Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 391
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Allergy Clin Immunol ; 149(1): 102-112, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34119532

RESUMO

BACKGROUND: Infants with bronchiolitis are at increased risk for developing asthma. Growing evidence suggests bronchiolitis is a heterogeneous condition. OBJECTIVES: We sought to identify biologically distinct subgroups based on the metabolome signatures (metabotypes) in infants with severe bronchiolitis and to examine the longitudinal relationships of metabotypes with asthma development. METHODS: In a multicenter prospective cohort study of infants (age, <12 months) hospitalized for bronchiolitis, the nasopharyngeal airway metabolome was profiled at hospitalization. Using a clustering approach, this study identified mutually exclusive metabotypes. This study also examined their longitudinal association with the risk of developing asthma by 5 years of age. RESULTS: Of 918 infants hospitalized for bronchiolitis (median age, 3 months), this study identified 5 distinct metabotypes-characterized by their nasopharyngeal metabolome profile: A, glycerophosphocholine-high; B, amino acid-high, polyunsaturated fatty acid-low; C, amino acid-high, glycerophospholipid-low; D, glycerophospholipid-high; and E, mixed. Compared with infants with metabotype A (who clinically resembled "classic" bronchiolitis), infants with metabotype B had a significantly higher risk for developing asthma (23% vs 41%; adjusted odds ratio, 2.22; 95% CI, 1.07-4.69). The pathway analysis showed that metabotype B had enriched amino acid (eg, methionine, histidine, glutathione) and α-linolenic/linoleic acid metabolism pathways (false discovery rate, <5 × 10-14 for all). Finally, the transcriptome analysis revealed that infants with metabotype B had upregulated IFN-α and IL-6/JAK/STAT3 pathways and downregulated fatty acid metabolism pathways (false discovery rate, <0.05 for both). CONCLUSIONS: In this multicenter prospective cohort study of infants with severe bronchiolitis, the clustering analysis of metabolome data identified biologically distinct metabotypes, including a metabotype characterized by high inflammatory amino acids and low polyunsaturated fatty acids that is at significantly increased risk for developing asthma.


Assuntos
Asma/epidemiologia , Bronquiolite/metabolismo , Metaboloma , Bronquiolite/epidemiologia , Feminino , Humanos , Lactente , Masculino , Nasofaringe/metabolismo , Estudos Prospectivos , Fatores de Risco , Transcriptoma
2.
Proc Natl Acad Sci U S A ; 115(25): E5776-E5785, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29866828

RESUMO

The opportunistic pathogen Streptococcus pneumoniae (pneumococcus) uses natural genetic competence to increase its adaptability through horizontal gene transfer. One method of acquiring DNA is through predation of neighboring strains with antimicrobial peptides called "bacteriocins." Competence and production of the major family of pneumococcal bacteriocins, pneumocins, are regulated by the quorum-sensing systems com and blp, respectively. In the classical paradigm, the ABC transporters ComAB and BlpAB each secretes its own system's signaling pheromone and in the case of BlpAB also secretes the pneumocins. While ComAB is found in all pneumococci, only 25% of strains encode an intact version of BlpAB [BlpAB(+)] while the rest do not [BlpAB(-)]. Contrary to the classical paradigm, it was previously shown that BlpAB(-) strains can activate blp through ComAB-mediated secretion of the blp pheromone during brief periods of competence. To better understand the full extent of com-blp crosstalk, we examined the contribution of each transporter to competence development and pneumocin secretion. We found that BlpAB(+) strains have a greater capacity for competence activation through BlpAB-mediated secretion of the com pheromone. Similarly, we show that ComAB and BlpAB are promiscuous and both can secrete pneumocins. Consequently, differences in pneumocin secretion between BlpAB(+) and BlpAB(-) strains derive from the regulation and kinetics of transporter expression rather than substrate specificity. We speculate that BlpAB(-) strains (opportunists) use pneumocins mainly in a narrowly tailored role for DNA acquisition and defense during competence while BlpAB(+) strains (aggressors) expand their use for the general inhibition of rival strains.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Bacteriocinas/metabolismo , Streptococcus pneumoniae/metabolismo , Animais , Feminino , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Nasofaringe/metabolismo , Nasofaringe/microbiologia , Feromônios/metabolismo
3.
J Bacteriol ; 201(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31405914

RESUMO

Streptococcus pneumoniae rapidly kills Staphylococcus aureus by producing membrane-permeable hydrogen peroxide (H2O2). The mechanism by which S. pneumoniae-produced H2O2 mediates S. aureus killing was investigated. An in vitro model that mimicked S. pneumoniae-S. aureus contact during colonization of the nasopharynx demonstrated that S. aureus killing required outcompeting densities of S. pneumoniae Compared to the wild-type strain, isogenic S. pneumoniae ΔlctO and S. pneumoniae ΔspxB, both deficient in production of H2O2, required increased density to kill S. aureus While residual H2O2 activity produced by single mutants was sufficient to eradicate S. aureus, an S. pneumoniae ΔspxB ΔlctO double mutant was unable to kill S. aureus A collection of 20 diverse methicillin-resistant S. aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) strains showed linear sensitivity (R2 = 0.95) for S. pneumoniae killing, but the same strains had different susceptibilities when challenged with pure H2O2 (5 mM). There was no association between the S. aureus clonal complex and sensitivity to either S. pneumoniae or H2O2 To kill S. aureus, S. pneumoniae produced ∼180 µM H2O2 within 4 h of incubation, while the killing-defective S. pneumoniae ΔspxB and S. pneumoniae ΔspxB ΔlctO mutants produced undetectable levels. Remarkably, a sublethal dose (1 mM) of pure H2O2 incubated with S. pneumoniae ΔspxB eradicated diverse S. aureus strains, suggesting that S. pneumoniae bacteria may facilitate conversion of H2O2 to a hydroxyl radical (·OH). Accordingly, S. aureus killing was completely blocked by incubation with scavengers of ·OH radicals, dimethyl sulfoxide (Me2SO), thiourea, or sodium salicylate. The ·OH was detected in S. pneumoniae cells by spin trapping and electron paramagnetic resonance. Therefore, S. pneumoniae produces H2O2, which is rapidly converted to a more potent oxidant, hydroxyl radicals, to rapidly intoxicate S. aureus strains.IMPORTANCEStreptococcus pneumoniae strains produce hydrogen peroxide (H2O2) to kill bacteria in the upper airways, including pathogenic Staphylococcus aureus strains. The targets of S. pneumoniae-produced H2O2 have not been discovered, in part because of a lack of knowledge about the underlying molecular mechanism. We demonstrated that an increased density of S. pneumoniae kills S. aureus by means of H2O2 produced by two enzymes, SpxB and LctO. We discovered that SpxB/LctO-produced H2O2 is converted into a hydroxyl radical (·OH) that rapidly intoxicates and kills S. aureus We successfully inhibited the toxicity of ·OH with three different scavengers and detected ·OH in the supernatant. The target(s) of the hydroxyl radicals represents a new alternative for the development of antimicrobials against S. aureus infections.


Assuntos
Peróxido de Hidrogênio/metabolismo , Radical Hidroxila/metabolismo , Staphylococcus aureus Resistente à Meticilina/metabolismo , Streptococcus pneumoniae/metabolismo , Nasofaringe/metabolismo , Infecções Estafilocócicas/microbiologia
4.
Int J Cancer ; 145(8): 2260-2266, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30698824

RESUMO

Nasopharyngeal carcinoma (NPC) is an epithelial cancer of the nasopharynx which is highly associated with Epstein-Barr virus (EBV). Worldwide, most of the top 20 countries with the highest incidence and mortality rates of NPC are low- and middle-income countries. Many studies had demonstrated that EBV could be detected in the tissue, serum and plasma of NPC patients. In this study, we explored the potential of assays based on non-invasive nasal washings (NW) as a diagnostic and prognostic tool for NPC. A total of 128 patients were evaluated for NW EBV DNA loads and a subset of these samples were also tested for 27 EBV and human miRNAs shortlisted from literature. EBV DNA and seven miRNAs showed area under the receiver operating characteristic curve (AUC) values of more than 0.7, suggestive of their potential utility to detect NPC. Logistic regression analyses suggested that combination of two NW assays that test for EBNA-1 and hsa-miR-21 had the best performance in detecting NPC. The trend of NW EBV DNA load matched with clinical outcome of 71.4% (10 out of 14) NPC patients being followed-up. In summary, the non-invasive NW testing panel may be particularly useful for NPC screening in remote areas where healthcare facilities and otolaryngologists are lacking, and may encourage frequent testing of individuals in the high risk groups who are reluctant to have their blood tested. However, further validation in an independent cohort is required to strengthen the utility of this testing panel as a non-invasive detection tool for NPC.


Assuntos
Infecções por Vírus Epstein-Barr/diagnóstico , Herpesvirus Humano 4/isolamento & purificação , MicroRNAs/genética , Líquido da Lavagem Nasal/virologia , Carcinoma Nasofaríngeo/diagnóstico , Neoplasias Nasofaríngeas/diagnóstico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , DNA Viral/genética , Detecção Precoce de Câncer/métodos , Infecções por Vírus Epstein-Barr/virologia , Feminino , Perfilação da Expressão Gênica/métodos , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/virologia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/virologia , Nasofaringe/metabolismo , Nasofaringe/virologia , Reação em Cadeia da Polimerase/métodos , Prognóstico , Curva ROC , Adulto Jovem
5.
Int J Gynecol Pathol ; 38(2): 183-188, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29257037

RESUMO

Lymphoepithelioma-like carcinoma (LELC) is an uncommon variant of squamous cell carcinoma, which is histologically identical to lymphoepithelial carcinoma of the nasopharynx. LELCs have been reported at a variety of sites, including the stomach, salivary gland, thymus, cervix, endometrium, breast, skin, bladder, and lung. We report 2 LELCs of the vagina and 1 of the anal canal, the first report of LELC at the latter site. All 3 neoplasms were diffusely positive with p16 (block-type immunoreactivity) and the anal canal lesion contained high-risk human papillomavirus type 16; the 2 vaginal neoplasms underwent human papillomavirus testing but were unsuitable for analysis. All cases were Epstein-Barr virus negative. In reporting these cases, we highlight the potential for misdiagnosis and suggest an association with human papillomavirus infection similar to LELCs in the uterine cervix.


Assuntos
Neoplasias do Ânus/diagnóstico , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/diagnóstico , Papillomavirus Humano 16/isolamento & purificação , Infecções por Papillomavirus/diagnóstico , Neoplasias Vaginais/diagnóstico , Idoso , Idoso de 80 Anos ou mais , Canal Anal/metabolismo , Canal Anal/patologia , Neoplasias do Ânus/metabolismo , Neoplasias do Ânus/patologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Feminino , Papillomavirus Humano 16/genética , Humanos , Masculino , Pessoa de Meia-Idade , Nasofaringe/metabolismo , Nasofaringe/patologia , Infecções por Papillomavirus/virologia , Vagina/metabolismo , Vagina/patologia , Neoplasias Vaginais/metabolismo , Neoplasias Vaginais/patologia
6.
Int J Mol Sci ; 20(15)2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31370144

RESUMO

Normally ubiquitin C-terminal hydrolase L1 (UCH-L1) is expressed in the central nervous and reproductive systems of adults, but its de novo expression has been detected in many human cancers. There is a growing body of evidence that UCH-L1 de-ubiquitinating (DUB) activity plays a major pro-metastatic role in certain carcinomas. Here we tested anti-metastatic effects of the small-molecule inhibitor of UCH-L1 DUB activity, LDN-57444, in cell lines from advanced oral squamous cell carcinoma (OSCC) as well as invasive nasopharyngeal (NP) cell lines expressing the major pro-metastatic gene product of Epstein-Barr virus (EBV) tumor virus, LMP1. To overcome the limited aqueous solubility of LDN-57444 we developed a nanoparticle formulation of LDN-57444 by incorporation of the compound in polyoxazoline micellear nanoparticles (LDN-POx). LDN-POx nanoparticles were equal in effects as the native compound in vitro. Our results demonstrate that inhibition of UCH-L1 DUB activity with LDN or LDN-POx inhibits secretion of exosomes and reduces levels of the pro-metastatic factor in exosomal fractions. Both forms of UCH-L1 DUB inhibitor suppress motility of metastatic squamous carcinoma cells as well as nasopharyngeal cells expressing EBV pro-metastatic Latent membrane protein 1 (LMP1) in physiological assays. Moreover, treatment with LDN and LDN-POx resulted in reduced levels of pro-metastatic markers, a decrease of carcinoma cell adhesion, as well as inhibition of extra-cellular vesicle (ECV)-mediated transfer of viral invasive factor LMP1. We suggest that soluble inhibitors of UCH-L1 such as LDN-POx offer potential forms of treatment for invasive carcinomas including EBV-positive malignancies.


Assuntos
Antineoplásicos/farmacologia , Portadores de Fármacos , Células Epiteliais/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Indóis/farmacologia , Oximas/farmacologia , Ubiquitina Tiolesterase/genética , Proteínas da Matriz Viral/genética , Antineoplásicos/química , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Exossomos/efeitos dos fármacos , Exossomos/metabolismo , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/patogenicidade , Humanos , Indóis/química , Micelas , Boca/metabolismo , Boca/patologia , Nanopartículas/química , Nanopartículas/ultraestrutura , Nasofaringe/metabolismo , Nasofaringe/patologia , Oxazóis/química , Oximas/química , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/metabolismo , Proteínas da Matriz Viral/metabolismo
7.
BMC Cancer ; 18(1): 409, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29649994

RESUMO

BACKGROUND: Chronic rhinosinusitis (CRS) increases the risk of developing nasopharyngeal carcinoma (NPC) while nasopharyngeal reflux is known to be one of the major aetiological factors of CRS. Bile acid (BA), the component of gastric duodenal contents, has been recognised as a carcinogen. BA-induced apoptosis was suggested to be involved in human malignancies. Cells have the potential and tendency to survive apoptosis. However, cells that evade apoptosis upon erroneous DNA repair may carry chromosome rearrangements. Apoptotic nuclease, caspase-activated deoxyribonuclease (CAD) has been implicated in mediating translocation in leukaemia. We hypothesised that BA-induced apoptosis may cause chromosome breaks mediated by CAD leading to chromosome rearrangement in NPC. This study targeted the AF9 gene located at 9p22 because 9p22 is one of the most common deletion sites in NPC. METHODS: We tested the ability of BA at neutral and acidic pH in inducing phosphatidylserine (PS) externalisation, reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP) disruption, and caspase 3/7 activity in normal nasopharyngeal epithelial (NP69) and NPC (TWO4) cells. Inverse-PCR (IPCR) was employed to detect AF9 gene cleavages. To investigate the role of CAD in mediating these cleavages, caspase inhibition was performed. IPCR bands representing AF9 cleaved fragments were sequenced. RESULTS: BA-treated cells showed higher levels of PS externalisation, ROS production, MMP loss and caspase 3/7 activity than untreated control cells. The effect of BA in the induction of these intracellular events was enhanced by acid. BA at neutral and acidic pH also induced significant cleavage of the AF9 gene. These BA-induced gene cleavages were inhibited by Z-DEVD-FMK, a caspase-3 inhibitor. Intriguingly, a few chromosome breaks were identified within the AF9 region that was previously reported to participate in reciprocal translocation between the mixed lineage leukaemia (MLL) and AF9 genes in an acute lymphoblastic leukaemia (ALL) patient. CONCLUSIONS: These findings suggest a role for BA-induced apoptosis in mediating chromosome rearrangements in NPC. In addition, CAD may be a key player in chromosome cleavages mediated by BA-induced apoptosis. Persistent exposure of sinonasal tract to gastric duodenal refluxate may increase genomic instability in surviving cells.


Assuntos
Apoptose/genética , Ácidos e Sais Biliares/metabolismo , Células Epiteliais/metabolismo , Mucosa Nasal/metabolismo , Nasofaringe/metabolismo , Mucosa Respiratória/metabolismo , Apoptose/efeitos dos fármacos , Ácidos e Sais Biliares/farmacologia , Biomarcadores , Caspase 3/metabolismo , Linhagem Celular Tumoral , Aberrações Cromossômicas , Células Epiteliais/efeitos dos fármacos , Humanos , Espaço Intracelular/metabolismo , Potencial da Membrana Mitocondrial , Mucosa Nasal/efeitos dos fármacos , Espécies Reativas de Oxigênio , Mucosa Respiratória/efeitos dos fármacos
8.
Am J Respir Crit Care Med ; 196(7): 882-891, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28530140

RESUMO

RATIONALE: Bronchiolitis is the most common lower respiratory infection in infants; however, it remains unclear which infants with bronchiolitis will develop severe illness. In addition, although emerging evidence indicates associations of the upper-airway microbiome with bronchiolitis severity, little is known about the mechanisms linking airway microbes and host response to disease severity. OBJECTIVES: To determine the relations among the nasopharyngeal airway metabolome profiles, microbiome profiles, and severity in infants with bronchiolitis. METHODS: We conducted a multicenter prospective cohort study of infants (age <1 yr) hospitalized with bronchiolitis. By applying metabolomic and metagenomic (16S ribosomal RNA gene and whole-genome shotgun sequencing) approaches to 144 nasopharyngeal airway samples collected within 24 hours of hospitalization, we determined metabolome and microbiome profiles and their association with higher severity, defined by the use of positive pressure ventilation (i.e., continuous positive airway pressure and/or intubation). MEASUREMENTS AND MAIN RESULTS: Nasopharyngeal airway metabolome profiles significantly differed by bronchiolitis severity (P < 0.001). Among 254 metabolites identified, a panel of 25 metabolites showed high sensitivity (84%) and specificity (86%) in predicting the use of positive pressure ventilation. The intensity of these metabolites was correlated with relative abundance of Streptococcus pneumoniae. In the pathway analysis, sphingolipid metabolism was the most significantly enriched subpathway in infants with positive pressure ventilation use compared with those without (P < 0.001). Enrichment of sphingolipid metabolites was positively correlated with the relative abundance of S. pneumoniae. CONCLUSIONS: Although further validation is needed, our multiomic analyses demonstrate the potential of metabolomics to predict bronchiolitis severity and better understand microbe-host interaction.


Assuntos
Bronquiolite/metabolismo , Bronquiolite/microbiologia , Metaboloma/fisiologia , Microbiota/fisiologia , Nasofaringe/metabolismo , Nasofaringe/microbiologia , Bronquiolite/terapia , Estudos de Coortes , Pressão Positiva Contínua nas Vias Aéreas/estatística & dados numéricos , Feminino , Humanos , Lactente , Masculino , Estudos Prospectivos , Índice de Gravidade de Doença
9.
AAPS PharmSciTech ; 19(8): 3723-3733, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30225778

RESUMO

Nasal cavity breakthrough to the airways of the lungs is associated with nasally inhaled droplets whose size is smaller than ca. 10 µm aerodynamic diameter that behave as an aerosol rather than a spray in terms of their transport. The purpose of the present laboratory-based study was to evaluate a nasal product quality control procedure involving a new inlet for the quantification of mass of such droplets emitted by commercially available aqueous nasal spray pump products by cascade impactor. This inlet is more representative of the adult nasal vestibule in terms of entry angle for the spray as well as internal volume for plume expansion. Sampling was also undertaken via a spherical 1-L glass expansion vessel as inlet, previously established for quantification of these aerosol droplets. The selected solution- and suspension-formulated products containing azelastine and fluticasone propionate respectively were shown to contain < 1% of the total spray mass per actuation associated with droplets < 14.1 µm aerodynamic diameter. These measurements were consistent with laser diffraction-based measurements of the entire droplet size distribution. Comparable measures of aerosol droplet mass fraction were obtained when the spray was sampled by the cascade impactor method using either the 1-L glass expansion chamber or the new metal inlet as entry for the spray produced by either product evaluated. We conclude that the metal inlet has the potential to be adopted as a suitable induction port in the assessment of nasal product quality, where currently no standardized inlet exists.


Assuntos
Nasofaringe/metabolismo , Nebulizadores e Vaporizadores , Administração por Inalação , Administração Intranasal , Adulto , Aerossóis , Fluticasona/administração & dosagem , Humanos , Ftalazinas/administração & dosagem
10.
Cell Physiol Biochem ; 43(4): 1392-1401, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29017171

RESUMO

BACKGROUND: The objective of the present study was to evaluate the role of the TGFß/PDCD4/AP-1 pathway in nasopharyngeal carcinoma (NPC) and its relationship to NPC prognosis. METHODS: NPC tissues collected from 66 NPC patients were compared to 17 nasopharyngeal mucosa biopsy specimens collected as normal tissues. Immunohistochemical staining was performed to assess expression of transforming growth factor-ß receptor I (TGFßRI), programmed cell death 4 (PDCD4) and activator protein-1 (AP-1). The Kaplan-Meier method was applied to evaluate NPC patient overall survival (OS) and progression-free-survival (PFS). Cox regression analysis was used to estimate independent prognostic factors for NPC. The human NPC cell line CNE2 was selected and treated with SB431542, an inhibitor of TGFßRI; expression of TGFßRI and PDCD4 in CNE2 cells was determined by western blotting. NPC tissues showed higher expression of TGFßRI and AP-1 but lower expression of PDCD4 than normal tissues (all P < 0.05). RESULTS: The results of Kaplan-Meier analysis showed that TGFßRI-positive patients and AP-1-positive patients had shorter OS and PFS than TGFßRI-negative patients and AP-1-negative patients; additionally, PDCD4-positive patients had higher OS and PFS than PDCD4-negative patients. Cox regression analysis revealed that advanced tumor stage, overexpression of TGFßRI and AP-1, and low expression of PDCD4 were unfavorable factors influencing OS and PFS in NPC patients. Compared with the control group, expression of TGFßRI decreased and that of PDCD4 increased significantly in CNE2 cells treated with the inhibitor (all P < 0.05). These findings indicate that the TGFß/PDCD4/AP-1 pathway may be associated with NPC development and progression. CONCLUSION: High expression of TGFßRI and AP-1 and low expression of PDCD4 may be unfavorable prognostic factors for NPC.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Carcinoma/diagnóstico , Carcinoma/metabolismo , Neoplasias Nasofaríngeas/diagnóstico , Neoplasias Nasofaríngeas/metabolismo , Nasofaringe/patologia , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Fator de Transcrição AP-1/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Adulto , Idoso , Proteínas Reguladoras de Apoptose/análise , Carcinoma/patologia , Linhagem Celular Tumoral , Intervalo Livre de Doença , Feminino , Seguimentos , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/patologia , Nasofaringe/metabolismo , Prognóstico , Proteínas de Ligação a RNA/análise , Fator de Transcrição AP-1/análise , Fator de Crescimento Transformador beta/análise
11.
Mol Carcinog ; 56(2): 447-463, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27253463

RESUMO

The enhancer of zeste homolog 2 (EZH2) is involved in a number of fundamental pathological processes of cancer. However, its role in DNA repair pathway is still unclear. Here, we have identified XPA as a novel target gene of EZH2 via a DNA repair pathway PCR array. XPA plays a pivot role in nucleotide excision repair (NER). The expression of XPA was significantly increased by EZH2 specific inhibitor GSK126 or lentiviral shEZH2 in nasopharyngeal carcinoma (NPC) CNE and 8F cell lines. Chromatin immunoprecipitation assay demonstrated that EZH2 catalyzes H3K27 trimethylation at the XPA promoters. Furthermore, we validated the negative correlation of EZH2 and XPA in a NPC tissue microarray by immunohistochemistry staining. We also found that high expression of EZH2 was positively correlated with advanced T, N, and AJCC stage of NPC; and low expression of XPA was positively correlated with advanced T and N stage. In NPC cell lines, increased XPA expression by EZH2 inhibition resulted in a more rapid removal of UVC induced 6-4PP- and CPD-DNA adducts, as well as enhanced efficiency of DNA repair after UVC irradiation as detected by the Comet assay and immunofluorescence staining of γH2Ax. Consistently, increased cell clonogenic survival, decreased apoptosis, and necrosis after UVC irradiation, and increased resistance to DNA damaging agent cisplatin was also observed in EZH2 inhibited cells. These results illustrate that EZH2 may promote carcinogenesis and cancer development of NPC by transcriptional repression of XPA gene and inactivation of NER pathway. © 2016 Wiley Periodicals, Inc.


Assuntos
Carcinoma/genética , Carcinoma/patologia , Reparo do DNA , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Nasofaringe/patologia , Proteína de Xeroderma Pigmentoso Grupo A/genética , Antineoplásicos/farmacologia , Carcinoma/tratamento farmacológico , Carcinoma/metabolismo , Linhagem Celular Tumoral , Cisplatino/farmacologia , Regulação para Baixo , Proteína Potenciadora do Homólogo 2 de Zeste/análise , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Código das Histonas , Humanos , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/metabolismo , Nasofaringe/efeitos dos fármacos , Nasofaringe/metabolismo , Regiões Promotoras Genéticas , Proteína de Xeroderma Pigmentoso Grupo A/análise , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo
12.
BMC Cancer ; 17(1): 489, 2017 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-28716111

RESUMO

BACKGROUND: Epigenetic changes, including DNA methylation, disrupt normal cell function, thus contributing to multiple steps of carcinogenesis. Nasopharyngeal carcinoma (NPC) is endemic in southern China and is highly associated with Epstein-Barr virus (EBV) infection. Significant changes of the host cell methylome are observed in EBV-associated NPC with cancer development. Epigenetic marks for NPC diagnosis are urgently needed. In order to explore DNA methylation marks, we investigated DNA methylation of candidate genes in EBV-associated nasopharyngeal carcinoma. METHODS: We first employed methyl-capture sequencing and cDNA microarrays to compare the genome-wide methylation profiles of seven NPC tissues and five non-cancer nasopharyngeal epithelium (NNE) tissues. We found 150 hypermethylated CpG islands spanning promoter regions and down-regulated genes. Furthermore, we quantified the methylation rates of seven candidate genes using bisulfite amplicon sequencing for nine NPC and nine NNE tissues. RESULTS: All seven candidate genes showed significantly higher methylation rates in NPC than in NNE tissues, and the ratios (NPC/NNE) were in descending order as follows: ITGA4 > RERG > ZNF671 > SHISA3 > ZNF549 > CR2 > RRAD. In particular, methylation levels of ITGA4, RERG, and ZNF671 could distinguish NPC patients from NNE subjects. CONCLUSIONS: We identified the DNA methylation rates of previously unidentified NPC candidate genes. The combination of genome-wide and targeted methylation profiling by next-generation sequencers should provide useful information regarding cancer-specific aberrant methylation.


Assuntos
Carcinoma/genética , Metilação de DNA/genética , Infecções por Vírus Epstein-Barr/genética , GTP Fosfo-Hidrolases/genética , Integrina alfa6/genética , Neoplasias Nasofaríngeas/genética , Proteínas Supressoras de Tumor/genética , Adulto , Idoso , Carcinoma/diagnóstico , Carcinoma/patologia , Carcinoma/virologia , Linhagem Celular Tumoral , Ilhas de CpG/genética , Diagnóstico Diferencial , Epigênese Genética/genética , Epitélio/metabolismo , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/virologia , Feminino , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/patogenicidade , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/diagnóstico , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/virologia , Nasofaringe/metabolismo
13.
J Allergy Clin Immunol ; 137(3): 774-81, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26494023

RESUMO

BACKGROUND: Respiratory virus-induced wheezing, such as that induced by respiratory syncytial virus (RSV) and human rhinovirus, is an important risk factor for recurrent wheezing and childhood asthma. However, no biomarkers for predicting recurrent wheezing have been identified. OBJECTIVE: We searched for predictors of recurrent wheezing using nasopharyngeal aspirates obtained from patients during the first wheezing episode who were hospitalized with an acute lower respiratory tract illness. METHODS: We enrolled 82 infants during the first wheezing episode (median age, 5.0 months) who were hospitalized for acute lower respiratory tract illness between August 2009 and June 2012 and followed these patients for 2.5 years. Nasopharyngeal aspirates and blood samples were obtained on the first day of hospitalization. Viral genomes were identified by using RT-PCR and sequencing. Levels of 33 cytokines, tryptase, IgE, anti-RSV IgE, and anti-RSV IgG were measured by using ELISAs or the Bio-Plex multiplex assay. Predictors of recurrent wheezing were examined by using a stepwise logistic regression model with backward elimination. RESULTS: Sixty percent of the patients experienced recurrent wheezing episodes. One or more viruses were detected in the nasopharynxes of 93% of the patients during the first wheezing episode. IFN-γ, IL-2, IL-9, MIP-1α, and MIP-1ß levels were significantly higher among patients with recurrent wheezing than among those without recurrent wheezing (P < .05 or .01). The stepwise model demonstrated that the MIP-1α level (odds ratio, 7.72; 95% CI, 1.50-39.77; P = .015) was the strongest independent predictor of the occurrence of recurrent wheezing. CONCLUSION: An increased MIP-1α level in nasopharyngeal aspirates from patients with acute respiratory symptoms during the first wheezing episode caused by viral infections might predict recurrent wheezing.


Assuntos
Quimiocina CCL3/metabolismo , Líquido Extracelular/metabolismo , Nasofaringe/metabolismo , Sons Respiratórios/diagnóstico , Anticorpos Antivirais/imunologia , Biomarcadores , Pré-Escolar , Citocinas/metabolismo , Feminino , Hospitalização , Humanos , Imunoglobulina E/imunologia , Imunoglobulina E/metabolismo , Imunoglobulina G , Lactente , Recém-Nascido , Masculino , Prognóstico , Recidiva , Sons Respiratórios/etiologia , Vírus Sinciciais Respiratórios/imunologia , Triptases
14.
Int J Mol Sci ; 18(7)2017 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-28644386

RESUMO

Capsaicin is a potential chemotherapeutic agent for different human cancers. In Southeast China, nasopharyngeal carcinoma (NPC) has the highest incidence of all cancers, but final treatment outcomes are unsatisfactory. However, there is a lack of information regarding the anticancer activity of capsaicin in NPC cells, and its effects on the signaling transduction pathways related to apoptosis and autophagy remain unclear. In the present study, the precise mechanisms by which capsaicin exerts anti-proliferative effects, cell cycle arrest, autophagy and apoptosis were investigated in NPC-TW01 cells. Exposure to capsaicin inhibited cancer cell growth and increased G1 phase cell cycle arrest. Western blotting and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) were used to measure capsaicin-induced autophagy via involvement of the class III PI3K/Beclin-1/Bcl-2 signaling pathway. Capsaicin induced autophagy by increasing levels of the autophagy markers LC3-II and Atg5, enhancing p62 and Fap-1 degradation and increasing caspase-3 activity to induce apoptosis, suggesting a correlation of blocking the PI3K/Akt/mTOR pathway with the above-mentioned anticancer activities. Taken together, these data confirm that capsaicin inhibited the growth of human NPC cells and induced autophagy, supporting its potential as a therapeutic agent for cancer.


Assuntos
Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Capsaicina/farmacologia , Carcinoma/tratamento farmacológico , Neoplasias Nasofaríngeas/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Carcinoma/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Humanos , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/metabolismo , Nasofaringe/efeitos dos fármacos , Nasofaringe/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo
15.
Infect Immun ; 84(10): 2922-32, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27481242

RESUMO

Streptococcus pneumoniae is an opportunistic pathogen that colonizes the nasopharynx. Herein we show that carbon availability is distinct between the nasopharynx and bloodstream of adult humans: glucose is absent from the nasopharynx, whereas galactose is abundant. We demonstrate that pneumococcal neuraminidase A (NanA), which cleaves terminal sialic acid residues from host glycoproteins, exposed galactose on the surface of septal epithelial cells, thereby increasing its availability during colonization. We observed that S. pneumoniae mutants deficient in NanA and ß-galactosidase A (BgaA) failed to form biofilms in vivo despite normal biofilm-forming abilities in vitro Subsequently, we observed that glucose, sucrose, and fructose were inhibitory for biofilm formation, whereas galactose, lactose, and low concentrations of sialic acid were permissive. Together these findings suggested that the genes involved in biofilm formation were under some form of carbon catabolite repression (CCR), a regulatory network in which genes involved in the uptake and metabolism of less-preferred sugars are silenced during growth with preferred sugars. Supporting this notion, we observed that a mutant deficient in pyruvate oxidase, which converts pyruvate to acetyl-phosphate under non-CCR-inducing growth conditions, was unable to form biofilms. Subsequent comparative transcriptome sequencing (RNA-seq) analyses of planktonic and biofilm-grown pneumococci showed that metabolic pathways involving the conversion of pyruvate to acetyl-phosphate and subsequently leading to fatty acid biosynthesis were consistently upregulated during diverse biofilm growth conditions. We conclude that carbon availability in the nasopharynx impacts pneumococcal biofilm formation in vivo Additionally, biofilm formation involves metabolic pathways not previously appreciated to play an important role.


Assuntos
Biofilmes/crescimento & desenvolvimento , Metabolismo dos Carboidratos/fisiologia , Carboidratos/farmacologia , Galactose/farmacocinética , Neuraminidase/fisiologia , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/fisiologia , Análise de Variância , Animais , Biofilmes/efeitos dos fármacos , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Feminino , Galactose/metabolismo , Galactose/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Ácido N-Acetilneuramínico/metabolismo , Líquido da Lavagem Nasal/química , Septo Nasal/metabolismo , Septo Nasal/microbiologia , Nasofaringe/metabolismo , Nasofaringe/microbiologia , Neuraminidase/metabolismo , Infecções Pneumocócicas/metabolismo , Streptococcus pneumoniae/efeitos dos fármacos , beta-Galactosidase/deficiência , beta-Galactosidase/metabolismo
16.
Mol Carcinog ; 55(3): 300-11, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25630761

RESUMO

Cancer stem cells (CSCs) are thought to be responsible for cancer progression and therapeutic resistance but identification of this subpopulation requires selective markers. Fortunately, side population (SP) cells analysis brings a novel method to CSCs study. In this study, we identified SP cells, which are demonstrated rich in CSCs, in four nasopharyngeal carcinoma (NPC) cell lines. We investigated SP cells from HK-1 NPC cell line and showed CSCs characteristics in this subpopulation. SP cells displayed greater proliferation and invasion and expressed high levels of CSCs markers than NSP cells. Furthermore, our microRNA microarray analysis of SP versus NSP cells revealed that CD38-related miRNAs were down-regulated in SP cell, but the mRNA and protein level of CD38 were highly expressed in SP cells. We further searched for molecules interacting with CD38 and identified ZAP70, which was also well expressed in SP cells at both mRNA and protein levels. Our results uncover a CD38 pathway that may regulate the proliferation and migration of SP cells from HK-1 NPC cell line.


Assuntos
ADP-Ribosil Ciclase 1/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Nasofaringe/patologia , Células-Tronco Neoplásicas/patologia , Células da Side Population/patologia , ADP-Ribosil Ciclase 1/análise , Animais , Carcinoma , Linhagem Celular Tumoral , Humanos , Camundongos SCID , MicroRNAs/genética , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/diagnóstico , Nasofaringe/metabolismo , Células-Tronco Neoplásicas/metabolismo , RNA Mensageiro/genética , Células da Side Population/metabolismo , Regulação para Cima
17.
BMC Microbiol ; 16(1): 154, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27430279

RESUMO

BACKGROUND: Streptococcus pneumoniae causes several human diseases, including pneumonia and meningitis, in which pathology is associated with an excessive inflammatory response. A major inducer of this response is the cholesterol dependent pneumococcal toxin, pneumolysin. Here, we measured the amount of inflammatory cytokine CXCL8 (interleukin (IL)-8) by ELISA released by human nasopharyngeal epithelial (Detroit 562) cells as inflammatory response to a 24 h exposure to different pneumococcal strains. RESULTS: We found pneumolysin to be the major factor influencing the CXCL8 response. Cholesterol and sphingomyelin-containing liposomes designed to sequester pneumolysin were highly effective at reducing CXCL8 levels from epithelial cells exposed to different clinical pneumococcal isolates. These liposomes also reduced CXCL8 response from epithelial cells exposed to pneumolysin knock-out mutants of S. pneumoniae indicating that they also reduce the CXCL8-inducing effect of an unidentified pneumococcal virulence factor, in addition to pneumolysin. CONCLUSION: The results indicate the potential of liposomes in attenuating excessive inflammation as a future adjunctive treatment of pneumococcal diseases.


Assuntos
Células Epiteliais/metabolismo , Interleucina-8/metabolismo , Lipossomos/farmacologia , Nasofaringe/metabolismo , Streptococcus pneumoniae/metabolismo , Cápsulas Bacterianas , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Linhagem Celular , Células Cultivadas , Colesterol/farmacologia , Citocinas/metabolismo , Células Epiteliais/efeitos dos fármacos , Humanos , Mutação , Nasofaringe/efeitos dos fármacos , Esfingomielinas/farmacologia , Streptococcus pneumoniae/isolamento & purificação , Streptococcus pneumoniae/patogenicidade , Estreptolisinas/genética , Estreptolisinas/farmacologia
19.
Exp Mol Pathol ; 100(3): 363-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26654795

RESUMO

The palate, lung, and nasal epithelium clone (PLUNC) proteins are intricate immune molecules and arisen questions from them are still unresolved. In order to identify the role of PLUNC family proteins, we had analyzed its homolog protein YH1/SPLUNC1, which highly expresses in nontumor nasopharyngeal epithelium while expresses weakly in nasopharyngeal carcinoma (NPC) tissues. It is found that YH1/SPLUNC1 protein expression level was higher in chronic normal nasopharynx inflammatory cells compared to NPC tissue cells. An approach to produce active YH1/SPLUNC1 protein had been established and recombinant YH1/SPLUNC1 protein could bind to all four Gram-positive and four Gram-negative bacteria we tested, and triggered the aggregation of those bacteria. Interestingly, YH1/SPLUNC1 protein has antimicrobial activity, and it can directly kill Escherichia coli and Acinetobacter haemolyticus. The microorganism cell showed morphological changes in cell wall such as cell damage and cytoplasmic leakage after exposure to YH1/SPLUNC1 protein, indicating that YH1/SPLUNC1 directly killed the microorganisms by cell wall permeabilization. All these results indicated that YH1/SPLUNC1 might be an important antimicrobial protein involved in innate immunity defense.


Assuntos
Carcinoma/metabolismo , Glicoproteínas/metabolismo , Mucosa Nasal/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Nasofaringe/metabolismo , Fosfoproteínas/metabolismo , Acinetobacter/efeitos dos fármacos , Acinetobacter/metabolismo , Acinetobacter/ultraestrutura , Sequência de Aminoácidos , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Western Blotting , Carcinoma/patologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Glicoproteínas/genética , Glicoproteínas/farmacologia , Humanos , Imuno-Histoquímica , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/patologia , Fosfoproteínas/genética , Fosfoproteínas/farmacologia , Ligação Proteica , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia
20.
J Pathol ; 237(2): 238-48, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26096068

RESUMO

Non-keratinizing nasopharyngeal carcinoma (NPC) is closely associated with Epstein-Barr virus (EBV) infection. The EBV-encoded latent membrane protein 1 (LMP1) is believed to play an important role in NPC pathogenesis by virtue of its ability to activate multiple cell signalling pathways which collectively promote cell proliferation, transformation, angiogenesis, and invasiveness, as well as modulation of energy metabolism. In this study, we report that LMP1 increases cellular uptake of glucose and glutamine, enhances LDHA activity and lactate production, but reduces pyruvate kinase activity and pyruvate concentrations. LMP1 also increases the phosphorylation of PKM2, LDHA, and FGFR1, as well as the expression of PDHK1, FGFR1, c-Myc, and HIF-1α, regardless of oxygen availability. Collectively, these findings suggest that LMP1 promotes aerobic glycolysis. With respect to FGFR1 signalling, LMP1 not only increases FGFR1 expression, but also up-regulates FGF2, leading to constitutive activation of the FGFR1 signalling pathway. Furthermore, two inhibitors of FGFR1 (PD161570 and SU5402) attenuate LMP1-mediated aerobic glycolysis, cellular transformation (proliferation and anchorage-independent growth), cell migration, and invasion in nasopharyngeal epithelial cells, identifying FGFR1 signalling as a key pathway in LMP1-mediated growth transformation. Immunohistochemical staining revealed that high levels of phosphorylated FGFR1 are common in primary NPC specimens and that this correlated with the expression of LMP1. In addition, FGFR1 inhibitors suppress cell proliferation and anchorage-independent growth of NPC cells. Our current findings demonstrate that LMP1-mediated FGFR1 activation contributes to aerobic glycolysis and transformation of epithelial cells, thereby implicating FGF2/FGFR1 signalling activation in the EBV-driven pathogenesis of NPC.


Assuntos
Transformação Celular Viral , Células Epiteliais/metabolismo , Glicólise , Herpesvirus Humano 4/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Nasofaringe/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Proteínas da Matriz Viral/metabolismo , Carcinoma , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transformação Celular Viral/efeitos dos fármacos , Células Epiteliais/patologia , Células Epiteliais/virologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Regulação Neoplásica da Expressão Gênica , Glicólise/efeitos dos fármacos , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/patogenicidade , Interações Hospedeiro-Patógeno , Humanos , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/virologia , Nasofaringe/patologia , Nasofaringe/virologia , Invasividade Neoplásica , Fosforilação , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Proteínas da Matriz Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA