Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.654
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35163376

RESUMO

In this study, top-down syntheses of carbon dots (CDs) from four different carbon precursors, namely, carbon nano powders, graphite, graphene, and carbon nanotubes, were carried out. Systematic study demonstrated that the optical properties and surface functionalities of the CDs were quite similar and mainly influenced by the synthesis method, while the sizes, morphologies, chemical compositions, and core structures of the CDs were heavily influenced by the carbon precursors. On the basis of these studies, the formation processes and structural models of these four top-down CDs were proposed. The cell cytotoxicity and photothermal conversion efficiency of these CDs were also carefully evaluated, demonstrating their potential applications in photothermal therapy.


Assuntos
Grafite/química , Modelos Estruturais , Nanotubos de Carbono/química , Terapia Fototérmica , Pontos Quânticos/química , Células A549 , Morte Celular , Células HaCaT , Humanos , Nanotubos de Carbono/ultraestrutura , Fenômenos Ópticos , Oxirredução , Pós , Pontos Quânticos/ultraestrutura , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Análise Espectral Raman , Eletricidade Estática , Propriedades de Superfície , Termogravimetria , Difração de Raios X
2.
Int J Mol Sci ; 22(9)2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-34063012

RESUMO

Single-walled carbon nanotubes (SWCNTs) emerge as promising novel carbon-based nanoparticles for use in biomedicine, pharmacology and precision agriculture. They were shown to penetrate cell walls and membranes and to physically interact and exchange electrons with photosynthetic complexes in vitro. Here, for the first time, we studied the concentration-dependent effect of foliar application of copolymer-grafted SWCNTs on the structural and functional characteristics of intact pea plants. The lowest used concentration of 10 mg L-1 did not cause any harmful effects on the studied leaf characteristics, while abundant epicuticular wax generation on both leaf surfaces was observed after 300 mg L-1 treatment. Swelling of both the granal and the stromal regions of thylakoid membranes was detected after application of 100 mg L-1 and was most pronounced after 300 mg L-1. Higher SWCNT doses lead to impaired photosynthesis in terms of lower proton motive force generation, slower generation of non-photochemical quenching and reduced zeaxanthin content; however, the photosystem II function was largely preserved. Our results clearly indicate that SWCNTs affect the photosynthetic apparatus in a concentration-dependent manner. Low doses (10 mg L-1) of SWCNTs appear to be a safe suitable object for future development of nanocarriers for substances that are beneficial for plant growth.


Assuntos
Cloroplastos/ultraestrutura , Nanotubos de Carbono/química , Fotossíntese , Pisum sativum/fisiologia , Pisum sativum/ultraestrutura , Folhas de Planta/anatomia & histologia , Dióxido de Carbono/metabolismo , Carotenoides/metabolismo , Permeabilidade da Membrana Celular , Clorofila/metabolismo , Fluorescência , Nanotubos de Carbono/ultraestrutura , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/ultraestrutura , Prótons , Tilacoides/metabolismo , Fatores de Tempo , Xantofilas/metabolismo
3.
Int J Mol Sci ; 22(6)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805783

RESUMO

In anaerobic bioreactors, the electrons produced during the oxidation of organic matter can potentially be used for the biological reduction of pharmaceuticals in wastewaters. Common electron transfer limitations benefit from the acceleration of reactions through utilization of redox mediators (RM). This work explores the potential of carbon nanomaterials (CNM) as RM on the anaerobic removal of ciprofloxacin (CIP). Pristine and tailored carbon nanotubes (CNT) were first tested for chemical reduction of CIP, and pristine CNT was found as the best material, so it was further utilized in biological anaerobic assays with anaerobic granular sludge (GS). In addition, magnetic CNT were prepared and also tested in biological assays, as they are easier to be recovered and reused. In biological tests with CNM, approximately 99% CIP removal was achieved, and the reaction rates increased ≈1.5-fold relatively to the control without CNM. In these experiments, CIP adsorption onto GS and CNM was above 90%. Despite, after applying three successive cycles of CIP addition, the catalytic properties of magnetic CNT were maintained while adsorption decreased to 29 ± 3.2%, as the result of CNM overload by CIP. The results suggest the combined occurrence of different mechanisms for CIP removal: adsorption on GS and/or CNM, and biological reduction or oxidation, which can be accelerated by the presence of CNM. After biological treatment with CNM, toxicity towards Vibrio fischeri was evaluated, resulting in ≈ 46% detoxification of CIP solution, showing the advantages of combining biological treatment with CNM for CIP removal.


Assuntos
Ciprofloxacina/metabolismo , Elétrons , Nanopartículas de Magnetita/química , Nanotubos de Carbono/química , Esgotos/microbiologia , Poluentes Químicos da Água/metabolismo , Adsorção , Aliivibrio fischeri/efeitos dos fármacos , Aliivibrio fischeri/crescimento & desenvolvimento , Anaerobiose/fisiologia , Biodegradação Ambiental , Reatores Biológicos , Ciprofloxacina/isolamento & purificação , Humanos , Nanopartículas de Magnetita/ultraestrutura , Methanobacterium/metabolismo , Methanobrevibacter/metabolismo , Methanosarcinales/metabolismo , Methanospirillum/metabolismo , Testes de Sensibilidade Microbiana , Nanotubos de Carbono/ultraestrutura , Oxirredução , Poluentes Químicos da Água/isolamento & purificação
4.
Molecules ; 26(10)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34068851

RESUMO

Solubilization of carbon nanotubes (CNTs) is a fundamental technique for the use of CNTs and their conjugates as nanodevices and nanobiodevices. In this work, we demonstrate the preparation of CNT suspensions with "green" detergents made from coconuts and bamboo as fundamental research in CNT nanotechnology. Single-walled CNTs (SWNTs) with a few carboxylic acid groups (3-5%) and pristine multi-walled CNTs (MWNTs) were mixed in each detergent solution and sonicated with a bath-type sonicator. The prepared suspensions were characterized using absorbance spectroscopy, scanning electron microscopy, and Raman spectroscopy. Among the eight combinations of CNTs and detergents (two types of CNTs and four detergents, including sodium dodecyl sulfate (SDS) as the standard), SWNTs/MWNTs were well dispersed in all combinations except the combination of the MWNTs and the bamboo detergent. The stability of the suspensions prepared with coconut detergents was better than that prepared with SDS. Because the efficiency of the bamboo detergents against the MWNTs differed significantly from that against the SWNTs, the natural detergent might be useful for separating CNTs. Our results revealed that the use of the "green" detergents had the advantage of dispersing CNTs as well as SDS.


Assuntos
Detergentes/química , Nanotubos de Carbono/química , Centrifugação , Nanotubos de Carbono/ultraestrutura , Suspensões
5.
Molecules ; 26(2)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440910

RESUMO

Graphene and phospholipids are widely used in biosensing and drug delivery. This paper studies the mechanical and electronic properties of a composite based on two graphene flakes and dipalmitoylphosphatidylcholine (DPPC) phospholipid molecules located between them via combination of various mathematical modeling methods. Molecular dynamics simulation showed that an adhesion between bilayer graphene and DPCC increases during nanoindentation of the composite by a carbon nanotube (CNT). Herewith, the DPPC molecule located under a nanotip takes the form of graphene and is not destroyed. By the Mulliken procedure, it was shown that the phospholipid molecules act as a "buffer" of charge between two graphene sheets and CNT. The highest values of electron transfer in the graphene/DPPC system were observed at the lower indentation point, when the deflection reached its maximum value.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Grafite/química , Nanocompostos/química , Elétrons , Simulação de Dinâmica Molecular , Nanocompostos/ultraestrutura , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Estresse Mecânico
6.
Molecules ; 26(3)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33498976

RESUMO

Molecular magnets attached to carbon nanotubes (CNT) are being studied as potential candidates for developing spintronic and quantum technologies. However, the functionalization routes used to develop these hybrid systems can drastically affect their respective physiochemical properties. Due to the complexity of this systems, little work has been directed at establishing the correlation between the degree of functionalization and the magnetic character. Here, we demonstrate the chemical functionalization degree associated with molecular magnet loading can be utilized for controlled tuning the magnetic properties of a CNT-lanthanide hybrid complex. CNT functionalization degree was evaluated by interpreting minor Raman phonon modes in relation to the controlled reaction conditions. These findings were exploited in attaching a rare-earth-based molecular magnet (Gd-DTPA) to the CNTs. Inductively coupled plasma mass spectrometry, time-of-flight secondary ion mass spectrometry and super conducting quantum interference device (SQUID) measurements were used to elucidate the variation of magnetic character across the samples. This controlled Gd-DTPA loading on the CNT surface has led to a significant change in the nanotube intrinsic diamagnetism, showing antiferromagnetic coupling with increase in the Weiss temperature with respect to increased loading. This indicates that synthesis of a highly correlated spin system for developing novel spintronic technologies can be realized through a carbon-based hybrid material.


Assuntos
Elementos da Série dos Lantanídeos/química , Imãs/química , Nanotubos de Carbono/química , Gadolínio DTPA/química , Fenômenos Magnéticos , Microscopia Eletrônica de Transmissão , Nanotubos de Carbono/ultraestrutura , Espectrometria de Massa de Íon Secundário , Análise Espectral Raman
7.
Molecules ; 26(4)2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33671928

RESUMO

Metal organic framework (MOF)-derived carbon nanostructures (MDC) synthesized by either calcinations or carbonization or pyrolysis are emerging as attractive materials for a wide range of applications like batteries, super-capacitors, sensors, water treatment, etc. But the process of transformation of MOFs into MDCs is time-consuming, with reactions requiring inert atmospheres and reaction time typically running into hours. In this manuscript, we report the transformation of 1,4-diazabicyclo[2.2.2]octane, (DABCO)-based MOFs into iron nitride nanoparticles embedded in nitrogen-doped carbon nanotubes by simple, fast and facile microwave pyrolysis. By using graphene oxide and carbon fiber as microwave susceptible surfaces, three-dimensional nitrogen-doped carbon nanotubes vertically grown on reduced graphene oxide (MDNCNT@rGO) and carbon fibers (MDCNT@CF), respectively, were obtained, whose utility as anode material in sodium-ion batteries (MDNCNT@rGO) and for EMI (electromagnetic interference) shielding material (MDCNT@CF) is reported.


Assuntos
Carbono/química , Fontes de Energia Elétrica , Fenômenos Eletromagnéticos , Estruturas Metalorgânicas/química , Nanoestruturas/química , Nitrogênio/química , Sódio/química , Fibra de Carbono/química , Eletrodos , Íons , Nanoestruturas/ultraestrutura , Nanotubos de Carbono/ultraestrutura , Espectroscopia Fotoeletrônica , Pirólise , Análise Espectral Raman , Difração de Raios X
8.
Molecules ; 26(6)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805628

RESUMO

Doxorubicin (DOX), a recognized anticancer drug, forms stable associations with carbon nanotubes (CNTs). CNTs when properly functionalized have the ability to anchor directly in cancerous tumors where the release of the drug occurs thanks to the tumor slightly acidic pH. Herein, we study the armchair and zigzag CNTs with Stone-Wales (SW) defects to rank their ability to encapsulate DOX by determining the DOX-CNT binding free energies using the MM/PBSA and MM/GBSA methods implemented in AMBER16. We investigate also the chiral CNTs with haeckelite defects. Each haeckelite defect consists of a pair of square and octagonal rings. The armchair and zigzag CNT with SW defects and chiral nanotubes with haeckelite defects predict DOX-CNT interactions that depend on the length of the nanotube, the number of present defects and nitrogen doping. Chiral nanotubes having two haeckelite defects reveal a clear dependence on the nitrogen content with DOX-CNT interaction forces decreasing in the order 0N > 4N > 8N. These results contribute to a further understanding of drug-nanotube interactions and to the design of new drug delivery systems based on CNTs.


Assuntos
Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Portadores de Fármacos/administração & dosagem , Sistemas de Liberação de Medicamentos , Nanotubos de Carbono/química , Antineoplásicos/química , Simulação por Computador , Doxorrubicina/química , Portadores de Fármacos/química , Composição de Medicamentos/métodos , Humanos , Simulação de Dinâmica Molecular , Estrutura Molecular , Nanotecnologia , Nanotubos de Carbono/ultraestrutura
9.
J Cell Mol Med ; 24(5): 2891-2900, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31968405

RESUMO

Functionalized multi-walled carbon nanotubes have been extensively gained popularity in pancreatic cancer gene therapy. LyP-1, a peptide, has been proved to specifically bind pancreatic cancer cells. The potential therapeutic effect of LyP-1-conjugated functionalized multi-walled carbon nanotubes in treating pancreatic cancer is still unknown. In this study, LyP-1-conjugated functionalized multi-walled carbon nanotubes were successfully synthesized, characterized and showed satisfactory size distribution and zeta potential. Compared with functionalized multi-walled carbon nanotubes, cellular uptake of LyP-1-functionalized multi-walled carbon nanotubes was shown to be increased. Compound of LyP-1-functionalized multi-walled carbon nanotubes and MBD1siRNA showed superior gene transfection efficiency. Moreover, LyP-1-fMWNTs/MBD1siRNA complex could significantly decrease the viability and proliferation and promoted apoptosis of pancreatic cancer cells in vitro. Further xenograft assays revealed that the tumour burden in the nude mice injected with LyP-1-functionalized multi-walled carbon nanotubes/MBD1siRNA was significantly relieved. The study demonstrated that LyP-1-functionalized multi-walled carbon nanotubes/MBD1siRNA could be a promising candidate for tumour active targeting therapy in pancreatic cancer.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Nanotubos de Carbono/química , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Peptídeos Cíclicos/química , RNA Interferente Pequeno/administração & dosagem , Fatores de Transcrição/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Apoptose/efeitos dos fármacos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanotubos de Carbono/toxicidade , Nanotubos de Carbono/ultraestrutura , Neoplasias Pancreáticas/genética , Transfecção
10.
Nanotechnology ; 31(43): 435504, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-32615549

RESUMO

In this paper, nicotine (NIC) was detected by cyclic voltammetry (CV) using a modified glassy carbon (GC) electrode. To do this, the surface of the GC electrode was modified by hybrid nanofiber obtained from the electrospinning method. Hybrid nanofibers were produced through the dispersion of carboxylated multi-walled carbon nanotube (MWCNT-COOH) as an inorganic component in the chitosan (CS) polymer matrix as an organic component. The nanofibers showed unique morphology and high surface area value. With the increase of functionalized carbon nanotube content in the nanofibers, the mean pore diameter and average nanofiber diameter increased. The electrochemical properties of nanofibers towards the sensing of NIC were investigated by the CV method. NIC was irreversibly reduced with the use of a CS/MWCNT-COOH electrode, a controlled process with two protons and two electrons. An oxidation signal at lower potential with higher current was obtained for NIC with the use of a polymer-modified electrode compared to a GC electrode. This was as a result of the electrocatalytic effect of the hybrid nanofibers due to the ability of carbon nanotubes to increase the rate of electron transfer. Under optimum conditions, the oxidation of NIC occurred at 0.82 eV with a pH of 7.4. The linear calibration curve was in the concentration range of 0.1-100 µM NIC (R 2 = 0.9987) with a detection limit of 30 nM. For 100 parallel 10 µM NIC diagnoses for five replicates, 97.2% with a standard deviation of 4.08 maintained their stability over the first cycle. This indicates that the CS/MWCNT-COOH electrode has excellent reproducibility and stability.


Assuntos
Quitosana/química , Nanofibras/química , Nanotubos de Carbono/química , Nicotina/análise , Técnicas Eletroquímicas/métodos , Eletrodos , Concentração de Íons de Hidrogênio , Limite de Detecção , Nanofibras/ultraestrutura , Nanotubos de Carbono/ultraestrutura
11.
Anal Bioanal Chem ; 412(11): 2433-2441, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32062832

RESUMO

Dopamine homeostasis is an important clinical diagnostic index, because an abnormal level in the human body is closely related to certain serious diseases. Herein, a novel electrochemical sensing platform based on gold nanobipyramid/multi-walled carbon nanotube hybrids (AuNBP/MWCNTs) is developed to detect dopamine in human fluids. Using field emission scanning electron microscopy, it is observed that AuNBPs of about 60 nm with two pyramids are well dispersed on the surface of MWCNTs. Energy-dispersive X-ray spectrometry, X-ray diffraction and X-ray photoelectron spectroscopy confirm that AuNBPs are self-assembled onto the surface of MWCNTs to form the hybrids. Cyclic voltammetry reveals that the AuNBP/MWCNTs exhibit good electrocatalytic activity toward dopamine oxidation owing to the synergistic effects of AuNBPs and MWCNTs. In addition, both cyclic voltammetry and differential pulse voltammetry display three well-resolved and distinct oxidation peaks on the AuNBP/MWCNT-modified glassy carbon electrode. Based on AuNBP/MWCNTs, the newly developed electrochemical sensor is used to detect dopamine in the presence of ascorbic acid and uric acid over a wide linear range from 50 nM to 2.7 mM and a low detection limit of 15 nM (at S/N = 3). The electrochemical sensor can also be applied for the quantitative analysis of dopamine in real samples. Graphical abstract A novel electrochemical sensing platform based on gold nanobipyramid/multi-walled carbon nanotube hybrids (AuNBP/MWCNTs) was proposed to detect dopamine in the presence of ascorbic acid and uric acid.


Assuntos
Dopamina/sangue , Técnicas Eletroquímicas/métodos , Ouro/química , Nanotubos de Carbono/química , Humanos , Limite de Detecção , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Nanotubos de Carbono/ultraestrutura , Oxirredução
12.
Anal Bioanal Chem ; 412(27): 7515-7524, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32862271

RESUMO

Multi-walled carbon nanotubes (MWCNT) play a synergistic role with conducting polymer in practical applications such as biological sensing. In this paper, multi-walled carbon nanotube and polypyrrole (PPy) composites were prepared on a fiber surface for the first time, and their morphology and electrical properties were characterized. Compared with PPy-coated fiber, the presence of carbon nanotubes induced the growth of large areas of PPy nanowires. In addition, fiber organic electrochemical transistors (FECTs) based on PPy and MWCNT were assembled, showing a higher on/off ratio, better stability, and greater flexibility. The lactate biosensor based on FECTs exhibits high sensitivity, with a correlation coefficient of R = 0.9889, quick response time of 0.6-0.8 s, a wide linear response range of 1 nM-1 mM, and excellent selectivity for lactate. Furthermore, the lactate concentration in human sweat was successfully detected by a FECT-based sensor. The hybrid fibers can be easily woven and placed on fabric simply by stitching. This favorable performance of the FECT-based sensor makes it suitable for noninvasive sensing of lactate. Therefore, it provides a promising platform for future use in healthcare and detection applications. Graphical abstract.


Assuntos
Ácido Láctico/análise , Nanotubos de Carbono/química , Nanofios/química , Polímeros/química , Pirróis/química , Suor/química , Técnicas Biossensoriais/instrumentação , Técnicas Eletroquímicas/instrumentação , Humanos , Limite de Detecção , Nanotubos de Carbono/ultraestrutura , Nanofios/ultraestrutura , Transistores Eletrônicos
13.
Nature ; 514(7524): 612-5, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25355362

RESUMO

There is much interest in developing synthetic analogues of biological membrane channels with high efficiency and exquisite selectivity for transporting ions and molecules. Bottom-up and top-down methods can produce nanopores of a size comparable to that of endogenous protein channels, but replicating their affinity and transport properties remains challenging. In principle, carbon nanotubes (CNTs) should be an ideal membrane channel platform: they exhibit excellent transport properties and their narrow hydrophobic inner pores mimic structural motifs typical of biological channels. Moreover, simulations predict that CNTs with a length comparable to the thickness of a lipid bilayer membrane can self-insert into the membrane. Functionalized CNTs have indeed been found to penetrate lipid membranes and cell walls, and short tubes have been forced into membranes to create sensors, yet membrane transport applications of short CNTs remain underexplored. Here we show that short CNTs spontaneously insert into lipid bilayers and live cell membranes to form channels that exhibit a unitary conductance of 70-100 picosiemens under physiological conditions. Despite their structural simplicity, these 'CNT porins' transport water, protons, small ions and DNA, stochastically switch between metastable conductance substates, and display characteristic macromolecule-induced ionic current blockades. We also show that local channel and membrane charges can control the conductance and ion selectivity of the CNT porins, thereby establishing these nanopores as a promising biomimetic platform for developing cell interfaces, studying transport in biological channels, and creating stochastic sensors.


Assuntos
Membrana Celular/química , Membrana Celular/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Nanotubos de Carbono , Porinas/metabolismo , Processos Estocásticos , Animais , Transporte Biológico , Células CHO , Sobrevivência Celular , Cricetulus , DNA/metabolismo , Células HEK293 , Humanos , Canais Iônicos/metabolismo , Lipossomos , Nanotubos de Carbono/ultraestrutura , Porinas/química
14.
J Nanobiotechnology ; 18(1): 11, 2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31931815

RESUMO

BACKGROUND: In several years ago, infection with human papillomaviruses (HPVs), have been prevalent in the worlds especially HPV type 18, can lead to cervical cancer. Therefore, rapid, accurate, and early diagnosis of HPV for successful treatment is essential. The present study describes the development of a selective and sensitive electrochemical biosensor base on DNA, for early detection of HPV-18. For this purpose, a nanocomposite of reduced graphene oxide (rGO) and multiwalled carbon nanotubes (MWCNTs) were electrodeposited on a screen-printed carbon electrode (SPCE). Then, Au nanoparticles (AuNPs) were dropped on a modified SPCE. Subsequently, single strand DNA (ssDNA) probe was immobilized on the modified electrode. The link attached between AuNPs and probe ssDNA provided by L-cysteine via functionalizing AuNPs (Cys-AuNPs). The differential pulse voltammetry (DPV) assay was also used to electrochemical measurement. The measurement was based on the oxidation signals of anthraquninone-2-sulfonic acid monohydrate sodium salt (AQMS) before and after hybridization between the probe and target DNA. RESULTS: The calibration curve showed a linear range between 0.01 fM to 0.01 nM with a limit of detection 0.05 fM. The results showed that the optimum concentration for DNA probe was 5 µM. The good performance of the proposed biosensor was achieved through hybridization of DNA probe-modified SPCE with extracted DNA from clinical samples. CONCLUSIONS: According to the investigated results, this biosensor can be introduced as a proprietary, accurate, sensitive, and rapid diagnostic method of HPV 18 in the polymerase chain reaction (PCR) of real samples.


Assuntos
Técnicas Biossensoriais , DNA Viral/análise , Detecção Precoce de Câncer , Técnicas Eletroquímicas/métodos , Papillomavirus Humano 18/genética , Papillomavirus Humano 18/isolamento & purificação , Nanopartículas Metálicas/química , Nanotubos de Carbono/química , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/virologia , Calibragem , Espectroscopia Dielétrica , Eletrodos , Feminino , Ouro , Humanos , Limite de Detecção , Nanopartículas Metálicas/ultraestrutura , Nanotubos de Carbono/ultraestrutura , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
15.
Ecotoxicol Environ Saf ; 201: 110872, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32559693

RESUMO

Based on a hybrid carbon nanotube composite, a novel electrochemical sensor with high sensitivity and selectivity was designed for the simultaneous determination of dopamine (DA) and uric acid (UA). The hybrid carbon nanotube composite was prepared by ultrasonic assembly of carboxylated multi-walled carbon nanotube (MWCNT-COOH) and hydroxylated single-walled carbon nanotube (SWCNT-OH). And the hybrid (MWCNT-COOH/SWCNT-OH) composite was characterized by field emission scanning electron microscopy (FE-SEM) and Fourier transform infrared (FT-IR) spectroscopy. The electrochemical performances of MWCNT-COOH/SWCNT-OH composite modified glassy carbon electrode (MWCNT-COOH/SWCNT-OH/GCE) were analyzed by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV). Under the optimum experimental conditions, the as-prepared sensor showed high sensitivity and selectivity for DA and UA. The calibration curves obtained were linear for the currents versus DA and UA concentrations in the range 2-150 µM, and limits of detection (LODs) were calculated to be 0.37 µM and 0.61 µM (signal-to-noise ratio of 3, S/N = 3), respectively. The recoveries of DA and UA in bovine serum samples at MWCNT-COOH/SWCNT-OH/GCE were in the range 96.18-105.02%, and relative standard deviations (RSDs) were 3.34-7.27%. The proposed electrochemical sensor showed good anti-interference ability, excellent reproducibility and stability, as well as high selectivity, which might provide a promising platform for determination of DA and UA.


Assuntos
Dopamina/análise , Técnicas Eletroquímicas/métodos , Nanotubos de Carbono/química , Ácido Úrico/análise , Animais , Carbono , Bovinos , Dopamina/sangue , Eletrodos , Limite de Detecção , Nanotubos de Carbono/ultraestrutura , Reprodutibilidade dos Testes , Ácido Úrico/sangue
16.
Int J Mol Sci ; 21(7)2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32218381

RESUMO

Currently, there is a lack of ultrasensitive diagnostic tool to detect some diseases such as ischemic stroke, thereby impacting effective and efficient intervention for such diseases at an embryonic stage. In addition to the lack of proper detection of the neurological diseases, there is also a challenge in the treatment of these diseases. Carbon nanotubes have a potential to be employed in solving the theragnostic challenges in those diseases. In this study, carbon nanotubes were successfully synthesized for potential application in the detection and treatment of the neurological diseases such as ischemic stroke. Vertically aligned multiwalled carbon nanotubes (VA-MWCNTs) were purified with HCl, carboxylated with H2SO4:HNO3 (3:1) and acylated with SOCl2 for use in potential targeting studies and for the design of a carbon-based electrode for possible application in the diagnosis of neurological diseases, including ischemic stroke. MWCNTs were washed, extracted from the filter membranes and dried in a vacuum oven at 60 °C for 24 h prior to functionalization and PEGylation. CNTs were characterized by SEM, TEM, OCA, DLS, CV and EIS. The HCl-treated CNT obtained showed an internal diameter, outer diameter and thickness of 8 nm, 34 nm and 75 µm, while these parameters for the H2SO4-HNO3-treated CNT were 8 nm, 23 nm and 41µm, respectively. PEGylated CNT demonstrated zeta potential, polydispersive index and particle size distribution of 6 mV, 0.41 and 98 nm, respectively. VA-MWCNTs from quartz tube were successfully purified, carboxylated, acylated and PEGylated for potential functionalization for use in targeting studies. For designing the carbon-based electrode, VA-MWCNTs on silicon wafer were successfully incorporated into epoxy resin for diagnostic applications. Functionalized MWCNTs were nontoxic towards PC-12 neuronal cells. In conclusion, vertically super-aligned MWCNTs have been successfully synthesized and functionalized for possible theragnostic biomedical applications in neurological disorders such as ischemic stroke.


Assuntos
Nanotubos de Carbono , Eletrodos , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Nanotubos de Carbono/ultraestrutura , Oxirredução , Tamanho da Partícula
17.
Int J Mol Sci ; 21(23)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266061

RESUMO

Here, we report that multi-walled carbon nanotubes (MWCNTs) can promote plant root hair growth in the species analyzed in this study; however, low and excessive concentrations of MWCNTs had no significant effect or even an inhibiting influence. Further results show that MWCNTs can enter rapeseed root cells. Meanwhile, nitrate reductase (NR)-dependent nitric oxide (NO) and ethylene syntheses, as well as root hair formation, were significantly stimulated by MWCNTs. Transcription of root hair growth-related genes were also modulated. The above responses were sensitive to the removal of endogenous NO or ethylene with a scavenger of NO or NO/ethylene synthesis inhibitors. Pharmacological and molecular evidence suggested that ethylene might act downstream of NR-dependent NO in MWCNTs-induced root hair morphogenesis. Genetic evidence in Arabidopsis further revealed that MWCNTs-triggered root hair growth was abolished in ethylene-insensitive mutants ein2-5 and ein3-1, and NR mutant nia1/2, but not in noa1 mutant. Further data placed NO synthesis linearly before ethylene production in root hair development triggered by MWCNTs. The above findings thus provide some insights into the molecular mechanism underlying MWCNTs control of root hair morphogenesis.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Brassica napus/crescimento & desenvolvimento , Etilenos/metabolismo , Nanotubos de Carbono/química , Óxido Nítrico/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Transdução de Sinais , Arabidopsis/genética , Arabidopsis/ultraestrutura , Brassica napus/genética , Brassica napus/ultraestrutura , Regulação da Expressão Gênica de Plantas , Modelos Biológicos , Nanotubos de Carbono/ultraestrutura , Nitrato Redutase/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/ultraestrutura , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
Int J Mol Sci ; 21(13)2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32635295

RESUMO

Colon cancer is the third major cancer contributor to mortality worldwide. Nanosized particles have attracted attention due to their possible contribution towards cancer treatment and diagnosis. Photodynamic therapy (PDT) is a cancer therapeutic modality that involves a light source, a photosensitizer and reactive oxygen species. Carbon nanotubes are fascinating nanocarriers for drug delivery, cancer diagnosis and numerous potential applications due to their unique physicochemical properties. In this study, single walled carbon nanotubes (SWCNTs) were coupled with hyaluronic acid (HA) and chlorin e6 (Ce6) coated on the walls of SWCNTs. The newly synthesized nanobiocomposite was characterized using ultraviolet-visible spectroscopy, Fourier transform electron microscopy (FTIR), X-ray diffraction analysis (XRD), particle size analysis and zeta potential. The loading efficiency of the SWCNTs-HA for Ce6 was calculated. The toxicity of the nanobiocomposite was tested on colon cancer cells using PDT at a fluence of 5 J/cm2 and 10 J/cm2. After 24 h, cellular changes were observed via microscopy, LDH cytotoxicity assay and cell death induction using annexin propidium iodide. The results showed that the newly synthesized nanobiocomposite enhanced the ability of PDT to be a photosensitizer carrier and induced cell death in colon cancer cells.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Porfirinas/administração & dosagem , Apoptose/efeitos dos fármacos , Células CACO-2 , Clorofilídeos , Neoplasias do Colo/patologia , Humanos , Ácido Hialurônico/química , Nanocompostos/química , Nanocompostos/ultraestrutura , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Tamanho da Partícula , Fármacos Fotossensibilizantes/química , Porfirinas/química , Espectrofotometria , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
19.
Molecules ; 25(14)2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32698393

RESUMO

Covalent organic frameworks (COFs) can be classified as emerging porous crystalline polymers with extremely high porosity and surface area size, and good thermal stability. These properties have awakened the interests of many areas, opening new horizons of research and applications. In the Analytical Chemistry field, COFs have found an important application in sample preparation approaches since their inherent properties clearly match, in a good number of cases, with the ideal characteristics of any extraction or clean-up sorbent. The review article is meant to provide a detailed overview of the different COFs that have been used up to now for sample preparation (i.e., solid-phase extraction in its most relevant operational modes-conventional, dispersive, magnetic/solid-phase microextraction and stir-bar sorptive extraction); the extraction devices/formats in which they have been applied; and their performances and suitability for this task.


Assuntos
Métodos Analíticos de Preparação de Amostras , Estruturas Metalorgânicas/química , Adsorção , Estruturas Metalorgânicas/ultraestrutura , Nanotubos de Carbono/ultraestrutura , Extração em Fase Sólida
20.
Molecules ; 25(18)2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32899530

RESUMO

The effectiveness of carbon nanotubes (CNT) deagglomeration by rapid expansion of supercritical suspensions (RESS) in nitrogen and carbon dioxide fluids was studied in this work. Two different mechanisms of deagglomeration were proposed for these two fluids at various temperature and pressure conditions. Ultrasound attenuation spectroscopy was applied as an express method of determining median diameter and aspect ratio of CNTs. At least twofold reduction of the diameter was shown for CNT bundles processed by RESS technique. Aspect ratio of processed CNTs, calculated from acoustic attenuation spectra, increased to 340. These results were in a good agreement with atomic force microscopy data.


Assuntos
Nanotubos de Carbono/química , Suspensões/química , Microscopia de Força Atômica , Nanotubos de Carbono/ultraestrutura , Análise Espectral Raman , Ultrassom
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA