RESUMO

Human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes raise the possibility of generating pluripotent stem cells from a wide range of human diseases. In the cardiology field, hiPSCs have been used to address the mechanistic bases of primary arrhythmias and in investigations of drug safety. These studies have been focused primarily on atrial and ventricular pathologies. Consequently, many hiPSC-based cardiac differentiation protocols have been developed to differentiate between atrial- or ventricular-like cardiomyocytes. Few protocols have successfully proposed ways to obtain hiPSC-derived cardiac pacemaker cells, despite the very limited availability of human tissues from the sinoatrial node. Providing an in vitro source of pacemaker-like cells would be of paramount importance in terms of furthering our understanding of the mechanisms underlying sinoatrial node pathophysiology and testing innovative clinical strategies against sinoatrial node dysfunction (i.e., biological pacemakers and genetic- and pharmacological- based therapy). Here, we summarize and detail the currently available protocols used to obtain patient-derived pacemaker-like cells.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Humanos , Miócitos Cardíacos , Diferenciação Celular/fisiologia , Nó Sinoatrial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA