Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 302
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Proteome Res ; 23(5): 1757-1767, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38644788

RESUMO

The American lobster, Homarus americanus, is not only of considerable economic importance but has also emerged as a premier model organism in neuroscience research. Neuropeptides, an important class of cell-to-cell signaling molecules, play crucial roles in a wide array of physiological and psychological processes. Leveraging the recently sequenced high-quality draft genome of the American lobster, our study sought to profile the neuropeptidome of this model organism. Employing advanced mass spectrometry techniques, we identified 24 neuropeptide precursors and 101 unique mature neuropeptides in Homarus americanus. Intriguingly, 67 of these neuropeptides were discovered for the first time. Our findings provide a comprehensive overview of the peptidomic attributes of the lobster's nervous system and highlight the tissue-specific distribution of these neuropeptides. Collectively, this research not only enriches our understanding of the neuronal complexities of the American lobster but also lays a foundation for future investigations into the functional roles that these peptides play in crustacean species. The mass spectrometry data have been deposited in the PRIDE repository with the identifier PXD047230.


Assuntos
Sequência de Aminoácidos , Nephropidae , Neuropeptídeos , Proteômica , Animais , Nephropidae/metabolismo , Neuropeptídeos/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/análise , Proteômica/métodos , Espectrometria de Massas , Dados de Sequência Molecular
2.
Mar Drugs ; 21(6)2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37367683

RESUMO

Shell wastes pose environmental and financial burdens to the shellfish industry. Utilizing these undervalued shells for commercial chitin production could minimize their adverse impacts while maximizing economic value. Shell chitin conventionally produced through harsh chemical processes is environmentally unfriendly and infeasible for recovering compatible proteins and minerals for value-added products. However, we recently developed a microwave-intensified biorefinery that efficiently produced chitin, proteins/peptides, and minerals from lobster shells. Lobster minerals have a calcium-rich composition and biologically originated calcium is more biofunctional for use as a functional, dietary, or nutraceutical ingredient in many commercial products. This has suggested a further investigation of lobster minerals for commercial applications. In this study, the nutritional attributes, functional properties, nutraceutical effects, and cytotoxicity of lobster minerals were analyzed using in vitro simulated gastrointestinal digestion combined with growing bone (MG-63), skin (HaCaT), and macrophage (THP-1) cells. The calcium from the lobster minerals was found to be comparable to that of a commercial calcium supplement (CCS, 139 vs. 148 mg/g). In addition, beef incorporated with lobster minerals (2%, w/w) retained water better than that of casein and commercial calcium lactate (CCL, 21.1 vs. 15.1 and 13.3%), and the lobster mineral had a considerably higher oil binding capacity than its rivals (casein and CCL, 2.5 vs. 1.5 and 1.0 mL/g). Notably, the lobster mineral and its calcium were far more soluble than the CCS (98.4 vs. 18.6% for the products and 64.0 vs. 8.5% for their calcium) while the in vitro bioavailability of lobster calcium was 5.9-fold higher compared to that of the commercial product (11.95 vs. 1.99%). Furthermore, supplementing lobster minerals in media at ratios of 15%, 25%, and 35% (v/v) when growing cells did not induce any detectable changes in cell morphology and apoptosis. However, it had significant effects on cell growth and proliferation. The responses of cells after three days of culture supplemented with the lobster minerals, compared to the CCS supplementation, were significantly better with the bone cells (MG-63) and competitively quick with the skin cells (HaCaT). The cell growth reached 49.9-61.6% for the MG-63 and 42.9-53.4% for the HaCaT. Furthermore, the MG-63 and HaCaT cells proliferated considerably after seven days of incubation, reaching 100.3% for MG-63 and 115.9% for HaCaT with a lobster mineral supplementation of 15%. Macrophages (THP-1 cells) treated for 24 h with lobster minerals at concentrations of 1.24-2.89 mg/mL had no detectable changes in cell morphology while their viability was over 82.2%, far above the cytotoxicity threshold (<70%). All these results indicate that lobster minerals could be used as a source of functional or nutraceutical calcium for commercial products.


Assuntos
Cálcio , Nephropidae , Animais , Bovinos , Cálcio/metabolismo , Nephropidae/metabolismo , Caseínas/metabolismo , Disponibilidade Biológica , Solubilidade , Minerais , Quitina/metabolismo
3.
Gen Comp Endocrinol ; 327: 114065, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35623446

RESUMO

Neuronal responses to peptide signaling are determined by the specific binding of a peptide to its receptor(s). For example, isoforms of the same peptide family can drive distinct responses in the same circuit by having different affinities for the same receptor, by having each isoform bind to a different receptor, or by a combination of these scenarios. Small changes in peptide composition can alter the binding kinetics and overall physiological response to a given peptide. In the American lobster (Homarus americanus), native isoforms of C-type allatostatins (AST-Cs) usually decrease heartbeat frequency and alter contraction force. However, one of the three AST-C isoforms, AST-C II, drives a cardiac response distinct from the response elicited by the other two. To investigate the aspects of the peptide that might be responsible for these differential responses, we altered various features of each peptide sequence. Although the presence of an amide group at the end of a peptide sequence (amidation) is often essential for determining physiological function, we demonstrate that C-terminal amidation does not dictate the AST-C response in the lobster cardiac system. However, single amino acid substitution within the consensus sequence did account for many of the differences in specific response characteristics (e.g. contraction frequency or force).


Assuntos
Nephropidae , Neuropeptídeos , Animais , Coração , Nephropidae/metabolismo , Neuropeptídeos/metabolismo , Peptídeos/metabolismo , Isoformas de Proteínas/metabolismo
4.
Rapid Commun Mass Spectrom ; 35(24): e9204, 2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-34549474

RESUMO

RATIONALE: Lipid correction models use elemental carbon-to-nitrogen ratios to estimate the effect of lipids on δ13 C values and provide a fast and inexpensive alternative to chemically removing lipids. However, the performance of these models varies, especially in whole-body invertebrate samples. The generation of tissue-specific lipid correction models for American lobsters, both an ecologically and an economically important species in eastern North America, will aid ecological research of this species and our understanding of the function of these models in invertebrates. METHOD: We determined the δ13 C and δ15 N values before and after lipid extraction in muscle and digestive glands of juvenile and adult lobster. We assessed the performance of four commonly used models (nonlinear, linear, natural logarithm (LN) and generalized linear model (GLM)) at estimating lipid-free δ13 C values based on the non-lipid-extracted δ13 C values and elemental C:N ratios. The accuracy of model predictions was tested using paired t-tests, and the performance of the different models was compared using the Akaike information criterion score. RESULTS: Lipid correction models accurately estimated post-lipid-extraction δ13 C values in both tissues. The nonlinear model was the least accurate for both tissues. In muscle, the three other models performed well, and in digestive glands, the LN model provided the most accurate estimates throughout the range of C:N values. In both tissues, the GLM estimates were not independent of the post-lipid-extraction δ13 C values, thus reducing their transferability to other datasets. CONCLUSIONS: Whereas previous work found that whole-body models poorly estimated the effect of lipids in invertebrates, we show that tissue-specific lipid correction models can generate accurate and precise estimates of lipid-free δ13 C values in lobster. We suggest that the tissue-specific logarithmic models presented here are the preferred models for accounting for the effect of lipid on lobster isotope ratios.


Assuntos
Isótopos de Carbono/química , Lipídeos/química , Nephropidae/química , Animais , Isótopos de Carbono/metabolismo , Sistema Digestório/química , Sistema Digestório/metabolismo , Metabolismo dos Lipídeos , Espectrometria de Massas , Músculos/química , Músculos/metabolismo , Nephropidae/metabolismo , Isótopos de Nitrogênio/química , Isótopos de Nitrogênio/metabolismo , Frutos do Mar/análise
5.
Int J Mol Sci ; 22(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34445418

RESUMO

Central pattern generators produce rhythmic behaviors independently of sensory input; however, their outputs can be modulated by neuropeptides, thereby allowing for functional flexibility. We investigated the effects of C-type allatostatins (AST-C) on the cardiac ganglion (CG), which is the central pattern generator that controls the heart of the American lobster, Homarus americanus, to identify the biological mechanism underlying the significant variability in individual responses to AST-C. We proposed that the presence of multiple receptors, and thus differential receptor distribution, was at least partly responsible for this observed variability. Using transcriptome mining and PCR-based cloning, we identified four AST-C receptors (ASTCRs) in the CG; we then characterized their cellular localization, binding potential, and functional activation. Only two of the four receptors, ASTCR1 and ASTCR2, were fully functional GPCRs that targeted to the cell surface and were activated by AST-C peptides in our insect cell expression system. All four, however, were amplified from CG cDNAs. Following the confirmation of ASTCR expression, we used physiological and bioinformatic techniques to correlate receptor expression with cardiac responses to AST-C across individuals. Expression of ASTCR1 in the CG showed a negative correlation with increasing contraction amplitude in response to AST-C perfusion through the lobster heart, suggesting that the differential expression of ASTCRs within the CG is partly responsible for the specific physiological response to AST-C exhibited by a given individual lobster.


Assuntos
Perfilação da Expressão Gênica/métodos , Nephropidae/genética , Neuropeptídeos/farmacologia , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo , Animais , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Sistema Cardiovascular/metabolismo , Membrana Celular/metabolismo , Clonagem Molecular , Mineração de Dados , Bases de Dados Genéticas , Regulação da Expressão Gênica/efeitos dos fármacos , Miocárdio/metabolismo , Nephropidae/efeitos dos fármacos , Nephropidae/metabolismo , Análise de Sequência de RNA , Células Sf9 , Distribuição Tecidual
6.
Fish Shellfish Immunol ; 106: 79-102, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32731012

RESUMO

The American lobster (Homarus americanus) is a commercially important crustacean with an unusual long life span up to 100 years and a comparative animal model of longevity. Therefore, research into its immune system and physiology is of considerable importance both for industry and comparative immunology studies. Peptidylarginine deiminases (PADs) are a phylogenetically conserved enzyme family that catalyses post-translational protein deimination via the conversion of arginine to citrulline. This can lead to structural and functional protein changes, sometimes contributing to protein moonlighting, in health and disease. PADs also regulate the cellular release of extracellular vesicles (EVs), which is an important part of cellular communication, both in normal physiology and in immune responses. Hitherto, studies on EVs in Crustacea are limited and neither PADs nor associated protein deimination have been studied in a Crustacean species. The current study assessed EV and deimination signatures in haemolymph of the American lobster. Lobster EVs were found to be a poly-dispersed population in the 10-500 nm size range, with the majority of smaller EVs, which fell within 22-115 nm. In lobster haemolymph, 9 key immune and metabolic proteins were identified to be post-translationally deiminated, while further 41 deiminated protein hits were identified when searching against a Crustacean database. KEGG (Kyoto encyclopedia of genes and genomes) and GO (gene ontology) enrichment analysis of these deiminated proteins revealed KEGG and GO pathways relating to a number of immune, including anti-pathogenic (viral, bacterial, fungal) and host-pathogen interactions, as well as metabolic pathways, regulation of vesicle and exosome release, mitochondrial function, ATP generation, gene regulation, telomerase homeostasis and developmental processes. The characterisation of EVs, and post-translational deimination signatures, reported in lobster in the current study, and the first time in Crustacea, provides insights into protein moonlighting functions of both species-specific and phylogenetically conserved proteins and EV-mediated communication in this long-lived crustacean. The current study furthermore lays foundation for novel biomarker discovery for lobster aquaculture.


Assuntos
Proteínas de Artrópodes/imunologia , Citrulinação/imunologia , Vesículas Extracelulares/imunologia , Nephropidae/imunologia , Processamento de Proteína Pós-Traducional/imunologia , Animais , Vesículas Extracelulares/metabolismo , Hemolinfa/imunologia , Nephropidae/metabolismo
7.
BMC Genomics ; 20(1): 335, 2019 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-31053062

RESUMO

BACKGROUND: The recently published complete mitogenome of the European lobster (Homarus gammarus) that was generated using long-range PCR exhibits unusual gene composition (missing nad2) and gene rearrangements among decapod crustaceans with strong implications in crustacean phylogenetics. Such atypical mitochondrial features will benefit greatly from validation with emerging long read sequencing technologies such as Oxford Nanopore that can more accurately identify structural variation. RESULTS: We re-sequenced the H. gammarus mitogenome on an Oxford Nanopore Minion flowcell and performed a long-read only assembly, generating a complete mitogenome assembly for H. gammarus. In contrast to previous reporting, we found an intact mitochondrial nad2 gene in the H. gammarus mitogenome and showed that its gene organization is broadly similar to that of the American lobster (H. americanus) except for the presence of a large tandemly duplicated region with evidence of pseudogenization in one of each duplicated protein-coding genes. CONCLUSIONS: Using the European lobster as an example, we demonstrate the value of Oxford Nanopore long read technology in resolving problematic mitogenome assemblies. The increasing accessibility of Oxford Nanopore technology will make it an attractive and useful tool for evolutionary biologists to verify new and existing unusual mitochondrial gene rearrangements recovered using first and second generation sequencing technologies, particularly those used to make phylogenetic inferences of evolutionary scenarios.


Assuntos
Evolução Biológica , Biologia Computacional/métodos , Duplicação Gênica , Genoma Mitocondrial , Proteínas Mitocondriais/genética , Nanoporos , Nephropidae/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Sequenciamento de Nucleotídeos em Larga Escala , Família Multigênica , Nephropidae/metabolismo , Filogenia , Análise de Sequência de DNA , Homologia de Sequência
8.
J Neurophysiol ; 119(5): 1767-1781, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29384453

RESUMO

C-type allatostatins (AST-Cs) are pleiotropic neuropeptides that are broadly conserved within arthropods; the presence of three AST-C isoforms, encoded by paralog genes, is common. However, these peptides are hypothesized to act through a single receptor, thereby exerting similar bioactivities within each species. We investigated this hypothesis in the American lobster, Homarus americanus, mapping the distributions of AST-C isoforms within relevant regions of the nervous system and digestive tract, and comparing their modulatory influences on the cardiac neuromuscular system. Immunohistochemistry showed that in the pericardial organ, a neuroendocrine release site, AST-C I and/or III and AST-C II are contained within distinct populations of release terminals. Moreover, AST-C I/III-like immunoreactivity was seen in midgut epithelial endocrine cells and the cardiac ganglion (CG), whereas AST-C II-like immunoreactivity was not seen in these tissues. These data suggest that AST-C I and/or III can modulate the CG both locally and hormonally; AST-C II likely acts on the CG solely as a hormonal modulator. Physiological studies demonstrated that all three AST-C isoforms can exert differential effects, including both increases and decreases, on contraction amplitude and frequency when perfused through the heart. However, in contrast to many state-dependent modulatory changes, the changes in contraction amplitude and frequency elicited by the AST-Cs were not functions of the baseline parameters. The responses to AST-C I and III, neither of which is COOH-terminally amidated, are more similar to one another than they are to the responses elicited by AST-C II, which is COOH-terminally amidated. These results suggest that the three AST-C isoforms are differentially distributed in the lobster nervous system/midgut and can elicit distinct behaviors from the cardiac neuromuscular system, with particular structural features, e.g., COOH-terminal amidation, likely important in determining the effects of the peptides. NEW & NOTEWORTHY Multiple isoforms of many peptides exert similar effects on neural circuits. In this study we show that each of the three isoforms of C-type allatostatin (AST-C) can exert differential effects, including both increases and decreases in contraction amplitude and frequency, on the lobster cardiac neuromuscular system. The distribution of effects elicited by the nonamidated isoforms AST-C I and III are more similar to one another than to the effects of the amidated AST-C II.


Assuntos
Geradores de Padrão Central/metabolismo , Gânglios dos Invertebrados/fisiologia , Nephropidae/fisiologia , Neuropeptídeos/metabolismo , Pericárdio/fisiologia , Animais , Gânglios dos Invertebrados/metabolismo , Nephropidae/metabolismo , Pericárdio/metabolismo , Isoformas de Proteínas
9.
Anal Chem ; 89(20): 11129-11134, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28877433

RESUMO

A new method has been developed to determine oxidation products of three chemical warfare agent (CWA) related phenylarsenic compounds from marine biota samples by a liquid chromatography-heated electrospray ionization/tandem mass spectrometry (LC-HESI/MS/MS). The target chemicals were oxidation products of Adamsite (DM[ox]), Clark I (DPA[ox]), and triphenylarsine (TPA[ox]). Method was validated within the concentration range of 1-5, 0.2-5, and 0.2-5 ng/g for DM[ox], DPA[ox], and TPA[ox], respectively. The method was linear, precise and accurate. Limits of quantification (LOQ) were 2.0, 1.3, and 2.1 ng/g for DM[ox], DPA[ox], and TPA[ox], respectively. A total of ten fish samples and one lobster sample collected from near Swedish coast, Måseskär dumpsite were analyzed. Trace concentrations below LOQ values were detected in three samples and the elemental composition of oxidized form of Clark I and/or II was confirmed by LC-HESI/HRMS. To our knowledge, this is the first study that provides the presence of CWA related chemicals in marine biota samples.


Assuntos
Arsenicais/análise , Substâncias para a Guerra Química/análise , Espectrometria de Massas por Ionização por Electrospray , Animais , Arsenicais/metabolismo , Biota , Substâncias para a Guerra Química/metabolismo , Cromatografia Líquida de Alta Pressão , Peixes/metabolismo , Limite de Detecção , Nephropidae/metabolismo
10.
Gen Comp Endocrinol ; 243: 96-119, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27823957

RESUMO

In silico transcriptome mining is a powerful tool for crustacean peptidome prediction. Using homology-based BLAST searches and a simple bioinformatics workflow, large peptidomes have recently been predicted for a variety of crustaceans, including the lobster, Homarus americanus. Interestingly, no in silico studies have been conducted on the eyestalk ganglia (lamina ganglionaris, medulla externa, medulla interna and medulla terminalis) of the lobster, although the eyestalk is the location of a major neuroendocrine complex, i.e., the X-organ-sinus gland system. Here, an H. americanus eyestalk ganglia-specific transcriptome was produced using the de novo assembler Trinity. This transcriptome was generated from 130,973,220 Illumina reads and consists of 147,542 unique contigs. Eighty-nine neuropeptide-encoding transcripts were identified from this dataset, allowing for the deduction of 62 distinct pre/preprohormones. Two hundred sixty-two neuropeptides were predicted from this set of precursors; the peptides include members of the adipokinetic hormone-corazonin-like peptide, allatostatin A, allatostatin B, allatostatin C, bursicon α, CCHamide, corazonin, crustacean cardioactive peptide, crustacean hyperglycemic hormone (CHH), CHH precursor-related peptide, diuretic hormone 31, diuretic hormone 44, eclosion hormone, elevenin, FMRFamide-like peptide, glycoprotein hormone α2, glycoprotein hormone ß5, GSEFLamide, intocin, leucokinin, molt-inhibiting hormone, myosuppressin, neuroparsin, neuropeptide F, orcokinin, orcomyotropin, pigment dispersing hormone, proctolin, pyrokinin, red pigment concentrating hormone, RYamide, short neuropeptide F, SIFamide, sulfakinin, tachykinin-related peptide and trissin families. The predicted peptides expand the H. americanus eyestalk ganglia neuropeptidome approximately 7-fold, and include 78 peptides new to the lobster. The transcriptome and predicted neuropeptidome described here provide new resources for investigating peptidergic signaling within/from the lobster eyestalk ganglia.


Assuntos
Biologia Computacional/métodos , Olho/metabolismo , Gânglios/metabolismo , Nephropidae/genética , Proteínas do Tecido Nervoso/genética , Neuropeptídeos/análise , Transcriptoma , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Olho/crescimento & desenvolvimento , Gânglios/crescimento & desenvolvimento , Nephropidae/crescimento & desenvolvimento , Nephropidae/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteoma/análise , Homologia de Sequência de Aminoácidos
11.
Artigo em Inglês | MEDLINE | ID: mdl-26691956

RESUMO

Fluxes of NH4(+) (acid) and HCO3(-) (base), and whole body calcium content were measured in European lobster (Homarus gammarus) during intermoult (megalopae stage), and during the first 24h for postmoult juveniles under control (~2000 µeq/L) and low seawater alkalinity (~830 µeq/L). Immediately after moulting, animals lost 45% of the total body calcium via the shed exoskeleton (exuvia), and only 11% was retained in the uncalcified body. At 24h postmoult, exoskeleton calcium increased to ~46% of the intermoult stage. Ammonia excretion was not affected by seawater alkalinity. After moulting, bicarbonate excretion was immediately reversed from excretion to uptake (~4-6 fold higher rates than intermoult) over the whole 24h postmoult period, peaking at 3-6h. These data suggest that exoskeleton calcification is not completed by 24h postmoult. Low seawater alkalinity reduced postmoult bicarbonate uptake by 29% on average. Net acid-base flux (equivalent to net base uptake) followed the same pattern as HCO3(-) fluxes, and was 22% lower in low alkalinity seawater over the whole 24h postmoult period. The common occurrence of low alkalinity in intensive aquaculture systems may slow postmoult calcification in juvenile H. gammarus, increasing the risk of mortalities through cannibalism.


Assuntos
Equilíbrio Ácido-Base/fisiologia , Álcalis/metabolismo , Cálcio/metabolismo , Muda/fisiologia , Nephropidae/metabolismo , Nephropidae/fisiologia , Amônia/metabolismo , Animais , Bicarbonatos/metabolismo , Água do Mar
12.
Sci Rep ; 14(1): 17304, 2024 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-39068177

RESUMO

In contrast to abiotically formed carbonates, biogenetic carbonates have been observed to be nanocomposite, organo-mineral structures, the basic build-blocks of which are particles of quasi-uniform size (10-100 nm) organized into complex higher-order hierarchical structures, typically with highly controlled crystal-axis alignments. Some of these characteristics serve as criteria for inferring a biological origin and the state of preservation of fossil carbonate materials, and to determine whether the biomineralization process was biologically induced or controlled. Here we show that a calcium storage structure formed by the American lobster, a gastrolith initially consisting of amorphous calcium carbonate (ACC) and amorphous calcium phosphate (ACP), post-mortem can crystallize into (thus secondary) calcite with structural properties strongly influenced by the inherited organic matrix. This secondary calcite meets many structural criteria for biominerals (thus called the biomorphic calcite), but differs in trace element distributions (e.g., P and Mg). Such observations refine the capability to determine whether a fossil carbonates can be attributed to biogenic processes, with implications for the record of life on Earth and other terrestrial planets.


Assuntos
Carbonato de Cálcio , Cristalização , Fósseis , Carbonato de Cálcio/química , Carbonato de Cálcio/metabolismo , Animais , Fosfatos de Cálcio/química , Fosfatos de Cálcio/metabolismo , Nephropidae/metabolismo , Nephropidae/química , Biomineralização
13.
Sci Rep ; 14(1): 8017, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580836

RESUMO

Cyanobacteria produce neurotoxic non-protein amino acids (NPAAs) that accumulate in ecosystems and food webs. American lobsters (Homarus americanus H. Milne-Edwards) are one of the most valuable seafood industries in Canada with exports valued at > $2 billion. Two previous studies have assessed the occurrence of ß-N-methylamino-L-alanine (BMAA) in a small number of lobster tissues but a complete study has not previously been undertaken. We measured NPAAs in eyeballs, brain, legs, claws, tails, and eggs of 4 lobsters per year for the 2021 and 2022 harvests. Our study included 4 male and 4 female lobsters. We detected BMAA and its isomers, N-(2-aminoethyl)glycine (AEG), 2,4-diaminobutyric acid (DAB) and ß-aminomethyl-L-alanine (BAMA) by a fully validated reverse phase chromatography-tandem mass spectrometry method. We quantified BMAA, DAB, AEG and BAMA in all of the lobster tissues. Our quantification data varied by individual lobster, sex and collection year. Significantly more BMAA was quantified in lobsters harvested in 2021 than 2022. Interestingly, more BAMA was quantified in lobsters harvested in 2022 than 2021. Monitoring of lobster harvests for cyanobacterial neurotoxins when harmful algal bloom events occur could mitigate risks to human health.


Assuntos
Diamino Aminoácidos , Decápodes , Síndromes Neurotóxicas , Animais , Masculino , Feminino , Humanos , Nephropidae/metabolismo , Ecossistema , Neurotoxinas/toxicidade , Diamino Aminoácidos/metabolismo , Alimentos Marinhos/análise , Decápodes/metabolismo , beta-Alanina
14.
Arch Biochem Biophys ; 536(1): 38-45, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23707758

RESUMO

Two distinct isoforms of the Ca-dependent actin filament severing protein gelsolin were identified in cross-striated muscles of the American lobster. The variants (termed LG1 and LG2) differ by an extension of 18 AA at the C-terminus of LG1, and by two substitutions at AA735 and AA736, the two C-terminal amino acids of LG2. Functional comparison of the isolated and purified proteins revealed gelsolin-typical properties for both with differences in Ca(2+)-sensitivity, LG2 being activated at significant lower Ca-concentration than LG1: Half maximal activation for both filament severing and G-actin binding was ∼4×10(-7)M Ca(2+) for LG2 vs. ∼2×10(-6)M Ca(2+) for LG1. This indicates a differential activation for the two isoproteins in vivo where they are present in almost equal amounts in the muscle cell. Structure prediction modeling on the basis of the known structure of mammalian gelsolin shows that LG2 lacks the C-terminal alpha-helix which is involved in contact formation between domains G6 and G2. In both mammalian gelsolin and LG1, this "latch bridge" is assumed to play a critical role in Ca(2+)-activation by keeping gelsolin in a closed, inactive conformation at low [Ca(2+)]. In LG2, the reduced contact between G6 and G2 may be responsible for its activation at low Ca(2+)-concentration.


Assuntos
Proteínas de Artrópodes/análise , Proteínas de Artrópodes/metabolismo , Cálcio/metabolismo , Gelsolina/análise , Gelsolina/metabolismo , Nephropidae/metabolismo , Actinas/análise , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/genética , Gelsolina/genética , Modelos Moleculares , Dados de Sequência Molecular , Músculo Estriado/química , Músculo Estriado/metabolismo , Nephropidae/química , Nephropidae/genética , Conformação Proteica , Isoformas de Proteínas/análise , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Secundária de Proteína , RNA Mensageiro/genética
15.
Vet Pathol ; 50(3): 451-6, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22566215

RESUMO

An unusually "lumpy" lobster, Homarus americanus, was presented to the Atlantic Veterinary College Lobster Science Centre for evaluation. The lobster was weak with numerous pale, raised, and flat areas (diameter, 3-15 mm) on the exoskeleton, some of which were ulcerated. On postmortem examination, the pale areas corresponded to accumulations of viscous to free-flowing white material, which was found in only the subcuticular connective tissues. No internal organs were affected. Direct light examination of nonstained impression smears of the material showed abundant crystals resembling uric acid, amorphous urates, and sodium urate, which were readily soluble in 1 M potassium hydroxide. Wright-Giemsa stained imprints showed numerous fine, rounded, nonstaining granules free in the background and within individual round cells. Fourier-transformed infrared spectroscopy confirmed the presence of urates or mixed urate salts. Hemolymph plasma urea (1.7 mmol/liter) and uric acid (287 µmol/liter) concentrations were slightly higher than those seen with 36-hour emersion. Histologic sections showed aggregates of vacuolated mononuclear cells in the loose subcuticular connective tissue occasionally infiltrating between underlying muscle fibers. Grossly visible urate deposits are occasionally documented in land crabs and rarely reported in the blue crab; none, however, are associated with deformation of the cuticle. Possible etiologies include increased uric acid intake or production or decreased excretion. Anecdotal reports of similarly affected lobsters have been received but are intermittent and undocumented.


Assuntos
Nephropidae/metabolismo , Ácido Úrico/metabolismo , Animais , Tecido Conjuntivo/patologia , Eutanásia Animal , Evolução Fatal , Feminino , Hemolinfa/metabolismo , Masculino , Nova Escócia , Concentração Osmolar , Valores de Referência , Espectroscopia de Infravermelho com Transformada de Fourier/veterinária , Ureia/análise , Ureia/metabolismo , Ácido Úrico/análise
16.
Artigo em Inglês | MEDLINE | ID: mdl-23811045

RESUMO

How animals manage time and expend energy has implications for survivorship. Being able to measure key metabolic costs of animals under natural conditions is therefore an important tool in behavioral ecology. One method for estimating activity-specific metabolic rate is via derived measures of acceleration, often 'overall dynamic body acceleration' (ODBA), recorded by an instrumented acceleration logger. ODBA has been shown to correlate well with rate of oxygen consumption (V˙o2) in a range of species during activity in the laboratory. This study devised a method for attaching acceleration loggers to decapod crustaceans and then correlated ODBA against concurrent respirometry readings to assess accelerometry as a proxy for activity-specific energy expenditure in a model species, the American lobster Homarus americanus. Where the instrumented animals exhibited a sufficient range of activity levels, positive linear relationships were found between V˙o2 and ODBA over 20min periods at a range of ambient temperatures (6, 13 and 20°C). Mixed effect linear models based on these data and morphometrics provided reasonably strong predictive power for estimating activity-specific V˙o2 from ODBA. These V˙o2-ODBA calibrations demonstrate the potential of accelerometry as an effective predictor of behavior-specific metabolic rate of crustaceans in the wild during periods of activity.


Assuntos
Metabolismo Energético , Atividade Motora , Nephropidae/metabolismo , Aceleração , Animais , Feminino , Locomoção , Masculino , Nephropidae/crescimento & desenvolvimento , Consumo de Oxigênio
17.
Artigo em Inglês | MEDLINE | ID: mdl-23916818

RESUMO

Meal size and animal size are important factors affecting the characteristics of the specific dynamic action (SDA) response across a variety of taxa. The effects of these two variables on the SDA of decapod crustaceans are based on just a couple of articles, and are not wholly consistent with the responses reported for other aquatic ectotherms. Therefore, the effects of meal size and animal size on the characteristics of SDA response were investigated in a variety of decapod crustaceans from different families. A 6 fold increase in meal size (0.5%-3% body mass) resulted a pronounced increase in the duration of increased oxygen consumption, resulting in an increase in the SDA of Callinectes sapidus, Cancer gracilis, Hemigrapsus nudus, Homarus americanus, Pugettia producta and Procambarus clarkii. Unlike many other aquatic ectotherms a substantial increase between meal sizes was required, with meal size close to their upper feeding limit (3% body mass), before changes were evident. In many organisms increases in both duration and scope contribute to the overall SDA, here changes in scope as a function of meal size were weak, suggesting that a similar amount of energy is required to upregulate gastric processes, regardless of meal size. The SDA characteristics were less likely to be influenced by the size of the animal, and there was no difference in the SDA (kJ) as a function of size in H. americanus or Cancer irroratus when analysed as mass specific values. In several fish species characteristics of the SDA response are more closely related to the transit times of food, rather than the size of a meal. To determine if a similar trend occurred in crustaceans, the transit rates of different sized meals were followed through the digestive system using a fluoroscope. Although there was a trend towards larger meals taking longer to pass through the gut, this was only statistically significant for P. clarkii. There were some changes in transit times as a function of animal size. The foregut clearance times for Cancer magister increased with increasing body size, while smaller Carcinus maenas cleared the hindgut region at a faster rate than larger individuals. Unlike fish there was no clear relationship between transit rates and any of the SDA characteristics. While the fluoroscopy method is useful for assessing foregut activity and food passage, it is limited when inferring connections between nutrient assimilation and post-absorptive processes in crustaceans. Therefore, at least with respect to meal size, transit rates do not make a good proxy for determining the SDA characteristics in crustaceans.


Assuntos
Tamanho Corporal/fisiologia , Braquiúros/metabolismo , Comportamento Alimentar , Trato Gastrointestinal/fisiologia , Animais , Ingestão de Energia , Metabolismo Energético , Trânsito Gastrointestinal , Nephropidae/metabolismo , Nephropidae/microbiologia , Consumo de Oxigênio , Período Pós-Prandial , Especificidade da Espécie
18.
Artigo em Inglês | MEDLINE | ID: mdl-22526113

RESUMO

Previous in vitro and in vivo studies showed that the frequency of rhythmic pyloric network activity in the lobster is modulated directly by oxygen partial pressure (PO(2)). We have extended these results by (1) increasing the period of exposure to low PO(2) and by (2) testing the sensitivity of the pyloric network to changes in PO(2) that are within the narrow range normally experienced by the lobster (1 to 6 kPa). We found that the pyloric network rhythm was indeed altered by changes in PO(2) within the range typically observed in vivo. Furthermore, a previous study showed that the lateral pyloric constrictor motor neuron (LP) contributes to the O(2) sensitivity of the pyloric network. Here, we expanded on this idea by testing the hypothesis that pyloric pacemaker neurons also contribute to pyloric O(2) sensitivity. A 2-h exposure to 1 kPa PO(2), which was twice the period used previously, decreased the frequency of an isolated group of pacemaker neurons, suggesting that changes in the rhythmogenic properties of these cells contribute to pyloric O(2) sensitivity during long-term near-anaerobic (anaerobic threshold, 0.7-1.2 kPa) conditions.


Assuntos
Limiar Anaeróbio , Relógios Biológicos , Sistema Digestório/inervação , Nephropidae/metabolismo , Neurônios/metabolismo , Oxigênio/metabolismo , Periodicidade , Potenciais de Ação , Animais , Nephropidae/anatomia & histologia , Rede Nervosa/metabolismo , Fatores de Tempo
19.
J Exp Biol ; 215(Pt 13): 2308-18, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22675192

RESUMO

Although the global effects of many modulators on pattern generators are relatively consistent among preparations, modulators can induce different alterations in different preparations. We examined the mechanisms that underlie such variability in the modulatory effects of the peptide C-type allatostatin (C-AST; pQIRYHQCYFNPISCF) on the cardiac neuromuscular system of the lobster Homarus americanus. Perfusion of C-AST through the semi-intact heart consistently decreased the frequency of ongoing contractions. However, the effect of C-AST on contraction amplitude varied between preparations, decreasing in some preparations and increasing in others. To investigate this variable effect, we examined the effects of C-AST both peripherally and centrally. When contractions of the myocardium were elicited by controlled stimuli, C-AST did not alter heart contraction at the periphery (myocardium or neuromuscular junction) in any hearts. However, when applied either to the semi-intact heart or to the cardiac ganglion (CG) isolated from hearts that responded to C-AST with increased contraction force, C-AST increased both motor neuron burst duration and the number of spikes per burst by about 25%. In contrast, CG output was increased only marginally in hearts that responded to C-AST with a decrease in contraction amplitude, suggesting that the decrease in amplitude in those preparations resulted from decreased peripheral facilitation. Our data suggest that the differential effects of a single peptide on the cardiac neuromuscular system are due solely to differential effects of the peptide on the pattern generator; the extent to which the peptide induces increased burst duration is crucial in determining its overall effect on the system.


Assuntos
Nephropidae/fisiologia , Neuropeptídeos/metabolismo , Sequência de Aminoácidos , Animais , Feminino , Masculino , Dados de Sequência Molecular , Contração Miocárdica , Miocárdio/metabolismo , Nephropidae/metabolismo , Neuropeptídeos/química
20.
Gen Comp Endocrinol ; 175(2): 259-69, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22137909

RESUMO

Farnesoic acid (FA) and methyl farnesoate (MF) are juvenile hormone-related compounds secreted by the mandibular organ (MO) of crustaceans and play an important role in stimulation of ovarian maturation. To better understand how the MO activity influences female reproduction by secretion of FA and MF, the biosynthesis and release of these two compounds were measured in vitro by the incorporation of l-[(3)H-methyl]methionine into MF and [2-(14)C]acetate into FA by the MO of Homarus americanus. The production of FA is 7.5 times that of MF, and most FA and MF synthesized remained within the gland, and was not released into the surrounding medium. Most FA and MF were synthesized in the anterior fan-fold region of the MO. The rates of biosynthesis of FA and MF were stage-related, with maximal production occurring during secondary vitellogenesis (i.e. stages 4 and 5). A potential juvenoid receptor, retinoid X receptor (RXR), HaRXR, was characterized using PCR cloning techniques. HaRXR belongs to the nuclear hormone receptor superfamily and its deduced amino acid sequence shares a high homology to other RXRs of crustaceans, insects, and vertebrates. Transcripts of HaRXR can be detected in many tissues, and significant high expression level was detected in the MO, especially in the anterior fan-fold region. Expression of HaRXR was also related to reproductive stage, and maximal level of expression was observed at stage 4, in which secondary vitellogenesis is occurring. Changes in transcript level of HaRXR and the rates of FA/MF biosynthesis in the female reproductive cycle indicate that HaRXR and FA/MF may play important roles in crustacean reproduction.


Assuntos
Ácidos Graxos Insaturados/metabolismo , Nephropidae/metabolismo , Receptores X de Retinoides/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Ácidos Graxos Insaturados/biossíntese , Feminino , Dados de Sequência Molecular , Nephropidae/genética , Nephropidae/fisiologia , Ovário/crescimento & desenvolvimento , RNA Mensageiro/metabolismo , Reprodução , Receptores X de Retinoides/química , Receptores X de Retinoides/genética , Alinhamento de Sequência , Análise de Sequência de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA