Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 104(10): 4471-4482, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32221688

RESUMO

Natamycin is a polyene macrolide antibiotic and widely used as a natural food preservative. Fungal elicitor had positive effects on the natamycin biosynthesis in Streptomyces natalensis HW-2. However, the global gene expression in response to fungal elicitor is not still reported. In the study, RNA-Seq was used to check the change of transcriptome by fungal elicitor in S. natalensis HW-2. The results showed that there were 1265 differential expression genes (DEGs) at 40 h and 2196 DEGs at 80 h. Most of the genes involved in natamycin biosynthesis were upregulated. KEGG pathway analysis showed that fungal elicitor had strong effects on the transcriptional levels of genes related to branch-chained amino acid (BCAA) metabolism. There were 23 upregulated or downregulated DEGs involved in BCAA biosynthesis and degradation at 40 h and 80 h. To confirm whether the improvement of BCAA biosynthesis could produce more natamycin, metabolic engineering was used to homologously overexpress the gene ilvH which encoded the regulatory subunit of acetolactate synthase (ALS) in S. natalensis. The results showed that overexpression of ilvH in S. natalensis HW-2 increased natamycin production to 1.25 g/L in the flask, which was a 32% increase compared with that of the parent strain. Real-time quantitative PCR analysis showed that the transcriptional level of ilvH in mutant strain S. natalensis ZS101 was significantly increased. Acetyl-CoA content was also raised. The results suggested that the fungal elicitor enhanced natamycin biosynthesis by improving precursor supply via BCAA metabolism. This study will open a new avenue for enhancing natamycin production by metabolic engineering and adding fungal elicitor. KEY POINTS: • The fungal elicitor had strong effects on the transcriptional levels of genes related to branch-chained amino acid metabolism by RNA-Seq. • The homologous overexpression of gene ilvH increased natamycin production by 32% and acetyl-CoA content was raised in mutant strain S. natalensis ZS101.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Vias Biossintéticas/genética , Fungos/metabolismo , Regulação Bacteriana da Expressão Gênica , Natamicina/biossíntese , Streptomyces/genética , Antibacterianos/biossíntese , Vias Biossintéticas/efeitos dos fármacos , Meios de Cultura , Fermentação , Engenharia Metabólica , Penicillium chrysogenum/crescimento & desenvolvimento , Penicillium chrysogenum/metabolismo , RNA-Seq , Streptomyces/efeitos dos fármacos , Streptomyces/metabolismo
2.
BMC Biotechnol ; 19(1): 46, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31311527

RESUMO

BACKGROUND: Natamycin is an antifungal polyene macrolide antibiotic with wide applications in health and food industries. Currently, it is the only antifungal food additive with the GRAS status (Generally Regarded as Safe). RESULTS: Natamycin production was investigated under the effect of different initial glucose concentrations. Maximal antibiotic production (1.58 ± 0.032 g/L) was achieved at 20 g/L glucose. Under glucose limitation, natamycin production was retarded and the produced antibiotic was degraded. Higher glucose concentrations resulted in carbon catabolite repression. Secondly, intermittent feeding of glucose improved natamycin production due to overcoming glucose catabolite regulation, and moreover it was superior to glucose-beef mixture feeding, which overcomes catabolite regulation, but increased cell growth on the expense of natamycin production. Finally, the process was optimized in 7.5 L stirred tank bioreactor under batch and fed-batch conditions. Continuous glucose feeding for 30 h increased volumetric natamycin production by about 1.6- and 1.72-folds in than the batch cultivation in bioreactor and shake-flasks, respectively. CONCLUSIONS: Glucose is a crucial substrate that significantly affects the production of natamycin, and its slow feeding is recommended to alleviate the effects of carbon catabolite regulation as well as to prevent product degradation under carbon source limitation. Cultivation in bioreactor under glucose feeding increased maximal volumetric enzyme production by about 72% from the initial starting conditions.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Reatores Biológicos , Natamicina/biossíntese , Antifúngicos/metabolismo , Carbono/metabolismo , Meios de Cultura/química , Meios de Cultura/metabolismo , Glucose/metabolismo , Streptomyces/metabolismo
3.
Arch Microbiol ; 201(10): 1459-1464, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31363787

RESUMO

Streptomyces is currently the main producer of microbial pharmaceuticals from its secondary metabolites as natural products. It will be more beneficial if the promoters, which are particularly strong during the secondary metabolism of Streptomyces, are used to drive the efficient production of desired natural products with the coordination of bacterial growth. Here, in an industrial natamycin producer Streptomyces chattanoogensis L10, a strong promoter groESp was identified for this purpose based on the comparative proteomic analysis of the primary and secondary metabolism. With a constitutive promoter ermEp* as a control, the activity of groESp was weak in the primary metabolism, but about sixfold higher than ermEp* in the secondary metabolism, when the representative antibiotic natamycin was highly produced. Furthermore, when ScnRII, a pathway-specific positive regulator in natamycin biosynthesis, was expressed under groESp, the productivity of natamycin was about 20% higher in the secondary metabolism than that from ermEp*, but had no discrimination in the early 2 days. Thus, we showed that proteomics is an effective alternative way to identify promoters for the high yield of natamycin in S. chattanoogensis, and this strategy can be widely adaptable to other Streptomyces species for the full development of secondary metabolites with promising bioactivities.


Assuntos
Regulação Bacteriana da Expressão Gênica , Microbiologia Industrial/métodos , Natamicina/biossíntese , Regiões Promotoras Genéticas/genética , Proteômica , Streptomyces/genética , Antibacterianos/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/genética , Metabolismo Secundário
4.
Microb Cell Fact ; 18(1): 16, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30691531

RESUMO

BACKGROUND: Streptomyces chattanoogensis L10 is the industrial producer of natamycin and has been proved a highly efficient host for diverse natural products. It has an enormous potential to be developed as a versatile cell factory for production of heterologous secondary metabolites. Here we developed a genome-reduced industrial Streptomyces chassis by rational 'design-build-test' pipeline. RESULTS: To identify candidate large non-essential genomic regions accurately and design large deletion rationally, we performed genome analyses of S. chattanoogensis L10 by multiple computational approaches, optimized Cre/loxP recombination system for high-efficient large deletion and constructed a series of universal suicide plasmids for rapid loxP or loxP mutant sites inserting into genome. Subsequently, two genome-streamlined mutants, designated S. chattanoogensis L320 and L321, were rationally constructed by depletion of 1.3 Mb and 0.7 Mb non-essential genomic regions, respectively. Furthermore, several biological performances like growth cycle, secondary metabolite profile, hyphae morphological engineering, intracellular energy (ATP) and reducing power (NADPH/NADP+) levels, transformation efficiency, genetic stability, productivity of heterologous proteins and secondary metabolite were systematically evaluated. Finally, our results revealed that L321 could serve as an efficient chassis for the production of polyketides. CONCLUSIONS: Here we developed the combined strategy of multiple computational approaches and site-specific recombination system to rationally construct genome-reduced Streptomyces hosts with high efficiency. Moreover, a genome-reduced industrial Streptomyces chassis S. chattanoogensis L321 was rationally constructed by the strategy, and the chassis exhibited several emergent and excellent performances for heterologous expression of secondary metabolite. The strategy could be widely applied in other Streptomyces to generate miscellaneous and versatile chassis with minimized genome. These chassis can not only serve as cell factories for high-efficient production of valuable polyketides, but also will provide great support for the upgrade of microbial pharmaceutical industry and drug discovery.


Assuntos
Engenharia Genética , Genoma Bacteriano , Genômica , Streptomyces/genética , Proteínas de Bactérias/metabolismo , Produtos Biológicos , Técnicas de Cultura de Células , Biologia Computacional , Regulação Bacteriana da Expressão Gênica , Microbiologia Industrial , Microrganismos Geneticamente Modificados , Família Multigênica , Natamicina/biossíntese , Metabolismo Secundário
5.
Curr Microbiol ; 76(1): 95-99, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30421143

RESUMO

Streptomyces are famed producers of secondary metabolites with diverse bioactivities and structures. However, biosynthesis of natural products will consume vast precursors from primary metabolism, and some secondary metabolites are toxic to the hosts. To overcome this circumstance and over-produce secondary metabolites, one of the strategies is to over-express biosynthetic genes under strong promoters specifically expressed during secondary metabolism. For this purpose, here based on Microarray and eGFP reporter assays, we obtained a promoter thlM4p, whose activity was undetectable in the first 2 days of fermentation, but sevenfold higher than the strong promoter ermE*p in the following days. Moreover, when the positive regulator gene scnRII was driven from thlM4p, natamycin yield increased 30% compared to ermE*p. Therefore, we provide a new way to identify promoters, which is silenced during primary metabolism while strongly expressed under secondary metabolism of Streptomyces.


Assuntos
Reatores Biológicos/microbiologia , Natamicina/biossíntese , Metabolismo Secundário/genética , Streptomyces/genética , Streptomyces/metabolismo , Fermentação/genética , Regulação Bacteriana da Expressão Gênica/genética , Metiltransferases/genética , Família Multigênica/genética , Regiões Promotoras Genéticas/genética , Transcriptoma/genética
6.
Appl Environ Microbiol ; 84(10)2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29500267

RESUMO

The biosynthesis of small-size polyene macrolides is ultimately controlled by a couple of transcriptional regulators that act in a hierarchical way. A Streptomyces antibiotic regulatory protein-large ATP-binding regulator of the LuxR family (SARP-LAL) regulator binds the promoter of a PAS-LuxR regulator-encoding gene and activates its transcription, and in turn, the gene product of the latter activates transcription from various promoters of the polyene gene cluster directly. The primary operator of PimR, the archetype of SARP-LAL regulators, contains three heptameric direct repeats separated by four-nucleotide spacers, but the regulator can also bind a secondary operator with only two direct repeats separated by a 3-nucleotide spacer, both located in the promoter region of its unique target gene, pimM A similar arrangement of operators has been identified for PimR counterparts encoded by gene clusters for different antifungal secondary metabolites, including not only polyene macrolides but peptidyl nucleosides, phoslactomycins, or cycloheximide. Here, we used promoter engineering and quantitative transcriptional analyses to determine the contributions of the different heptameric repeats to transcriptional activation and final polyene production. Optimized promoters have thus been developed. Deletion studies and electrophoretic mobility assays were used for the definition of DNA-binding boxes formed by 22-nucleotide sequences comprising two conserved heptameric direct repeats separated by four-nucleotide less conserved spacers. The cooperative binding of PimRSARP appears to be the mechanism involved in the binding of regulator monomers to operators, and at least two protein monomers are required for efficient binding.IMPORTANCE Here, we have shown that a modulation of the production of the antifungal pimaricin in Streptomyces natalensis can be accomplished via promoter engineering of the PAS-LuxR transcriptional activator pimM The expression of this gene is controlled by the Streptomyces antibiotic regulatory protein-large ATP-binding regulator of the LuxR family (SARP-LAL) regulator PimR, which binds a series of heptameric direct repeats in its promoter region. The structure and importance of such repeats in protein binding, transcriptional activation, and polyene production have been investigated. These findings should provide important clues to understand the regulatory machinery that modulates antibiotic biosynthesis in Streptomyces and open new possibilities for the manipulation of metabolite production. The presence of PimR orthologues encoded by gene clusters for different secondary metabolites and the conservation of their operators suggest that the improvements observed in the activation of pimaricin biosynthesis by Streptomyces natalensis could be extrapolated to the production of different compounds by other species.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Engenharia Genética , Regiões Promotoras Genéticas , Streptomyces/genética , Fatores de Transcrição/metabolismo , Antifúngicos/metabolismo , Proteínas de Bactérias/genética , Genes Reguladores , Natamicina/biossíntese , Regiões Operadoras Genéticas , Polienos/metabolismo , Ligação Proteica , Sequências Repetitivas de Ácido Nucleico , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Streptomyces/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética
7.
Appl Microbiol Biotechnol ; 101(6): 2427-2436, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28054175

RESUMO

Pimaricin is an important polyene antifungal antibiotic that binds ergosterol and extracts it from fungal membranes. In previous work, two pimaricin derivatives (1 and 2) with improved pharmacological activities and another derivative (3) that showed no antifungal activity were produced by the mutant strain of Streptomyces chattanoogensis, in which the P450 monooxygenase gene scnG has been inactivated. Furthermore, inactivation of the DH12 dehydratase domain of the pimaricin polyketide synthases (PKSs) resulted in specific accumulation of the undesired metabolite 3, suggesting that improvement of the corresponding dehydratase activity may reduce or eliminate the accumulation of 3. Accordingly, the DH12-KR12 didomain within the pimaricin PKS was swapped with the fully active DH11-KR11 didomain. As predicted, the mutant was not able to produce 3 but accumulated 1 and 2 in high yields. Moreover, the effect of the flanking linker regions on domain swapping was evaluated. It was found that retention of the DH12-KR12 linker regions was more critical for the processivity of hybrid PKSs. Subsequently, high-yield production of 1 or 2 was obtained by overexpressing the scnD gene and its partner scnF and by disrupting the scnD gene, respectively. To our knowledge, this is the first report on the elimination of a polyketide undesired metabolite along with overproduction of desired product by improving the catalytic efficiency of a DH domain using a domain swapping technology.


Assuntos
Antifúngicos/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Natamicina/biossíntese , Policetídeo Sintases/genética , Streptomyces/genética , Antifúngicos/química , Proteínas de Bactérias/metabolismo , Ergosterol/metabolismo , Mutação , Natamicina/química , Policetídeo Sintases/metabolismo , Domínios Proteicos , Engenharia de Proteínas , Streptomyces/metabolismo , Relação Estrutura-Atividade
8.
Appl Microbiol Biotechnol ; 101(17): 6705-6712, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28755262

RESUMO

The effects of fungal elicitor on the physicochemical and microbial responses of Streptomyces natalensis HW-2 were investigated. The results showed that the elicitor could decrease dry cell weight (DCW) by 17.7% and increase the utilization of glucose, while the curve of pH was not obviously altered. The elicitor enhanced the yield of natamycin from 1.33 to 2.49 g/L. The morphology of the colony and the mycelium treated with elicitor showed significant differences from that of control. The level of intracellular reactive oxygen species (ROS) increased to 333.8 ng/L, which was a twofold increase comparing with the control. The concentration of Ca2+ reached 421.1 nmol/L, which increased by 32.8% after the addition of the elicitor. The activities of pyruvic carboxylase and phosphoenol pyruvate carboxylase were enhanced by 27.8 and 11.9%, respectively, while citrate synthase activity decreased by 23.1% in comparison with the control.


Assuntos
Proteínas Fúngicas/farmacologia , Natamicina/biossíntese , Streptomyces/efeitos dos fármacos , Streptomyces/metabolismo , Cálcio/análise , Citrato (si)-Sintase/análise , Citrato (si)-Sintase/efeitos dos fármacos , Meios de Cultura/química , Meios de Cultura/farmacologia , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Técnicas Microbiológicas , Piruvato Carboxilase/análise , Piruvato Carboxilase/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
9.
Metab Eng ; 38: 418-426, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27746324

RESUMO

Many high-value secondary metabolites are assembled by very large multifunctional polyketide synthases or non-ribosomal peptide synthetases encoded by giant genes, for instance, natamycin production in an industrial strain of Streptomyces gilvosporeus. In this study, a large operon reporter-based selection system has been developed using the selectable marker gene neo to report the expression both of the large polyketide synthase genes and of the entire gene cluster, thereby facilitating the selection of natamycin-overproducing mutants by iterative random mutagenesis breeding. In three successive rounds of mutagenesis and selection, the natamycin titer was increased by 110%, 230%, and 340%, respectively, and the expression of the whole biosynthetic gene cluster was correspondingly increased. An additional copy of the natamycin gene cluster was found in one overproducer. These findings support the large operon reporter-based selection system as a useful tool for the improvement of industrial strains utilized in the production of polyketides and non-ribosomal peptides.


Assuntos
Genes Reporter/genética , Melhoramento Genético/métodos , Engenharia Metabólica/métodos , Natamicina/biossíntese , Óperon/genética , Policetídeo Sintases/genética , Streptomyces/fisiologia , Vias Biossintéticas/genética , Perfilação da Expressão Gênica/métodos , Análise do Fluxo Metabólico/métodos , Redes e Vias Metabólicas/genética , Família Multigênica/genética , Natamicina/isolamento & purificação , Especificidade da Espécie , Streptomyces/classificação
10.
Appl Microbiol Biotechnol ; 100(1): 61-78, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26512010

RESUMO

Pimaricin (natamycin) is a small polyene macrolide antibiotic used worldwide. This efficient antimycotic and antiprotozoal agent, produced by several soil bacterial species of the genus Streptomyces, has found application in human therapy, in the food and beverage industries and as pesticide. It displays a broad spectrum of activity, targeting ergosterol but bearing a particular mode of action different to other polyene macrolides. The biosynthesis of this only antifungal agent with a GRAS status has been thoroughly studied, which has permitted the manipulation of producers to engineer the biosynthetic gene clusters in order to generate several analogues. Regulation of its production has been largely unveiled, constituting a model for other polyenes and setting the leads for optimizing the production of these valuable compounds. This review describes and discusses the molecular genetics, uses, mode of action, analogue generation, regulation and strategies for increasing pimaricin production yields.


Assuntos
Antifúngicos/metabolismo , Vias Biossintéticas/genética , Biotecnologia/métodos , Regulação Bacteriana da Expressão Gênica , Natamicina/biossíntese , Streptomyces/genética , Streptomyces/metabolismo , Humanos
11.
Appl Microbiol Biotechnol ; 99(6): 2715-26, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25724582

RESUMO

The roles of many sigma factors are unclear in regulatory mechanism of secondary metabolism in Streptomyces. Here, we report the regulation network of a group 3 sigma factor, WhiGch, from a natamycin industrial strain Streptomyces chattanoogensis L10. WhiGch regulates the growth and morphological differentiation of S. chattanoogensis L10. The whiG ch deletion mutant decreased natamycin production by about 30 % and delayed natamycin production more than 24 h by delaying the growth. Overexpression of the whiG ch gene increased natamycin production in large scale production medium by about 26 %. WhiGch upregulated the transcription of natamycin biosynthetic gene cluster and inhibited the expression of migrastatin and jadomycin analog biosynthetic polyketide synthase genes. WhiGch positively regulated natamycin biosynthetic gene cluster by directly binding to the promoters of scnC and scnD, which were involved in natamycin biosynthesis, and these binding sites adjacent to translation start codon were determined. Thus, this paper further elucidates the high natamycin yield mechanisms of industrial strains and demonstrates that a valuable improvement in the yield of the target metabolites can be achieved through manipulating the transcription regulators.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Natamicina/biossíntese , Fator sigma/genética , Streptomyces/genética , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Sequência de Bases , Fragmentação do DNA , Fermentação , Deleção de Genes , Análise em Microsséries , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Família Multigênica , Regiões Promotoras Genéticas , Fator sigma/metabolismo , Streptomyces/metabolismo
12.
Appl Environ Microbiol ; 80(22): 6879-87, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25172865

RESUMO

Detailed mechanisms of WhiB-like (Wbl) proteins involved in antibiotic biosynthesis and morphological differentiation are poorly understood. Here, we characterize the role of WblAch, a Streptomyces chattanoogensis L10 protein belonging to this superfamily. Based on DNA microarray data and verified by real-time quantitative PCR (qRT-PCR), the expression of wblAch was shown to be positively regulated by AdpAch. Gel retardation assays and DNase I footprinting experiments showed that AdpAch has specific DNA-binding activity for the promoter region of wblAch. Gene disruption and genetic complementation revealed that WblAch acts in a positive manner to regulate natamycin production. When wblAch was overexpressed in the wild-type strain, the natamycin yield was increased by ∼30%. This provides a strategy to generate improved strains for natamycin production. Moreover, transcriptional analysis showed that the expression levels of whi genes (including whiA, whiB, whiH, and whiI) were severely depressed in the ΔwblAch mutant, suggesting that WblAch plays a part in morphological differentiation by influencing the expression of the whi genes.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Natamicina/biossíntese , Streptomyces/enzimologia , Streptomyces/crescimento & desenvolvimento , Transativadores/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Dados de Sequência Molecular , Streptomyces/genética , Transativadores/genética
13.
Appl Microbiol Biotechnol ; 98(5): 2231-41, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24413916

RESUMO

To investigate the molecular mechanisms that interplay between oxygen metabolism and secondary metabolism in Streptomyces natalensis, we compared the transcriptomes of the strains CAM.02 (ΔsodF), pimaricin under-producer phenotype, and CAM.04 (ΔahpCD), pimaricin over-producer phenotype, with that of the wild type at late exponential and stationary growth phases. Microarray data interpretation was supported by characterization of the mutant strains regarding enzymatic activities, phosphate uptake, oxygen consumption and pimaricin production.Both mutant strains presented a delay in the transcription activation of the PhoRP system and pimaricin biosynthetic gene cluster that correlated with the delayed inorganic phosphate (Pi) depletion in the medium and late onset of pimaricin production, respectively. The carbon flux of both mutants was also altered: a re-direction from glycolysis to the pentose phosphate pathway (PPP) in early exponential phase followed by a transcriptional activation of both pathways in subsequent growth phases was observed. Mutant behavior diverged at the respiratory chain/tricarboxylic acid cycle (TCA) and the branched chain amino acid (BCAA) metabolism. CAM.02 (ΔsodF) presented an impaired TCA cycle and an inhibition of the BCAA biosynthesis and degradation pathways. Conversely, CAM.04 (ΔahpCD) presented a global activation of BCAA metabolism.The results highlight the cellular NADPH/NADH ratio and the availability of biosynthetic precursors via the BCAA metabolism as the main pimaricin biosynthetic bottlenecks under oxidative stress conditions. Furthermore, new evidences are provided regarding a crosstalk between phosphate metabolism and oxidative stress in Streptomyces.


Assuntos
Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Natamicina/biossíntese , Espécies Reativas de Oxigênio/metabolismo , Streptomyces/efeitos dos fármacos , Streptomyces/metabolismo , Carbono/metabolismo , Deleção de Genes , Perfilação da Expressão Gênica , Análise do Fluxo Metabólico , Análise em Microsséries , Streptomyces/enzimologia , Streptomyces/genética
14.
J Ind Microbiol Biotechnol ; 41(1): 163-72, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24174215

RESUMO

Natamycin is an important polyene macrolide antifungal agent produced by several Streptomyces strains and is widely used as a food preservative and fungicide in food, medicinal and veterinary products. In order to increase the yield of natamycin, this study aimed at cloning and overexpressing a natamycin-positive regulator, slnM2, with different promoters in the newly isolated strain Streptomyces lydicus A02, which is capable of producing natamycin. The slnM gene in S. lydicus is highly similar to gene pimM (scnRII), the pathway-specific positive regulator of natamycin biosynthesis in S. natalensis and S. chattanoogensis, which are PAS-LuxR regulators. Three engineered strains of S. lydicus, AM01, AM02 and AM03, were generated by inserting an additional copy of slnM2 with an ermEp* promoter, inserting an additional copy of slnM2 with dual promoters, ermEp* and its own promoter, and inserting an additional copy of slnM2 with its own promoter, respectively. No obvious changes in growth were observed between the engineered and wild-type strains. However, natamycin production in the engineered strains was significantly enhanced, by 2.4-fold in strain AM01, 3.0-fold in strain AM02 and 1.9-fold in strain AM03 when compared to the strain A02 in YEME medium without sucrose. These results indicated that the ermEp* promoter was more active than the native promoter of slnM2. Overall, dual promoters displayed the highest transcription of biosynthetic genes and yield of natamycin.


Assuntos
Antifúngicos/metabolismo , Genes Bacterianos , Natamicina/biossíntese , Regiões Promotoras Genéticas , Streptomyces/genética , Antifúngicos/farmacologia , Natamicina/farmacologia , Streptomyces/metabolismo , Transcrição Gênica
15.
Appl Environ Microbiol ; 79(11): 3346-54, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23524668

RESUMO

Phosphopantetheinyl transferases (PPTases) are essential to the activities of type I/II polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) through converting acyl carrier proteins (ACPs) in PKSs and peptidyl carrier proteins (PCPs) in NRPSs from inactive apo-forms into active holo-forms, leading to biosynthesis of polyketides and nonribosomal peptides. The industrial natamycin (NTM) producer, Streptomyces chattanoogensis L10, contains two PPTases (SchPPT and SchACPS) and five PKSs. Biochemical characterization of these two PPTases shows that SchPPT catalyzes the phosphopantetheinylation of ACPs in both type I PKSs and type II PKSs, SchACPS catalyzes the phosphopantetheinylation of ACPs in type II PKSs and fatty acid synthases (FASs), and the specificity of SchPPT is possibly controlled by its C terminus. Inactivation of SchPPT in S. chattanoogensis L10 abolished production of NTM but not the spore pigment, while overexpression of the SchPPT gene not only increased NTM production by about 40% but also accelerated productions of both NTM and the spore pigment. Thus, we elucidated a comprehensive phosphopantetheinylation network of PKSs and improved polyketide production by engineering the cognate PPTase in bacteria.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Reatores Biológicos , Natamicina/biossíntese , Streptomyces/enzimologia , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Bioengenharia , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Dados de Sequência Molecular , Alinhamento de Sequência , Análise de Sequência de DNA , Streptomyces/genética
16.
Appl Microbiol Biotechnol ; 97(12): 5527-34, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23463250

RESUMO

To investigate the effect of fungal elicitors on biosynthesis of natamycin in the cultures of Streptomyces natalensis HW-2, the biomass and filtrate of the broth from Aspergillus niger AS 3.6472, Penicillium chrysogenum AS 3.5163, A. oryzae AS 3.2068, and Saccharomyces cerevisiae AS 2.2081 were used to induce natamycin production in S. natalensis HW-2. The results showed that the biomass of P. chrysogenum AS 3.5163 could enhance the yield of natamycin from 0.639 to 0.875 g l(-1). The elicitor from the fermentation broth of P. chrysogenum AS 3.5163 showed the highest inducing efficiency with the yield of natamycin enhanced from 0.632 to 1.84 g l(-1). The elicitor that was cultured for 2 days showed the strongest inducing activity during the fermentation of S. natalensis HW-2 for 24 h, and the yield of natamycin was enhanced from 0.637 to 2.12 g l(-1). The biochemical parameters were examined at the end of fermentation and the results demonstrated that both the growth of cells and the concentration of residual sugar could be influenced. The residual sugar decreased from 5.03 to 4.27 g l(-1), and the biomass decreased from 10.26 to 6.87 g l(-1). Finally, the elicitor was identified as a low molecular weight substance with a similar polarity to that of butyl alcohol by primary qualitative analysis.


Assuntos
Aspergillus/química , Meios de Cultura/química , Natamicina/biossíntese , Compostos Orgânicos/isolamento & purificação , Penicillium chrysogenum/química , Saccharomyces cerevisiae/química , Streptomyces/efeitos dos fármacos , Aspergillus/crescimento & desenvolvimento , Peso Molecular , Compostos Orgânicos/química , Penicillium chrysogenum/crescimento & desenvolvimento , Saccharomyces cerevisiae/crescimento & desenvolvimento , Streptomyces/metabolismo
17.
J Biol Chem ; 286(11): 9150-61, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21187288

RESUMO

Control of polyene macrolide production in Streptomyces natalensis is mediated by the transcriptional activator PimM. This regulator, which combines an N-terminal PAS domain with a C-terminal helix-turn-helix motif, is highly conserved among polyene biosynthetic gene clusters. PimM, truncated forms of the protein without the PAS domain (PimM(ΔPAS)), and forms containing just the DNA-binding domain (DBD) (PimM(DBD)) were overexpressed in Escherichia coli as GST-fused proteins. GST-PimM binds directly to eight promoters of the pimaricin cluster, as demonstrated by electrophoretic mobility shift assays. Assays with truncated forms of the protein revealed that the PAS domain does not mediate specificity or the distinct recognition of target genes, which rely on the DBD domain, but significantly reduces binding affinity up to 500-fold. Transcription start points were identified by 5'-rapid amplification of cDNA ends, and the binding regions of PimM(DBD) were investigated by DNase I protection studies. In all cases, binding took place covering the -35 hexamer box of each promoter, suggesting an interaction of PimM and RNA polymerase to cause transcription activation. Information content analysis of the 16 sequences protected in target promoters was used to deduce the structure of the PimM-binding site. This site displays dyad symmetry, spans 14 nucleotides, and adjusts to the consensus TVGGGAWWTCCCBA. Experimental validation of this binding site was performed by using synthetic DNA duplexes. Binding of PimM to the promoter region of one of the polyketide synthase genes from the Streptomyces nodosus amphotericin cluster containing the consensus binding site was also observed, thus proving the applicability of the findings reported here to other antifungal polyketides.


Assuntos
Genes Bacterianos/fisiologia , Natamicina/biossíntese , Polienos/metabolismo , Policetídeo Sintases/biossíntese , Elementos de Resposta/fisiologia , Streptomyces/metabolismo , Transativadores/metabolismo , Escherichia coli , Sequências Hélice-Volta-Hélice , Família Multigênica/fisiologia , Policetídeo Sintases/genética , Estrutura Terciária de Proteína , Streptomyces/genética , Transativadores/genética
18.
Microbiology (Reading) ; 157(Pt 5): 1300-1311, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21330439

RESUMO

The complete natamycin (NTM) biosynthetic gene cluster of Streptomyces chattanoogensis was cloned and confirmed by the disruption of pathway-specific activator genes. Comparative cluster analysis with its counterpart in Streptomyces natalensis revealed different cluster architecture between these two clusters. Compared with the highly conserved coding sequences, sequence variations appear to occur frequently in the intergenic regions. The evolutionary change of nucleotide sequence in the intergenic regions has given rise to different transcriptional organizations in the two clusters and resulted in altered gene regulation. These results provide insight into the evolution of antibiotic biosynthetic gene clusters. In addition, we cloned a pleitropic regulator gene, adpA(ch), in S. chattanoogensis. Using the genetic system that we developed for this strain, adpA(ch) was deleted from the genome of S. chattanoogensis. The ΔadpA(ch) mutant showed a conditionally sparse aerial mycelium formation phenotype and defects in sporulation; it also lost the ability to produce NTM and a diffusible yellow pigment normally produced by S. chattanoogensis. RT-PCR analysis revealed that transcription of adpA(ch) was constitutive in YEME liquid medium. By using rapid amplification of 5' complementary DNA ends, two transcription start sites were identified upstream of the adpA(ch) coding region. Quantitative transcriptional analysis showed that the expression level of the NTM regulatory gene scnRI decreased 20-fold in the ΔadpA(ch) mutant strain, while the transcription of the other activator gene scnRII was not significantly affected. Electrophoretic mobility shift assay (EMSA) showed that AdpA(ch) binds to its own promoter but fails to bind to the promoter region of scnRI, indicating that the control of scnRI by AdpA(ch) is exerted in an indirect way. This work not only provides a platform and a new potential target for increasing the titre of NTM by genetic manipulation, but also advances the understanding of the regulation of NTM biosynthesis.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Genes Reguladores , Natamicina/biossíntese , Streptomyces/crescimento & desenvolvimento , Streptomyces/metabolismo , Transativadores/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , Dados de Sequência Molecular , Streptomyces/genética , Transativadores/genética
19.
Curr Protein Pept Sci ; 21(5): 488-496, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31868145

RESUMO

Genetic engineering is a powerful method to improve the fermentation yield of bacterial metabolites. Since many biosynthetic mechanisms of bacterial metabolites have been unveiled, genetic engineering approaches have been applied to various issues of biosynthetic pathways, such as transcription, translation, post-translational modification, enzymes, transporters, etc. In this article, natamycin, avermectins, gentamicins, piperidamycins, and ß-valienamine have been chosen as examples to review recent progress in improving their production by genetic engineering approaches. In these cases, not only yields of target products have been increased, but also yields of by-products have been decreased, and new products have been created.


Assuntos
Acremonium/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Engenharia Genética/métodos , Micromonospora/genética , Streptomyces/genética , Acremonium/enzimologia , Proteínas de Bactérias/metabolismo , Vias Biossintéticas/genética , Cicloexenos , Fermentação , Gentamicinas/biossíntese , Hexosaminas/biossíntese , Ivermectina/análogos & derivados , Ivermectina/metabolismo , Micromonospora/enzimologia , Natamicina/biossíntese , Biossíntese de Proteínas , Streptomyces/enzimologia , Transcrição Gênica
20.
Bioresour Technol ; 273: 377-385, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30453252

RESUMO

At present, submerged fermentation (SmF) is the unique approach for natamycin production. This study aims to propose a strategy for natamycin production through solid-state fermentation (SSF). The maximum natamycin concentration (9.62 mg·gds-1) was obtained with a substrate mixture containing wheat bran, rapeseed cake, rice hull and crude glycerol in a 5 L flask at 28 °C, and the initial moisture content and inoculum size was set as 70% and 15%, individually. A 30 L scale-up fermentation showed similar parameters and produced 9.27 mg·gds-1 natamycin at the 8th day. Besides, natamycin could be continuously produced by repeated-batch fermentation for 5 cycles through SSF. Compared to SmF, SSF led to a 50.05% cost reduction of raw materials, less energy consumption and waste water discharge, which was of great significance in industrial fermentation. To our best knowledge, this is the first report on natamycin production through SSF process.


Assuntos
Fermentação , Natamicina/biossíntese , Streptomyces/metabolismo , Fibras na Dieta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA