Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 332
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 44(33)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-38937103

RESUMO

The encoding of acoustic stimuli requires precise neuron timing. Auditory neurons in the cochlear nucleus (CN) and brainstem are well suited for accurate analysis of fast acoustic signals, given their physiological specializations of fast membrane time constants, fast axonal conduction, and reliable synaptic transmission. The medial olivocochlear (MOC) neurons that provide efferent inhibition of the cochlea reside in the ventral brainstem and participate in these fast neural circuits. However, their modulation of cochlear function occurs over time scales of a slower nature. This suggests the presence of mechanisms that reduce MOC inhibition of cochlear function. To determine how monaural excitatory and inhibitory synaptic inputs integrate to affect the timing of MOC neuron activity, we developed a novel in vitro slice preparation ("wedge-slice"). The wedge-slice maintains the ascending auditory nerve root, the entire CN and projecting axons, while preserving the ability to perform visually guided patch-clamp electrophysiology recordings from genetically identified MOC neurons. The "in vivo-like" timing of the wedge-slice demonstrates that the inhibitory pathway accelerates relative to the excitatory pathway when the ascending circuit is intact, and the CN portion of the inhibitory circuit is precise enough to compensate for reduced precision in later synapses. When combined with machine learning PSC analysis and computational modeling, we demonstrate a larger suppression of MOC neuron activity when the inhibition occurs with in vivo-like timing. This delay of MOC activity may ensure that the MOC system is only engaged by sustained background sounds, preventing a maladaptive hypersuppression of cochlear activity.


Assuntos
Vias Auditivas , Núcleo Coclear , Inibição Neural , Neurônios Eferentes , Animais , Camundongos , Núcleo Coclear/fisiologia , Núcleo Coclear/citologia , Inibição Neural/fisiologia , Neurônios Eferentes/fisiologia , Neurônios Eferentes/efeitos dos fármacos , Vias Auditivas/fisiologia , Feminino , Masculino , Nervo Coclear/fisiologia , Técnicas de Patch-Clamp
2.
J Neurophysiol ; 126(2): 668-679, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34259043

RESUMO

Activation of renal sensory nerves by chemo- and mechanosensitive stimuli produces changes in efferent sympathetic nerve activity (SNA) and arterial blood pressure (ABP). Anesthesia and sex influence autonomic function and cardiovascular hemodynamics, but it is unclear to what extent anesthesia and sex impact SNA and ABP responses to renal sensory stimuli. We measured renal, splanchnic, and lumbar SNA and ABP in male and female Sprague-Dawley rats during contralateral renal infusion of capsaicin and bradykinin or during elevation in renal pelvic pressure. Responses were evaluated with a decerebrate preparation or Inactin, urethane, or isoflurane anesthesia. Intrarenal arterial infusion of capsaicin (0.1-30.0 µM) increased renal SNA, splanchnic SNA, or ABP but decreased lumbar SNA in the Inactin group. Intrarenal arterial infusion of bradykinin (0.1-30.0 µM) increased renal SNA, splanchnic SNA, and ABP but decreased lumbar SNA in the Inactin group. Elevated renal pelvic pressure (0-20 mmHg, 30 s) significantly increased renal SNA and splanchnic SNA but not lumbar SNA in the Inactin group. In marked contrast, SNA and ABP responses to every renal stimulus were severely blunted in the urethane and decerebrate groups and absent in the isoflurane group. In the Inactin group, the magnitude of SNA responses to chemo- and mechanosensory stimuli were not different between male and female rats. Thus, chemo- and mechanosensitive stimuli produce differential changes in renal, splanchnic, and lumbar SNA. Experimentally, future investigations should consider Inactin anesthesia to examine sympathetic and hemodynamic responses to renal sensory stimuli.NEW & NOTEWORTHY The findings highlight the impact of anesthesia, and to a lesser extent sex, on sympathetic efferent and hemodynamic responses to chemosensory and mechanosensory renal stimuli. Sympathetic nerve activity (SNA) and arterial blood pressure (ABP) responses were present in Inactin-anesthetized rats but largely absent in decerebrate, isoflurane, or urethane preparations. Renal chemosensory stimuli differentially changed SNA: renal and splanchnic SNA increased, but lumbar SNA decreased. Future investigations should consider Inactin anesthesia to study SNA and hemodynamic responses to renal sensory nerve activation.


Assuntos
Anestésicos Gerais/farmacologia , Hemodinâmica , Rim/inervação , Neurônios Eferentes/fisiologia , Sistema Nervoso Simpático/fisiologia , Animais , Capsaicina/farmacologia , Feminino , Isoflurano/farmacologia , Rim/efeitos dos fármacos , Rim/fisiologia , Masculino , Neurônios Eferentes/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Fármacos do Sistema Sensorial/farmacologia , Fatores Sexuais , Sistema Nervoso Simpático/efeitos dos fármacos , Tiopental/análogos & derivados , Tiopental/farmacologia , Tato , Uretana/farmacologia
3.
J Neurophysiol ; 124(5): 1377-1387, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32845208

RESUMO

Olivocochlear neurons make temporary cholinergic synapses on inner hair cells of the rodent cochlea in the first 2 to 3 wk after birth. Repetitive stimulation of these efferent neurons causes facilitation of evoked release and increased spontaneous release that continues for seconds to minutes. Presynaptic nicotinic acetylcholine receptors (nAChRs) are known to modulate neurotransmitter release from brain neurons. The present study explores the hypothesis that presynaptic nAChRs help to increase spontaneous release from efferent terminals on cochlear hair cells. Direct application of nicotine (which does not activate the hair cells' α9α10-containing nAChRs) produces sustained efferent transmitter release, implicating presynaptic nAChRs in this response. The effect of nicotine was reduced by application of ryanodine that reduces release of calcium from intraterminal stores.NEW & NOTEWORTHY Sensory organs exhibit spontaneous activity before the onset of response to external stimuli. Such activity in the cochlea is subject to modulation by cholinergic efferent neurons that directly inhibit sensory hair cells (inner hair cells). Those efferent neurons are themselves subject to various modulatory mechanisms. One such mechanism is positive feedback by released acetylcholine onto presynaptic nicotinic acetylcholine receptors causing further release of acetylcholine.


Assuntos
Células Ciliadas Auditivas Internas/fisiologia , Nicotina/administração & dosagem , Receptores Nicotínicos/fisiologia , Animais , Células Cultivadas , Feminino , Células Ciliadas Auditivas Internas/efeitos dos fármacos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Neurônios Eferentes/efeitos dos fármacos , Neurônios Eferentes/fisiologia
4.
J Neurosci ; 37(7): 1873-1887, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28093476

RESUMO

Stimulation of vestibular efferent neurons excites calyx and dimorphic (CD) afferents. This excitation consists of fast and slow components that differ >100-fold in activation kinetics and response duration. In the turtle, efferent-mediated fast excitation arises in CD afferents when the predominant efferent neurotransmitter acetylcholine (ACh) activates calyceal nicotinic ACh receptors (nAChRs); however, it is unclear whether the accompanying efferent-mediated slow excitation is also attributed to cholinergic mechanisms. To identify synaptic processes underlying efferent-mediated slow excitation, we recorded from CD afferents innervating the turtle posterior crista during electrical stimulation of efferent neurons, in combination with pharmacological probes and mechanical stimulation. Efferent-mediated slow excitation was unaffected by nAChR compounds that block efferent-mediated fast excitation, but were mimicked by muscarine and antagonized by atropine, indicating that it requires ACh and muscarinic ACh receptor (mAChR) activation. Efferent-mediated slow excitation or muscarine application enhanced the sensitivity of CD afferents to mechanical stimulation, suggesting that mAChR activation increases afferent input impedance by closing calyceal potassium channels. These observations were consistent with suppression of a muscarinic-sensitive K+-current, or M-current. Immunohistochemistry for putative M-current candidates suggested that turtle CD afferents express KCNQ3, KCNQ4, and ERG1-3 potassium channel subunits. KCNQ channels were favored as application of the selective antagonist XE991 mimicked and occluded efferent-mediated slow excitation in CD afferents. These data highlight an efferent-mediated mechanism for enhancing afferent sensitivity. They further suggest that the clinical effectiveness of mAChR antagonists in treating balance disorders may also target synaptic mechanisms in the vestibular periphery, and that KCNQ channel modulators might offer similar therapeutic value.SIGNIFICANCE STATEMENT Targeting the efferent vestibular system (EVS) pharmacologically might prove useful in ameliorating some forms of vestibular dysfunction by modifying ongoing primary vestibular input. EVS activation engages several kinetically distinct synaptic processes that profoundly alter the discharge rate and sensitivity of first-order vestibular neurons. Efferent-mediated slow excitation of vestibular afferents is of considerable interest given its ability to elevate afferent activity over an extended time course. We demonstrate for the first time that efferent-mediated slow excitation of vestibular afferents is mediated by muscarinic acetylcholine receptor (mAChR) activation and the subsequent closure of KCNQ potassium channels. The clinical effectiveness of some anti-mAChR drugs in treating motion sickness suggest that we may, in fact, already be targeting the peripheral EVS.


Assuntos
Colinérgicos/farmacologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Neurônios Aferentes/fisiologia , Neurônios Eferentes/fisiologia , Receptores Muscarínicos/metabolismo , Transmissão Sináptica/fisiologia , Vestíbulo do Labirinto/citologia , Análise de Variância , Animais , Biofísica , Calbindina 2/metabolismo , Estimulação Elétrica , Canais de Potássio Éter-A-Go-Go/metabolismo , Potenciais Evocados/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Canais de Potássio KCNQ/metabolismo , Masculino , Vias Neurais/fisiologia , Neurônios Aferentes/efeitos dos fármacos , Neurônios Eferentes/efeitos dos fármacos , Técnicas de Patch-Clamp , Transmissão Sináptica/efeitos dos fármacos , Tartarugas
5.
Annu Rev Pharmacol Toxicol ; 55: 269-87, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25251997

RESUMO

Storage dysfunction of the urinary bladder, specifically overactive bladder syndrome, is a condition that occurs frequently in the general population. Historically, pathophysiological and treatment concepts related to overactive bladder have focused on smooth muscle cells. Although these are the central effector, numerous anatomic structures are involved in their regulation, including the urothelium, afferent and efferent nerves, and the central nervous system. Each of these structures involves receptors for­and the urothelium itself also releases­many mediators. Moreover, hypoperfusion, hypertrophy, and fibrosis can affect bladder function. Established treatments such as muscarinic antagonists, ß-adrenoceptor agonists, and onabotulinumtoxinA each work in part through their effects on the urothelium and afferent nerves, as do α1-adrenoceptor antagonists in the treatment of voiding dysfunction associated with benign prostatic hyperplasia; however, none of these treatments are specifically targeted to the urothelium and afferent nerves. It remains to be explored whether future treatments that specifically act at one of these structures will provide a therapeutic advantage.


Assuntos
Músculo Liso/efeitos dos fármacos , Doenças da Bexiga Urinária/tratamento farmacológico , Bexiga Urinária/efeitos dos fármacos , Agentes Urológicos/uso terapêutico , Urotélio/efeitos dos fármacos , Antagonistas de Receptores Adrenérgicos alfa 1/uso terapêutico , Agonistas Adrenérgicos beta/uso terapêutico , Animais , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/fisiopatologia , Humanos , Antagonistas Muscarínicos/uso terapêutico , Músculo Liso/inervação , Músculo Liso/metabolismo , Músculo Liso/fisiopatologia , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/metabolismo , Neurônios Eferentes/efeitos dos fármacos , Neurônios Eferentes/metabolismo , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento , Bexiga Urinária/inervação , Bexiga Urinária/metabolismo , Bexiga Urinária/patologia , Bexiga Urinária/fisiopatologia , Doenças da Bexiga Urinária/diagnóstico , Doenças da Bexiga Urinária/metabolismo , Doenças da Bexiga Urinária/fisiopatologia , Urodinâmica/efeitos dos fármacos , Agentes Urológicos/efeitos adversos , Urotélio/inervação , Urotélio/metabolismo , Urotélio/fisiopatologia
6.
Am J Physiol Regul Integr Comp Physiol ; 315(6): R1261-R1271, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30332305

RESUMO

Recent evidence suggests hypertension may be secondary to chronic inflammation that results from hypoactive neuro-immune regulatory mechanisms. To further understand this association, we used systemic lupus erythematosus (SLE) as a model of inflammation-induced hypertension. In addition to prevalent inflammatory kidney disease and hypertension, SLE patients suffer from dysautonomia in the form of decreased efferent vagal tone. Based on this, the cholinergic anti-inflammatory pathway, an endogenous vagus-to-spleen mechanism that, when activated results in decreases in systemic inflammation, may be compromised in SLE. We hypothesized that stimulation of the cholinergic anti-inflammatory pathway via pharmacological potentiation of the efferent vagus nerve would reduce inflammation and halt the development of hypertension and renal injury in SLE. Female NZBWF1 mice, an established model of murine SLE, and female control mice were treated with galantamine (4 mg/kg daily ip), an acetylcholinesterase inhibitor, or saline for 14 days. At the end of therapy, carotid catheters were surgically implanted and were used to measure mean arterial pressure before the animals were euthanized. Chronic galantamine administration attenuated both splenic and renal cortical inflammation, which likely explains why the hypertension and renal injury (i.e., glomerulosclerosis and fibrosis) typically observed in murine SLE was attenuated following therapy. Based on this, the anti-inflammatory, antihypertensive, and renoprotective effects of galantamine may be mediated through activation of the cholinergic anti-inflammatory pathway. It is possible that dysfunction of the cholinergic anti-inflammatory pathway exists in SLE at the level of the efferent vagus nerve and promoting restoration of its activity through central cholinergic receptor activation may be beneficial.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Inibidores da Colinesterase/farmacologia , Galantamina/farmacologia , Hipertensão/tratamento farmacológico , Nervo Vago/efeitos dos fármacos , Animais , Anti-Hipertensivos/farmacologia , Pressão Sanguínea/fisiologia , Modelos Animais de Doenças , Hipertensão/fisiopatologia , Rim/efeitos dos fármacos , Rim/metabolismo , Camundongos Transgênicos , Neurônios Eferentes/efeitos dos fármacos , Nervo Vago/fisiopatologia
7.
Anesth Analg ; 121(4): 1065-1077, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26218866

RESUMO

BACKGROUND: Contralateral hyperalgesia, occurring after unilateral injury, is usually explained by central sensitization in spinal cord and brain. We previously reported that injection of endothelin-1 (ET-1) into one rat hindpaw induces prolonged mechanical and chemical sensitization of the contralateral hindpaw. Here, we examined the role of contralateral efferent activity in this process. METHODS: ET-1 (2 nmol, 10 µL) was injected subcutaneously into the plantar surface of right (ipsilateral) hindpaw (ILP), and the thermal response latency and mechanical threshold for nocifensive withdrawal were determined by the use of, respectively, plantar radiant heating and von Frey filaments, for both ILP and contralateral hindpaws (CLP). Either paw was anesthetized for 60 minutes by direct injection of bupivacaine (0.25%, 40 µL), 30 minutes before ET-1. Alternatively, the contralateral sciatic nerve was blocked for 6 to 12 hours by percutaneous injection of bupivacaine-releasing microspheres 30 minutes before injection of ET-1. Systemic actions of these bupivacaine formulations were simulated by subcutaneous injection at the nuchal midline. RESULTS: After the injection of ET-1, the mechanical threshold of both ILP and CLP decreased by 2 hours, appeared to be lowest around 24 hours, and recovered through 48 hours to preinjection baseline at 72 hours. These hypersensitive responses were suppressed by bupivacaine injected into the ipsilateral paw before ET-1. Injection of the CLP by bupivacaine also suppressed the hypersensitivity of the CLP at all test times, and that of the ILP, except at 2 hours when it increased the sensitivity. This same pattern of change occurred when the contralateral sciatic nerve was blocked by bupivacaine-releasing microspheres. The systemic actions of these bupivacaine formulations were much smaller and only reached significance at 24 hours post-ET-1. Thermal hypersensitivity after ET-1 injection also occurred in both ILP and CLP and showed the same pattern in response to the 2 contralateral anesthetic procedures. CONCLUSIONS: These results show that efferent transmission through the contralateral innervation into the paw is necessary for contralateral sensitization by ET-1, suggesting that the release of substances by distal nerve endings is involved. The release of substances in the periphery is essential for contralateral sensitization by ET-1 and may also contribute to secondary hyperalgesia, occurring at loci distant from the primary injury, that occurs after surgery or nerve damage.


Assuntos
Endotelina-1/toxicidade , Membro Posterior/efeitos dos fármacos , Temperatura Alta , Hiperalgesia/induzido quimicamente , Neurônios Eferentes/efeitos dos fármacos , Tato , Animais , Endotelina-1/administração & dosagem , Membro Posterior/inervação , Membro Posterior/fisiopatologia , Temperatura Alta/efeitos adversos , Hiperalgesia/fisiopatologia , Injeções Subcutâneas , Masculino , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Ratos , Ratos Sprague-Dawley
8.
Am J Physiol Heart Circ Physiol ; 307(2): H228-35, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24816257

RESUMO

Cardiac ischemia and angina pectoris are commonly experienced during exertion in a cold environment. In the current study we tested the hypotheses that oropharyngeal afferent blockade (i.e., local anesthesia of the upper airway with lidocaine) as well as systemic ß-adrenergic receptor blockade (i.e., intravenous propranolol) would improve the balance between myocardial oxygen supply and demand in response to the combined stimulus of cold air inhalation (-15 to -30°C) and isometric handgrip exercise (Cold + Grip). Young healthy subjects underwent Cold + Grip following lidocaine, propranolol, and control (no drug). Heart rate, blood pressure, and coronary blood flow velocity (CBV, from Doppler echocardiography) were continuously measured. Rate-pressure product (RPP) was calculated, and changes from baseline were compared between treatments. The change in RPP at the end of Cold + Grip was not different between lidocaine (2,441 ± 376) and control conditions (3,159 ± 626); CBV responses were also not different between treatments. With propranolol, heart rate (8 ± 1 vs. 14 ± 3 beats/min) and RPP responses to Cold + Grip were significantly attenuated. However, at peak exercise propranolol also resulted in a smaller ΔCBV (1.4 ± 0.8 vs. 5.3 ± 1.4 cm/s, P = 0.035), such that the relationship between coronary flow and cardiac metabolism was impaired under propranolol (0.43 ± 0.37 vs. 2.1 ± 0.63 arbitrary units). These data suggest that cold air breathing and isometric exercise significantly influence efferent control of coronary blood flow. Additionally, ß-adrenergic vasodilation may play a significant role in coronary regulation during exercise.


Assuntos
Temperatura Baixa , Circulação Coronária , Vasos Coronários/fisiologia , Inalação , Neurônios Aferentes/fisiologia , Neurônios Eferentes/fisiologia , Administração por Inalação , Antagonistas Adrenérgicos beta/administração & dosagem , Adulto , Anestésicos Locais/administração & dosagem , Velocidade do Fluxo Sanguíneo , Pressão Sanguínea , Circulação Coronária/efeitos dos fármacos , Vasos Coronários/efeitos dos fármacos , Feminino , Força da Mão , Frequência Cardíaca , Humanos , Infusões Intravenosas , Contração Isométrica , Lidocaína/administração & dosagem , Masculino , Miocárdio/metabolismo , Neurônios Aferentes/efeitos dos fármacos , Neurônios Eferentes/efeitos dos fármacos , Consumo de Oxigênio , Propranolol/administração & dosagem , Fatores de Tempo , Vasodilatação
9.
Neurobiol Learn Mem ; 106: 210-20, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24055778

RESUMO

The basolateral amygdala (BLA) is critical in the retrieval of conditioned taste aversion (CTA). Although BLA neurons have axonal connections with several brain regions, it is unclear which efferent pathways are functional in CTA. The present study investigated the involvement of efferents from BLA in CTA retrieval with manganese (Mn(2+))-enhanced magnetic resonance imaging (MEMRI). Rats receiving intraoral saccharin infusion paired with intraperitoneal administration of lithium chloride (LiCl) were presented with saccharin (C-S and BC-S groups) or water (C-W group) on the test day. The BC-S group was administered with LiCl 15 min before saccharin presentation on the conditioning day (backward conditioning, BC). Another two groups were injected with saline (S-S and S-W groups) instead of LiCl. On the test day, 50 nL of 40-mM manganese chloride (MnCl2) was injected into BLA before the intraoral fluid infusion. Using MRI, we analyzed Mn(2+) movements, which indicated the activation of efferent neurons. The C-S group showed the highest activities in several efferents from BLA. Of them, the activities of the efferents to the nucleus accumbens core (NAcC), the anterior part of the bed nucleus of the stria terminalis (aBNST), and the central amygdala (CeA) were larger in the C-S group than in the Q group, which was presented with a normally aversive quinine solution. Although rats equivalently rejected conditioned aversive saccharin and quinine, the aversive responses in the C-S group, and not the Q group, were due to CTA retrieval. Therefore, our results indicated that BLA efferents to NAcC, aBNST, and CeA were specifically activated during CTA retrieval, suggesting that these efferents are key components in the neural mechanisms of CTA.


Assuntos
Tonsila do Cerebelo/fisiologia , Aprendizagem da Esquiva/fisiologia , Condicionamento Psicológico/fisiologia , Neurônios Eferentes/fisiologia , Paladar/fisiologia , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Comportamento de Escolha/efeitos dos fármacos , Comportamento de Escolha/fisiologia , Condicionamento Psicológico/efeitos dos fármacos , Cloreto de Lítio/administração & dosagem , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Neurônios Eferentes/efeitos dos fármacos , Ratos , Ratos Wistar , Sacarina/administração & dosagem , Paladar/efeitos dos fármacos
10.
J Neurochem ; 123(5): 845-55, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22978492

RESUMO

The immediate-early gene Arc (activity-regulated cytoskeleton-associated protein) is provocative in the context of neuroplasticity because of its experience-dependent regulation and mRNA transport to and translation at activated synapses. Normal rats have more preproenkephalin-negative (ppe-neg; presumed striatonigral) neurons with cytoplasmic Arc mRNA than ppe-positive (ppe-pos; striatopallidal) neurons, despite equivalent numbers of these neurons showing novelty-induced transcriptional activation of Arc. Furthermore, rats with partial monoamine loss induced by methamphetamine (METH) show impaired Arc mRNA expression in both ppe-neg and ppe-pos neurons relative to normal animals following response-reversal learning. In this study, Arc expression induced by exposure to a novel environment was used to assess transcriptional activation and cytoplasmic localization of Arc mRNA in striatal efferent neuron subpopulations subsequent to METH-induced neurotoxicity. Partial monoamine depletion significantly altered Arc expression. Specifically, basal Arc expression was elevated, but novelty-induced transcriptional activation was abolished. Without novelty-induced Arc transcription, METH-pre-treated rats also had fewer neurons with cytoplasmic Arc mRNA expression, with the effect being greater for ppe-neg neurons. Thus, METH-induced neurotoxicity substantially alters striatal efferent neuron function at the level of Arc transcription, suggesting a long-term shift in basal ganglia neuroplasticity processes subsequent to METH-induced neurotoxicity. Such changes potentially underlie striatally based learning deficits associated with METH-induced neurotoxicity.


Assuntos
Estimulantes do Sistema Nervoso Central/toxicidade , Proteínas do Citoesqueleto/biossíntese , Dopamina/metabolismo , Metanfetamina/toxicidade , Proteínas do Tecido Nervoso/biossíntese , Neurônios Eferentes/metabolismo , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Regulação da Expressão Gênica , Hibridização in Situ Fluorescente , Masculino , Neurônios Eferentes/efeitos dos fármacos , Síndromes Neurotóxicas/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Transcrição Gênica/efeitos dos fármacos
11.
Exp Physiol ; 97(6): 719-29, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22366563

RESUMO

Adenosine is the first drug of choice in the treatment of supraventricular arrhythmias. While the effects of adenosine on sympathetic nerve activity (SNA) have been investigated, no information is available on the effects on cardiac vagal nerve activity (VNA). We assessed in rats the responses of cardiac VNA, SNA and cardiovascular variables to intravenous bolus administration of adenosine. In 34 urethane-anaesthetized rats, cardiac VNA or cervical preganglionic sympathetic fibres were recorded together with ECG, arterial pressure and ventilation, before and after administration of three doses of adenosine (100, 500 and 1000 µg kg(-1)). The effects of adenosine were also assessed in isolated perfused hearts (n = 5). Adenosine induced marked bradycardia and hypotension, associated with a significant dose-dependent increase in VNA (+204 ± 56%, P < 0.01; +275 ± 120%, P < 0.01; and +372 ± 78%, P < 0.01, for the three doses, respectively; n = 7). Muscarinic blockade by atropine (5 mg kg(-1), i.v.) significantly blunted the adenosine-induced bradycardia (-56.0 ± 4.5%, P < 0.05; -86.2 ± 10.5%, P < 0.01; and -34.3 ± 9.7%, P < 0.01, respectively). Likewise, adenosine-induced bradycardia was markedly less in isolated heart preparations. Previous barodenervation did not modify the effects of adenosine on VNA. On the SNA side, adenosine administration was associated with a dose-dependent biphasic response, including overactivation in the first few seconds followed by a later profound SNA reduction. Earliest sympathetic activation was abolished by barodenervation, while subsequent sympathetic withdrawal was affected neither by baro- nor by chemodenervation. This is the first demonstration that acute adenosine is able to activate cardiac VNA, possibly through a central action. This increase in vagal outflow could make an important contribution to the antiarrhythmic action of this substance.


Assuntos
Adenosina/farmacologia , Antiarrítmicos/farmacologia , Coração/efeitos dos fármacos , Coração/inervação , Neurônios Eferentes/efeitos dos fármacos , Sistema Nervoso Simpático/efeitos dos fármacos , Nervo Vago/efeitos dos fármacos , Animais , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/fisiopatologia , Atropina/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Bradicardia/tratamento farmacológico , Bradicardia/fisiopatologia , Sistema Cardiovascular/efeitos dos fármacos , Sistema Cardiovascular/inervação , Sistema Cardiovascular/fisiopatologia , Coração/fisiologia , Frequência Cardíaca/efeitos dos fármacos , Hipotensão/tratamento farmacológico , Hipotensão/fisiopatologia , Neurônios Eferentes/fisiologia , Ratos , Ratos Sprague-Dawley , Sistema Nervoso Simpático/fisiologia , Sistema Nervoso Simpático/fisiopatologia , Nervo Vago/fisiologia , Nervo Vago/fisiopatologia
12.
J Physiol ; 589(Pt 2): 371-93, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21078593

RESUMO

Intravenous cholecystokinin octapeptide (CCK-8) elicits vago-vagal reflexes that inhibit phasic gastric contractions and reduce gastric tone in urethane-anaesthetized rats. A discrete proximal subdivision of the ventral gastric vagus nerve (pVGV) innervates the proximal stomach, but the fibre populations within it have not been characterized previously.We hypothesized that I.V. CCK-8 injection would excite inhibitory efferent outflow in the pVGV, in contrast to its inhibitory effect on excitatory efferent outflow in the distal subdivision (dVGV), which supplies the distal stomach. In each VGV subdivision, a dual-recording technique was used to record afferent and efferent activity simultaneously, while also monitoring intragastric pressure (IGP). CCK-8 dose dependently (100-1000 pmol kg(-1), I.V.) reduced gastric tone, gastric contractile activity and multi-unit dVGV efferent discharge, but increased pVGV efferent firing. Single-unit analysis revealed a minority of efferent fibres in each branch whose response differed in direction from the bulk response. Unexpectedly, efferent excitation in the pVGV was significantly shorter lived and had a significantly shorter decay half-time than did efferent inhibition in the dVGV, indicating that distinct pathways drive CCK-evoked outflow to the proximal vs. the distal stomach. Efferent inhibition in the dVGV began several seconds before, and persisted significantly longer than, simultaneously recorded dVGV afferent excitation.Thus, dVGV afferent excitation could not account for the pattern of dVGV efferent inhibition. However, the time course of dVGV afferent excitation paralleled that of pVGV efferent excitation. Similarly, the duration of CCK-8-evoked afferent responses recorded in the accessory celiac branch of the vagus (ACV) matched the duration of dVGV efferent responses. The observed temporal relationships suggest that postprandial effects on gastric complicance of CCK released from intestinal endocrine cells may require circulating concentrations to rise to levels capable of exciting distal gastric afferent fibres, in contrast to more immediate effects on distal gastric contractile activity mediated via vago-vagal reflexes initiated by paracrine excitation of intestinal afferents.


Assuntos
Neurônios Eferentes/efeitos dos fármacos , Sincalida/farmacologia , Estômago/efeitos dos fármacos , Estômago/inervação , Nervo Vago/efeitos dos fármacos , Análise de Variância , Animais , Relação Dose-Resposta a Droga , Eletrofisiologia , Masculino , Neurônios Eferentes/fisiologia , Ratos , Ratos Sprague-Dawley , Estômago/fisiologia , Nervo Vago/fisiologia
13.
Exp Brain Res ; 208(3): 323-34, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21082312

RESUMO

It is widely recognized that neuronal network activity can be modulated via activation of nicotinic and muscarinic acetylcholine receptors located pre- and postsynaptically. It was established in our earlier study that the activation of presynaptic nicotinic receptors greatly facilitates the retinotectal glutamatergic transmission. In the present study, we have determined a transmitter of tectal recurrent excitation and explored the effects of muscarinic acetylcholine receptor activation on the recurrent excitation and the activity of frog tectum column in vivo. Discharge of a single retinal ganglion cell was elicited by a minimal electrical stimulation of the retina. Evoked activity of the tectum column was recorded using the carbon-fiber microelectrode inserted into the tectum layer F. We found the following: 1. The recurrent excitation in the tectum column was not affected by d-tubocurarine (10 µM) and was greatly depressed by the kynurenic acid (500 µM), demonstrating glutamatergic nature of the recurrent excitation. 2. The glutamatergic recurrent excitation was largely reduced by carbamylcholine (100 µM) and oxotremorine-M (10 µM), demonstrating that the activation of muscarinic receptors, located, presumably, on the presynaptic terminals of recurrent pear-shaped neurons, inhibits the recurrent excitation in the tectum column. 3. The muscarinic inhibition of glutamatergic recurrent transmission had critical influence on the activity of the tectum column, preventing the generation of an output signal through suppression of the NMDA receptor activation and establishing necessary conditions for returning of the network to its resting state.


Assuntos
Ácido Glutâmico/fisiologia , Neurônios Eferentes/fisiologia , Receptores Muscarínicos/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Potenciais Sinápticos/fisiologia , Teto do Mesencéfalo/fisiologia , Animais , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Neurônios Eferentes/efeitos dos fármacos , Oxotremorina/farmacologia , Rana temporaria , Potenciais Sinápticos/efeitos dos fármacos , Teto do Mesencéfalo/efeitos dos fármacos , Tubocurarina/farmacologia
14.
J Peripher Nerv Syst ; 16(1): 30-6, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21504500

RESUMO

Action potentials from postganglionic C-fibres were recorded in healthy volunteers by microneurography in the peroneal nerve. Their responsiveness to mechanical or heat stimuli or to sympathetic reflex provocation tests was determined by transient slowing of conduction velocity following activation. Twenty units were classified as sympathetic efferent units. Acetylcholine (ACh) iontophoresis (10%, 1 mA, 1 min) inside their innervation territory activated 8 of 20 sympathetic fibres with a mean delay of 61 ± 12 s, peak response at 175 ± 38 s, and a duration of 240 ± 42 s, whereas iontophoresis of saline did not activate any of them. The time course of neuronal activation correlated with the axon reflex sweating measured by an evaporimeter in a separate session (delay 76 ± 9 s, peak at 195 ± 12 s, decline to 50% of peak 312 ± 25 s). No ACh-induced vasoconstriction was observed by laser Doppler scanning (n = 11) even after depletion of neuropeptides by chronic topical capsaicin treatment (n = 8). We conclude that ACh iontophoresis activates about half of the sympathetic fibres in human skin and provokes a corresponding axon reflex sweating. The absence of ACh-induced vasoconstriction even after the depletion of neuropeptides by capsaicin suggests that only sudomotor fibres, but not sympathetic vasoconstrictor fibres are activated by this stimulus.


Assuntos
Acetilcolina/metabolismo , Fibras Adrenérgicas/fisiologia , Neurônios Eferentes/fisiologia , Reflexo/fisiologia , Pele/inervação , Sudorese/fisiologia , Potenciais de Ação/fisiologia , Fibras Adrenérgicas/efeitos dos fármacos , Adulto , Axônios/efeitos dos fármacos , Axônios/fisiologia , Eletrofisiologia , Feminino , Mãos/inervação , Humanos , Iontoforese , Fluxometria por Laser-Doppler , Masculino , Neurônios Eferentes/efeitos dos fármacos , Reflexo/efeitos dos fármacos , Pele/efeitos dos fármacos , Sudorese/efeitos dos fármacos , Adulto Jovem
15.
Nat Commun ; 12(1): 1068, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33594066

RESUMO

A graphdiyne-based artificial synapse (GAS), exhibiting intrinsic short-term plasticity, has been proposed to mimic biological signal transmission behavior. The impulse response of the GAS has been reduced to several millivolts with competitive femtowatt-level consumption, exceeding the biological level by orders of magnitude. Most importantly, the GAS is capable of parallelly processing signals transmitted from multiple pre-neurons and therefore realizing dynamic logic and spatiotemporal rules. It is also found that the GAS is thermally stable (at 353 K) and environmentally stable (in a relative humidity up to 35%). Our artificial efferent nerve, connecting the GAS with artificial muscles, has been demonstrated to complete the information integration of pre-neurons and the information output of motor neurons, which is advantageous for coalescing multiple sensory feedbacks and reacting to events. Our synaptic element has potential applications in bioinspired peripheral nervous systems of soft electronics, neurorobotics, and biohybrid systems of brain-computer interfaces.


Assuntos
Grafite/farmacologia , Neurônios Eferentes/fisiologia , Sinapses/fisiologia , Dendritos/efeitos dos fármacos , Dendritos/fisiologia , Teoria da Densidade Funcional , Difusão , Íons , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Plasticidade Neuronal , Neurônios Eferentes/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Temperatura
16.
Am J Physiol Renal Physiol ; 298(6): F1351-9, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20237234

RESUMO

Sex-specific differences in activity of the lower urinary tract (LUT) responding to acid irritation in mice have been revealed. This study, using continuous infusion cystometry with acetic acid (AA; pH 3.0), was conducted to examine whether the transient receptor potential vanilloid type 1 (TRPV1) channels expressed in the mouse LUT are involved in the sex difference in functional responses of the bladder and urethra to irritation. No differences were found between effects of capsazepine (a TRPV1 blocker; 100 microM) and those of its vehicle on any of the cystometric changes by intravesical AA in either female or male mice. However, capsazepine eliminated the acid-induced sex differences in parameters associated with bladder contraction phase (i.e., maximal voiding pressure, closing peak pressure, 2nd-phase contraction, bladder contraction duration), whereas capsazepine did not affect those in parameters associated with bladder-filling period (i.e., intercontraction interval, actual collecting time). In males, capsazepine reduced the number of bladder contractions accompanying fluid dribbling at 2nd-phase contraction, which is indicative of the urethral response to irritation, whereas in females it increased the number. Together, these results suggest the possibilities that TRPV1 channels in the bladder and urethra are involved in the sex difference in the LUT response to acid irritation and that these participate, e.g., via "cross talk" between the bladder and urethra, in the fine-tuning of intravesical pressure (or bladder emptying) at the bladder contraction phase under irritated LUT conditions but not in sensing for bladder filling during the storage period, although the contribution of the mechanism may be small.


Assuntos
Ácido Acético/administração & dosagem , Estado de Descerebração , Irritantes/administração & dosagem , Neurônios Aferentes/efeitos dos fármacos , Neurônios Eferentes/efeitos dos fármacos , Canais de Cátion TRPV/efeitos dos fármacos , Uretra/inervação , Bexiga Urinária/inervação , Administração Intravesical , Animais , Capsaicina/administração & dosagem , Capsaicina/análogos & derivados , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Contração Muscular/efeitos dos fármacos , Neurônios Aferentes/metabolismo , Neurônios Eferentes/metabolismo , Pressão , Reflexo/efeitos dos fármacos , Canais de Cátion TRPV/metabolismo , Fatores de Tempo , Micção/efeitos dos fármacos
17.
J Pharmacol Exp Ther ; 334(3): 1080-6, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20576797

RESUMO

Mediators of neuromuscular transmission in rat bladder strips were dissected pharmacologically to examine their susceptibilities to inhibition by botulinum neurotoxins (BoNTs) and elucidate a basis for the clinical effectiveness of BoNT/A in alleviating smooth muscle spasms associated with overactive bladder. BoNT/A, BoNT/C1, or BoNT/E reduced peak and average force of muscle contractions induced by electric field stimulation (EFS) in dose-dependent manners by acting only on neurogenic, tetrodotoxin-sensitive responses. BoNTs that cleaved vesicle-associated membrane protein proved to be much less effective. Acetylcholine (ACh) and ATP were found to provide virtually all excitatory input, because EFS-evoked contractions were abolished by the muscarinic receptor antagonist, atropine, combined with either a desensitizing agonist of P2X(1) and P2X(3) or a nonselective ATP receptor antagonist. Both transmitters were released in the innervated muscle layer and, thus, persisted after removal of urothelium. Atropine or a desensitizer of the P2X(1) or P2X(3) receptors did not alter the rate at which muscle contractions were weakened by BoNT/A. Moreover, although cholinergic and purinergic signaling could be partially delineated by using high-frequency EFS (which intensified a transient, largely atropine-resistant spike in muscle contractions that was reduced after P2X receptor desensitization), they proved equally susceptible to BoNT/A. Thus, equi-potent blockade of ATP co-released with ACh from muscle efferents probably contributes to the effectiveness of BoNT/A in treating bladder overactivity, including nonresponders to anticholinergic drugs. Because purinergic receptors are known mediators of sensory afferent excitation, inhibition of efferent ATP release by BoNT/A could also help to ameliorate acute pain and urgency sensation reported by some recipients.


Assuntos
Toxinas Botulínicas Tipo A/farmacologia , Fibras Nervosas/metabolismo , Neurônios Eferentes/metabolismo , Neurotransmissores/metabolismo , Sistema Nervoso Parassimpático/fisiologia , Receptores Purinérgicos/fisiologia , Transdução de Sinais/efeitos dos fármacos , Bexiga Urinária/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/fisiologia , Animais , Estimulação Elétrica , Técnicas In Vitro , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Fibras Nervosas/efeitos dos fármacos , Neurônios Eferentes/efeitos dos fármacos , Ratos , Proteína 25 Associada a Sinaptossoma/fisiologia , Tetrodotoxina/farmacologia , Proteína 1 Associada à Membrana da Vesícula/antagonistas & inibidores , Proteína 1 Associada à Membrana da Vesícula/imunologia
18.
BMC Neurosci ; 11: 77, 2010 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-20565975

RESUMO

BACKGROUND: Glutamate has been proposed as a transmitter in the peripheral taste system in addition to its well-documented role as an umami taste stimulus. Evidence for a role as a transmitter includes the presence of ionotropic glutamate receptors in nerve fibers and taste cells, as well as the expression of the glutamate transporter GLAST in Type I taste cells. However, the source and targets of glutamate in lingual tissue are unclear. In the present study, we used molecular, physiological and immunohistochemical methods to investigate the origin of glutamate as well as the targeted receptors in taste buds. RESULTS: Using molecular and immunohistochemical techniques, we show that the vesicular transporters for glutamate, VGLUT 1 and 2, but not VGLUT3, are expressed in the nerve fibers surrounding taste buds but likely not in taste cells themselves. Further, we show that P2X2, a specific marker for gustatory but not trigeminal fibers, co-localizes with VGLUT2, suggesting the VGLUT-expressing nerve fibers are of gustatory origin. Calcium imaging indicates that GAD67-GFP Type III taste cells, but not T1R3-GFP Type II cells, respond to glutamate at concentrations expected for a glutamate transmitter, and further, that these responses are partially blocked by NBQX, a specific AMPA/Kainate receptor antagonist. RT-PCR and immunohistochemistry confirm the presence of the Kainate receptor GluR7 in Type III taste cells, suggesting it may be a target of glutamate released from gustatory nerve fibers. CONCLUSIONS: Taken together, the results suggest that glutamate may be released from gustatory nerve fibers using a vesicular mechanism to modulate Type III taste cells via GluR7.


Assuntos
Ácido Glutâmico/metabolismo , Neurônios Eferentes/metabolismo , Receptores de Ácido Caínico/metabolismo , Papilas Gustativas/metabolismo , Animais , Cálcio/metabolismo , Ácido Glutâmico/farmacologia , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Neurônios Eferentes/efeitos dos fármacos , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2X2 , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Papilas Gustativas/efeitos dos fármacos , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
19.
J Exp Biol ; 213(Pt 15): 2700-9, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20639432

RESUMO

The dorsal nucleus of the little skate is a cerebellum-like sensory structure that adaptively filters out predictable electrosensory inputs. The filter's plasticity is mediated by anti-Hebbian associative depression at the synapses between parallel fibers and ascending efferent neurons (AENs). Changes in synaptic strength are indicated by the formation of a cancellation signal which is initiated by co-activation of parallel fibers and AENs, and can be reversed by parallel fiber activity in the absence of AEN activation. In other cerebellum-like sensory structures, the formation of the cancellation signal requires activation of postsynaptic NMDA receptors on the principal neurons. We demonstrate here by immunohistochemistry that the somas and the initial portion of both apical and basal dendrites of the AENs are labeled with antibodies raised against the NR1 subunit of NMDA receptors from a South American electric fish. In in vivo physiological experiments, we show that the formation of the cancellation signal induced by coupling an electrosensory stimulus to ventilatory movements or direct parallel fiber stimulation is blocked when either of the NMDA receptor antagonists 2-amino-5-phosphonovaleric acid (APV) or MK801 is injected into the molecular layer above the recorded AEN. Blocking NMDA receptors prevented formation of a cancellation signal in 79% (15/19; APV) and 60% (3/5; MK801) of the AENs. This blockage was reversible in 40% (6/15) of the AENs after APV removal. Thus, in the dorsal nucleus, the activity-dependent, long-lasting but reversible change in synaptic strength of the parallel fiber-AEN synapses appears to be an NMDA receptor-dependent process.


Assuntos
Neurônios Aferentes/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Rajidae/metabolismo , Núcleos Talâmicos/efeitos dos fármacos , Núcleos Talâmicos/metabolismo , 2-Amino-5-fosfonovalerato/farmacologia , Animais , Especificidade de Anticorpos/imunologia , Maleato de Dizocilpina/farmacologia , Espectrometria de Massas , Microscopia Confocal , Neurônios Aferentes/efeitos dos fármacos , Neurônios Eferentes/efeitos dos fármacos , Neurônios Eferentes/metabolismo , Subunidades Proteicas/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Software
20.
J Cell Biol ; 46(3): 544-52, 1970 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-5527239

RESUMO

The sinus nerve or sympathetic trunk was stimulated unilaterally in one group of adult cats or Syrian hamsters while in another group the sinus nerve or sympathetic trunk was cut unilaterally and the animals were given reserpine. In a third group, atropine was administered prior to sinus nerve stimulation. All tissues were processed for the detection of primary monoamines. The carotid bodies on the operated sides were compared with those on the unoperated sides of the same animal in order to determine if amine depletion occurred following the experimental procedures. After sinus nerve stimulation alone, the density of the granules in the glomus cells was decreased, but changes were not noted in the granules following sympathetic nerve stimulation. Sinus nerve stimulation after atropine administration resulted in no change in granule density. Sinus nerve transection followed by reserpine treatment resulted in a greater decrease in granule density on the unoperated than on the operated side. Transection of the sympathetic components to the carotid body followed by reserpine injections resulted in a decrease in granule density in the glomus cells on both the operated and unoperated sides. These results suggest that the sinus nerve must be intact for reserpine to exert an effect and that the sinus nerve may contain efferent fibers which modulate amine secretion.


Assuntos
Corpo Carotídeo/inervação , Estimulação Elétrica , Nervo Glossofaríngeo/citologia , Aminas/análise , Animais , Atropina/farmacologia , Corpo Carotídeo/análise , Corpo Carotídeo/citologia , Corpo Carotídeo/efeitos dos fármacos , Gatos , Grânulos Citoplasmáticos/efeitos dos fármacos , Denervação , Eletrofisiologia , Nervo Glossofaríngeo/fisiologia , Histocitoquímica , Métodos , Microscopia Eletrônica , Fibras Nervosas Mielinizadas/efeitos dos fármacos , Neurônios Eferentes/efeitos dos fármacos , Reserpina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA