Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.516
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 632(8027): 1137-1144, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39085612

RESUMO

Exposure to environmental pollutants and human microbiome composition are important predisposition factors for tumour development1,2. Similar to drug molecules, pollutants are typically metabolized in the body, which can change their carcinogenic potential and affect tissue distribution through altered toxicokinetics3. Although recent studies demonstrated that human-associated microorganisms can chemically convert a wide range of xenobiotics and influence the profile and tissue exposure of resulting metabolites4,5, the effect of microbial biotransformation on chemical-induced tumour development remains unclear. Here we show that the depletion of the gut microbiota affects the toxicokinetics of nitrosamines, which markedly reduces the development and severity of nitrosamine-induced urinary bladder cancer in mice6,7. We causally linked this carcinogen biotransformation to specific gut bacterial isolates in vitro and in vivo using individualized bacterial culture collections and gnotobiotic mouse models, respectively. We tested gut communities from different human donors to demonstrate that microbial carcinogen metabolism varies between individuals and we showed that this metabolic activity applies to structurally related nitrosamine carcinogens. Altogether, these results indicate that gut microbiota carcinogen metabolism may be a contributing factor for chemical-induced carcinogenesis, which could open avenues to target the microbiome for improved predisposition risk assessment and prevention of cancer.


Assuntos
Carcinogênese , Carcinógenos , Microbioma Gastrointestinal , Nitrosaminas , Neoplasias da Bexiga Urinária , Animais , Feminino , Humanos , Masculino , Camundongos , Biotransformação , Carcinogênese/induzido quimicamente , Carcinogênese/metabolismo , Carcinogênese/patologia , Carcinógenos/química , Carcinógenos/metabolismo , Carcinógenos/farmacocinética , Carcinógenos/toxicidade , Microbioma Gastrointestinal/fisiologia , Vida Livre de Germes , Camundongos Endogâmicos C57BL , Nitrosaminas/química , Nitrosaminas/metabolismo , Nitrosaminas/farmacocinética , Nitrosaminas/toxicidade , Neoplasias da Bexiga Urinária/induzido quimicamente , Neoplasias da Bexiga Urinária/etiologia , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/prevenção & controle , Suscetibilidade a Doenças
2.
Chem Res Toxicol ; 37(2): 181-198, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38316048

RESUMO

A thorough literature review was undertaken to understand how the pathways of N-nitrosamine transformation relate to mutagenic potential and carcinogenic potency in rodents. Empirical and computational evidence indicates that a common radical intermediate is created by CYP-mediated hydrogen abstraction at the α-carbon; it is responsible for both activation, leading to the formation of DNA-reactive diazonium species, and deactivation by denitrosation. There are competing sites of CYP metabolism (e.g., ß-carbon), and other reactive species can form following initial bioactivation, although these alternative pathways tend to decrease rather than enhance carcinogenic potency. The activation pathway, oxidative dealkylation, is a common reaction in drug metabolism and evidence indicates that the carbonyl byproduct, e.g., formaldehyde, does not contribute to the toxic properties of N-nitrosamines. Nitric oxide (NO), a side product of denitrosation, can similarly be discounted as an enhancer of N-nitrosamine toxicity based on carcinogenicity data for substances that act as NO-donors. However, not all N-nitrosamines are potent rodent carcinogens. In a significant number of cases, there is a potency overlap with non-N-nitrosamine carcinogens that are not in the Cohort of Concern (CoC; high-potency rodent carcinogens comprising aflatoxin-like-, N-nitroso-, and alkyl-azoxy compounds), while other N-nitrosamines are devoid of carcinogenic potential. In this context, mutagenicity is a useful surrogate for carcinogenicity, as proposed in the ICH M7 (R2) (2023) guidance. Thus, in the safety assessment and control of N-nitrosamines in medicines, it is important to understand those complementary attributes of mechanisms of mutagenicity and structure-activity relationships that translate to elevated potency versus those which are associated with a reduction in, or absence of, carcinogenic potency.


Assuntos
Carcinógenos , Nitrosaminas , Humanos , Animais , Carcinógenos/toxicidade , Nitrosaminas/toxicidade , Nitrosaminas/metabolismo , Mutagênicos/toxicidade , Roedores/metabolismo , Carcinogênese , Carbono , Testes de Mutagenicidade
3.
Chem Res Toxicol ; 37(9): 1515-1523, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39001862

RESUMO

4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (commonly known as NNK) is one of the most prevalent and potent pulmonary carcinogens in tobacco products that increases the human lung cancer risk. Kava has the potential to reduce NNK and tobacco smoke-induced lung cancer risk by enhancing urinary excretion of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL, the major metabolite of NNK) and thus reducing NNK-induced DNA damage. In this study, we quantified N-glucuronidated NNAL (NNAL-N-gluc), O-glucuronidated NNAL (NNAL-O-gluc), and free NNAL in the urine samples collected before and after 1-week kava dietary supplementation. The results showed that kava increased both NNAL-N-glucuronidation and O-glucuronidation. Since NNAL-N-glucuronidation is dominantly catalyzed by UGT2B10, its representative single-nucleotide polymorphisms (SNPs) were analyzed among the clinical trial participants. Individuals with any of the four analyzed SNPs appear to have a reduced basal capacity in NNAL-N-glucuronidation. Among these individuals, kava also resulted in a smaller extent of increases in NNAL-N-glucuronidation, suggesting that participants with those UGT2B10 SNPs may not benefit as much from kava with respect to enhancing NNAL-N-glucuronidation. In summary, our results provide further evidence that kava enhances NNAL urinary detoxification via an increase in both N-glucuronidation and O-glucuronidation. UGT2B10 genetic status has not only the potential to predict the basal capacity of the participants in NNAL-N-glucuronidation but also potentially the extent of kava benefits.


Assuntos
Carcinógenos , Suplementos Nutricionais , Glucuronídeos , Kava , Nitrosaminas , Humanos , Kava/química , Nitrosaminas/urina , Nitrosaminas/metabolismo , Carcinógenos/metabolismo , Glucuronídeos/urina , Masculino , Feminino , Neoplasias Pulmonares/induzido quimicamente , Pessoa de Meia-Idade , Piridinas/urina , Piridinas/química , Piridinas/administração & dosagem , Fumar/urina , Fumantes , Glucuronosiltransferase/metabolismo , Glucuronosiltransferase/genética , Adulto , Polimorfismo de Nucleotídeo Único
4.
Appl Microbiol Biotechnol ; 108(1): 395, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918238

RESUMO

Smokeless tobacco products (STPs) are attributed to oral cancer and oral pathologies in their users. STP-associated cancer induction is driven by carcinogenic compounds including tobacco-specific nitrosamines (TSNAs). The TSNAs synthesis could enhanced due to the metabolic activity (nitrate metabolism) of the microbial populations residing in STPs, but identifying microbial functions linked to the TSNAs synthesis remains unexplored. Here, we rendered the first report of shotgun metagenomic sequencing to comprehensively determine the genes of all microorganisms residing in the Indian STPs belonging to two commercial (Moist-snuff and Qiwam) and three loose (Mainpuri Kapoori, Dohra, and Gudakhu) STPs, specifically consumed in India. Further, the level of nicotine, TSNAs, mycotoxins, and toxic metals were determined to relate their presence with microbial activity. The microbial population majorly belongs to bacteria with three dominant phyla including Actinobacteria, Proteobacteria, and Firmicutes. Furthermore, the STP-linked microbiome displayed several functional genes associated with nitrogen metabolism and antibiotic resistance. The chemical analysis revealed that the Mainpuri Kapoori product contained a high concentration of ochratoxins-A whereas TSNAs and Zink (Zn) quantities were high in the Moist-snuff, Mainpuri Kapoori, and Gudakhu products. Hence, our observations will help in attributing the functional potential of STP-associated microbiome and in the implementation of cessation strategies against STPs. KEY POINTS: •Smokeless tobacco contains microbes that can assist TSNA synthesis. •Antibiotic resistance genes present in smokeless tobacco-associated bacteria. •Pathogens in STPs can cause infections in smokeless tobacco users.


Assuntos
Bactérias , Metagenômica , Microbiota , Nitrosaminas , Tabaco sem Fumaça , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Bactérias/isolamento & purificação , Nitrosaminas/metabolismo , Índia , Nicotina/metabolismo , Humanos
5.
Crit Rev Toxicol ; 53(10): 658-701, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38050998

RESUMO

Tobacco use is a major cause of preventable morbidity and mortality globally. Tobacco products, including smokeless tobacco (ST), generally contain tobacco-specific N-nitrosamines (TSNAs), such as N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-butanone (NNK), which are potent carcinogens that cause mutations in critical genes in human DNA. This review covers the series of biochemical and chemical transformations, related to TSNAs, leading from tobacco cultivation to cancer initiation. A key aim of this review is to provide a greater understanding of TSNAs: their precursors, the microbial and chemical mechanisms that contribute to their formation in ST, their mutagenicity leading to cancer due to ST use, and potential means of lowering TSNA levels in tobacco products. TSNAs are not present in harvested tobacco but can form due to nitrosating agents reacting with tobacco alkaloids present in tobacco during certain types of curing. TSNAs can also form during or following ST production when certain microorganisms perform nitrate metabolism, with dissimilatory nitrate reductases converting nitrate to nitrite that is then released into tobacco and reacts chemically with tobacco alkaloids. When ST usage occurs, TSNAs are absorbed and metabolized to reactive compounds that form DNA adducts leading to mutations in critical target genes, including the RAS oncogenes and the p53 tumor suppressor gene. DNA repair mechanisms remove most adducts induced by carcinogens, thus preventing many but not all mutations. Lastly, because TSNAs and other agents cause cancer, previously documented strategies for lowering their levels in ST products are discussed, including using tobacco with lower nornicotine levels, pasteurization and other means of eliminating microorganisms, omitting fermentation and fire-curing, refrigerating ST products, and including nitrite scavenging chemicals as ST ingredients.


Assuntos
Neoplasias , Nitrosaminas , Tabaco sem Fumaça , Humanos , Carcinógenos/toxicidade , Mutagênicos , Neoplasias/induzido quimicamente , Nitratos , Nitritos , Nitrosaminas/toxicidade , Nitrosaminas/química , Nitrosaminas/metabolismo , Tabaco sem Fumaça/toxicidade
6.
Anal Bioanal Chem ; 415(12): 2317-2327, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37004550

RESUMO

4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is known to be a tobacco-specific N-nitrosamine and has peripheral carcinogenic properties. It can also induce oxidative stress, glial cell activation, and neuronal damage in the brain. However, the distribution and metabolic characteristics of NNK in the central nervous system are still unclear. Here, a sensitive and effective UHPLC-HRMS/MS method was established to identify and investigate the metabolites of NNK and their distribution in the rat brain. In addition, the pharmacokinetic profiles were simultaneously investigated via blood-brain synchronous microdialysis. NNK and its seven metabolites were well quantified in the hippocampus, cortex, striatum, olfactory bulb, brain stem, cerebellum, and other regions of rat brain after peripheral exposure (5 mg/kg, i.p.). The average content of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) in all brain regions was at least threefold higher than that of NNK, indicating a rapid carbonyl reduction of NNK in the brain. Lower concentrations of pyridine N-oxidation products in the cortex, olfactory bulb, hippocampus, and striatum might be related to the poor detoxification ability in these regions. Compared to α-methyl hydroxylation, NNK and NNAL were more inclined to the α-methylene hydroxylation pathway. Synchronous pharmacokinetic results indicated that the metabolic activity of NNK in the brain was different from that in the blood. The mean α-hydroxylation ratio in the brain and blood was 0.037 and 0.161, respectively, which indicated poor metabolic activity of NNK in the central nervous system.


Assuntos
Nitrosaminas , Ratos , Animais , Cromatografia Líquida de Alta Pressão , Nitrosaminas/metabolismo , Carcinógenos , Encéfalo/metabolismo
7.
Semin Cell Dev Biol ; 98: 154-166, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31699542

RESUMO

Metabolic reprogramming is a hallmark of cancer and the link between oncogenes activation, tumor supressors inactivation and bioenergetics modulation is well established. However, numerous carcinogenic environmental factors are responsible for early cancer initiation and their impact on metabolic reprogramming just starts to be deciphered. For instance, it was recently shown that UVB irradiation triggers metabolic reprogramming at the pre-cancer stage with implication for skin cancer detection and therapy. These observations foster the need to study the early changes in tissue metabolism following exposure to other carcinogenic events. According to the International Agency for Research on Cancer (IARC), tobacco smoke is a major class I-carcinogenic environmental factor that contains different carcinogens, but little is known on the impact of tobacco smoke on tissue metabolism and its participation to cancer initiation. In particular, tobacco-specific nitrosamines (TSNAs) play a central role in tobacco-smoke mediated cancer initiation. Here we describe the recent advances that have led to a new hypothesis regarding the link between nitrosamines signaling and metabolic reprogramming in cancer.


Assuntos
Neoplasias/metabolismo , Nicotiana/química , Nitrosaminas/metabolismo , Reprogramação Celular , Humanos , Neoplasias/patologia
8.
Carcinogenesis ; 43(2): 170-181, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-34919675

RESUMO

Lung cancer is the leading cause of cancer-related deaths. While tobacco use is the main cause, only 10-20% of smokers eventually develop clinical lung cancer. Thus, the ability of lung cancer risk prediction among smokers could transform lung cancer management with early preventive interventions. Given that DNA damage by tobacco carcinogens is the potential root cause of lung carcinogenesis, we characterized the adductomic totality of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (a potent lung carcinogen in tobacco, commonly known as NNK) in the target lung tissues, the liver tissues and the peripheral serum samples in a single-dose NNK-induced lung carcinogenesis A/J mouse model. We also characterized these adductomic totalities from the two enantiomers of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL, the major in vivo metabolite of NNK) given their distinct carcinogenicity in A/J mice. With these adductomic data, we demonstrated that tissue protein adductomics have the highest abundance. We also identified that the adductomic levels at the 8 h time point after carcinogen exposure were among the highest. More importantly, the relationships among these adductomics were characterized with overall strong positive linear correlations, demonstrating the potential of using peripheral serum protein adductomics to reflect DNA adductomics in the target lung tissues. Lastly, we explored the relationships of these adductomics with lung tumor status in A/J mice, providing preliminary but promising evidence of the feasibility of lung cancer risk prediction using peripheral adductomic profiling.


Assuntos
Neoplasias Pulmonares , Nitrosaminas , Animais , Carcinogênese/metabolismo , Carcinógenos/metabolismo , Carcinógenos/toxicidade , Pulmão/metabolismo , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos , Nitrosaminas/metabolismo , Ratos , Ratos Endogâmicos F344
9.
Carcinogenesis ; 43(7): 659-670, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35353881

RESUMO

Our earlier work demonstrated varying potency of dihydromethysticin (DHM) as the active kava phytochemical for prophylaxis of tobacco carcinogen nicotine-derived nitrosamine ketone (NNK)-induced mouse lung carcinogenesis. Efficacy was dependent on timing of DHM gavage ahead of NNK insult. In addition to DNA adducts in the lung tissues mitigated by DHM in a time-dependent manner, our in vivo data strongly implicated the existence of DNA damage-independent mechanism(s) in NNK-induced lung carcinogenesis targeted by DHM to fully exert its anti-initiation efficacy. In the present work, RNA seq transcriptomic profiling of NNK-exposed (2 h) lung tissues with/without a DHM (8 h) pretreatment revealed a snap shot of canonical acute phase tissue damage and stress response signaling pathways as well as an activation of protein kinase A (PKA) pathway induced by NNK and the restraining effects of DHM. The activation of the PKA pathway by NNK active metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) at a concentration incapable of promoting DNA adduct was confirmed in a lung cancer cell culture model, potentially through NNAL binding to and activation of the ß-adrenergic receptor. Our in vitro and in vivo data overall support the hypothesis that DHM suppresses PKA activation as a key DNA damage-independent mechanistic lead, contributing to its effective prophylaxis of NNK-induced lung carcinogenesis. Systems biology approaches with a detailed temporal dissection of timing of DHM intake versus NNK exposure are warranted to fill the knowledge gaps concerning the DNA damage-driven mechanisms and DNA damage-independent mechanisms to optimize the implementation strategy for DHM to achieve maximal lung cancer chemoprevention.


Assuntos
Neoplasias Pulmonares , Nitrosaminas , Animais , Carcinogênese/induzido quimicamente , Carcinogênese/metabolismo , Carcinógenos/metabolismo , Carcinógenos/toxicidade , Proteínas Quinases Dependentes de AMP Cíclico/efeitos adversos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Adutos de DNA/metabolismo , Dano ao DNA , Pulmão/metabolismo , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/prevenção & controle , Camundongos , Nitrosaminas/metabolismo , Nitrosaminas/toxicidade , Pironas
10.
Carcinogenesis ; 43(2): 140-149, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-34888630

RESUMO

Early detection of biomarkers in lung cancer is one of the best preventive strategies. Although many attempts have been made to understand the early events of lung carcinogenesis including cigarette smoking (CS) induced lung carcinogenesis, the integrative metabolomics and next-generation sequencing approaches are lacking. In this study, we treated the female A/J mice with CS carcinogen 4-[methyl(nitroso)amino]-1-(3-pyridinyl)-1-butanone (NNK) and naturally occurring organosulphur compound, diallyl sulphide (DAS) for 2 and 4 weeks after NNK injection and examined the metabolomic and DNA CpG methylomic and RNA transcriptomic profiles in the lung tissues. NNK drives metabolic changes including mitochondrial tricarboxylic acid (TCA) metabolites and pathways including Nicotine and its derivatives like nicotinamide and nicotinic acid. RNA-seq analysis and Reactome pathway analysis demonstrated metabolism pathways including Phase I and II drug metabolizing enzymes, mitochondrial oxidation and signaling kinase activation pathways modulated in a sequential manner. DNA CpG methyl-seq analyses showed differential global methylation patterns of lung tissues from week 2 versus week 4 in A/J mice including Adenylate Cyclase 6 (ADCY6), Ras-related C3 botulinum toxin substrate 3 (Rac3). Oral DAS treatment partially reversed some of the mitochondrial metabolic pathways, global methylation and transcriptomic changes during this early lung carcinogenesis stage. In summary, our result provides insights into CS carcinogen NNK's effects on driving alterations of metabolomics, epigenomics and transcriptomics and the chemopreventive effect of DAS in early stages of sequential lung carcinogenesis in A/J mouse model.


Assuntos
Neoplasias Pulmonares , Nitrosaminas , Animais , Feminino , Camundongos , Compostos Alílicos , Butanonas/metabolismo , Carcinogênese , Carcinógenos/metabolismo , Carcinógenos/toxicidade , DNA/metabolismo , Epigênese Genética , Epigenômica , Pulmão/metabolismo , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/prevenção & controle , Camundongos Endogâmicos , Nitrosaminas/metabolismo , Sulfetos , Nicotiana/efeitos adversos
11.
Chem Res Toxicol ; 35(11): 2068-2084, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36302168

RESUMO

N-Nitrosamines (NAs) are a class of reactive organic chemicals that humans may be exposed to from environmental sources, food but also impurities in pharmaceutical preparations. Some NAs were identified as DNA-reactive mutagens and many of those have been classified as probable human carcinogens. Beyond high-potency mutagenic carcinogens that need to be strictly controlled, NAs of low potency need to be considered for risk assessment as well. NA impurities and nitrosylated products of active pharmaceutical ingredients (APIs) often arise from production processes or degradation. Most NAs require metabolic activation to ultimately become carcinogens, and their activation can be appropriately described by first-principles computational chemistry approaches. To this end, we treat NA-induced DNA alkylation as a series of subsequent association and dissociation reaction steps that can be calculated stringently by density functional theory (DFT), including α-hydroxylation, proton transfer, hydroxyl elimination, direct SN2/SNAr DNA alkylation, competing hydrolysis and SN1 reactions. Both toxification and detoxification reactions are considered. The activation reactions are modeled by DFT at a high level of theory with an appropriate solvent model to compute Gibbs free energies of the reactions (thermodynamical effects) and activation barriers (kinetic effects). We study congeneric series of aliphatic and cyclic NAs to identify trends. Overall, this work reveals detailed insight into mechanisms of activation for NAs, suggesting that individual steric and electronic factors have directing and rate-determining influence on the formation of carbenium ions as the ultimate pro-mutagens and thus carcinogens. Therefore, an individual risk assessment of NAs is suggested, as exemplified for the complex API-like 4-(N-nitroso-N-methyl)aminoantipyrine which is considered as low-potency NA by in silico prediction.


Assuntos
Nitrosaminas , Humanos , Nitrosaminas/metabolismo , Carcinógenos/metabolismo , Mutagênicos , DNA , Preparações Farmacêuticas
12.
Phys Chem Chem Phys ; 24(18): 10667-10683, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35502640

RESUMO

Among the numerous agents that damage DNA, tobacco products remain one of the most lethal and result in the most diverse set of DNA lesions. This perspective aims to provide an overview of computational work conducted to complement experimental biochemical studies on the mutagenicity of adducts derived from the most potent tobacco carcinogen, namely 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (nicotine-derived nitrosaminoketone or NNK). Lesions ranging from the smallest methylated thymine derivatives to the larger, flexible pyridyloxobutyl (POB) guanine adducts are considered. Insights are obtained from density functional theory (DFT) calculations and molecular dynamics (MD) simulations into the damaged nucleobase and nucleoside structures, the accommodation of the lesions in the active site of key human polymerases, the intrinsic base pairing potentials of the adducts, and dNTP incorporation opposite the lesions. Overall, the computational data provide atomic level information that can rationalize the differential mutagenic properties of tobacco-derived lesions and uncover important insights into the impact of adduct size, nucleobase, position, and chemical composition of the bulky moiety.


Assuntos
Nitrosaminas , Produtos do Tabaco , Carcinógenos/química , Carcinógenos/metabolismo , DNA/química , Adutos de DNA , Humanos , Mutagênicos , Nitrosaminas/química , Nitrosaminas/metabolismo , Nicotiana/química , Nicotiana/genética , Nicotiana/metabolismo
13.
Appl Microbiol Biotechnol ; 106(11): 4129-4144, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35604437

RESUMO

Smokeless tobacco product (STP) consumption is a significant public health threat across the globe. STPs are not only a storehouse of carcinogens and toxicants but also harbor microbes that aid in the conversion of tobacco alkaloids to carcinogenic tobacco-specific nitrosamines (TSNAs), thereby posing a further threat to the health of its consumers. The present study analyzed the bacterial diversity of popular dry and loose STPs by 16S rRNA gene sequencing. This NGS-based investigation revealed four dominant phyla Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria and identified 549 genera, Prevotella, Bacteroides, and Lactobacillus constituting the core bacteriome of these STPs. The most significantly diverse bacteriome profile was displayed by the loose STP Mainpuri kapoori. The study further predicted the functional attributes of the prevalent genera by Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) algorithm. Genes encoding for nitrate and nitrite reduction and transport enzymes, antibiotic resistance, multi-drug transporters and efflux pumps, secretion of endo- and exotoxin, and other pro-inflammatory molecules were identified. The loose STPs showed the highest level of nitrogen metabolism genes which can contribute to the synthesis of TSNAs. This study reveals the bacteriome of Indian domestic loose STPs that stagger behind in manufacturing and storage stringencies. Our results raise an alarm that the consumption of STPs harboring pathogenic genera can potentially lead to the onset of several oral and systemic diseases. Nevertheless, an in-depth correlation analysis of the microbial diversity of STPs and their elicit impact on consumer health is warranted. KEY POINTS: • Smokeless tobacco harbors bacteria that aid in synthesis of carcinogenic nitrosamines. • Most diverse bacteriome profile was displayed by loose smokeless tobacco products. • Pathogenic genera in these products can harm the oral and systemic health of users.


Assuntos
Nitrosaminas , Tabaco sem Fumaça , Bactérias/metabolismo , Carcinógenos/metabolismo , Índia , Nitrosaminas/análise , Nitrosaminas/metabolismo , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Tabaco sem Fumaça/microbiologia
14.
Regul Toxicol Pharmacol ; 135: 105247, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35998738

RESUMO

Under ICH M7, impurities are assessed using the bacterial reverse mutation assay (i.e., Ames test) when predicted positive using in silico methodologies followed by expert review. N-Nitrosamines (NAs) have been of recent concern as impurities in pharmaceuticals, mainly because of their potential to be highly potent mutagenic carcinogens in rodent bioassays. The purpose of this analysis was to determine the sensitivity of the Ames assay to predict the carcinogenic outcome with curated proprietary Vitic (n = 131) and Leadscope (n = 70) databases. NAs were selected if they had corresponding rodent carcinogenicity assays. Overall, the sensitivity/specificity of the Ames assay was 93-97% and 55-86%, respectively. The sensitivity of the Ames assay was not significantly impacted by plate incorporation (84-89%) versus preincubation (82-89%). Sensitivity was not significantly different between use of rat and hamster liver induced S9 (80-93% versus 77-96%). The sensitivity of the Ames is high when using DMSO as a solvent (87-88%). Based on the analysis of these databases, the Ames assay conducted under OECD 471 guidelines is highly sensitive for detecting the carcinogenic hazards of NAs.


Assuntos
Dimetil Sulfóxido , Nitrosaminas , Animais , Bactérias , Bioensaio , Carcinógenos/toxicidade , Cricetinae , Mutação , Nitrosaminas/metabolismo , Nitrosaminas/toxicidade , Preparações Farmacêuticas , Ratos , Roedores/metabolismo , Solventes
15.
Angew Chem Int Ed Engl ; 61(3): e202112782, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34694047

RESUMO

The local delivery of gaseous signaling molecules (GSMs) has shown promising therapeutic potential. However, although GSMs have a subtle interplay in physiological and pathological conditions, the co-delivery of different GSMs for therapeutic purposes remains unexplored. Herein, we covalently graft a nitric oxide (NO)-releasing N-nitrosamine moiety onto the carbon monoxide (CO)-releasing 3-hydroxyflavone (3-HF) antenna, resulting in the first NO/CO-releasing donor. Under visible light irradiation, photo-mediated co-release of NO and CO reveals a superior antimicrobial effect toward Gram-positive bacteria with a combination index of 0.053. The synergy of NO and CO hyperpolarizes and permeabilizes bacterial membranes, which, however, shows negligible hemolysis and no evident toxicity toward normal mammalian cells. Moreover, the co-release of NO and CO can efficiently treat MRSA infection in a murine skin wound model, showing a better therapeutic capacity than vancomycin.


Assuntos
Antibacterianos/farmacologia , Flavonoides/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Nitrosaminas/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Antibacterianos/química , Antibacterianos/metabolismo , Monóxido de Carbono/química , Monóxido de Carbono/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Flavonoides/química , Flavonoides/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Nitrosaminas/química , Nitrosaminas/metabolismo , Transdução de Sinais
16.
Chem Res Toxicol ; 34(4): 1004-1015, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33720703

RESUMO

The International Agency for Research on Cancer has classified the tobacco-specific nitrosamines N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) as "carcinogenic to humans" (Group 1). To exert its carcinogenicity, NNN requires metabolic activation to form reactive intermediates which alkylate DNA. Previous studies have identified cytochrome P450-catalyzed 2'-hydroxylation and 5'-hydroxylation of NNN as major metabolic pathways, with preferential activation through the 5'-hydroxylation pathway in some cultured human tissues and patas monkeys. So far, the only DNA adducts identified from NNN 5'-hydroxylation in rat tissues are 2-[2-(3-pyridyl)-N-pyrrolidinyl]-2'-deoxyinosine (Py-Py-dI), 6-[2-(3-pyridyl)-N-pyrrolidinyl]-2'-deoxynebularine (Py-Py-dN), and N6-[4-hydroxy-1-(pyridine-3-yl)butyl]-2'-deoxyadenosine (N6-HPB-dAdo) after reduction. To expand the DNA adduct panel formed by NNN 5'-hydroxylation and identify possible activation biomarkers of NNN metabolism, we investigated the formation of dAdo-derived adducts using a new highly sensitive and specific liquid chromatography-nanoelectrospray ionization-high-resolution tandem mass spectrometry method. Two types of NNN-specific dAdo-derived adducts, N6-[5-(3-pyridyl)tetrahydrofuran-2-yl]-2'-deoxyadenosine (N6-Py-THF-dAdo) and 6-[2-(3-pyridyl)-N-pyrrolidinyl-5-hydroxy]-2'-deoxynebularine (Py-Py(OH)-dN), were observed for the first time in calf thymus DNA incubated with 5'-acetoxyNNN. More importantly, Py-Py(OH)-dN was also observed in relatively high abundance in the liver and lung DNA of rats treated with racemic NNN in the drinking water for 3 weeks. These new adducts were characterized using authentic synthesized standards. Both NMR and MS data agreed well with the proposed structures of N6-Py-THF-dAdo and Py-Py(OH)-dN. Reduction of Py-Py(OH)-dN by NaBH3CN led to the formation of Py-Py-dN both in vitro and in vivo, which was confirmed by its isotopically labeled internal standard [pyridine-d4]Py-Py-dN. The NNN-specific dAdo adducts Py-THF-dAdo and Py-Py(OH)-dN formed by NNN 5'-hydroxylation provide a more comprehensive understanding of the mechanism of DNA adduct formation by NNN.


Assuntos
Adutos de DNA/metabolismo , DNA/química , Desoxiadenosinas/biossíntese , Fígado/química , Pulmão/química , Nitrosaminas/metabolismo , Animais , DNA/metabolismo , Adutos de DNA/química , Desoxiadenosinas/química , Fígado/metabolismo , Pulmão/metabolismo , Estrutura Molecular , Nitrosaminas/química , Ratos
17.
Chem Res Toxicol ; 34(4): 992-1003, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33705110

RESUMO

The tobacco-specific nitrosamines N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) are considered to be two of the most important carcinogens in unburned tobacco and its smoke. They readily cause tumors in laboratory animals and are classified as "carcinogenic to humans" by the International Agency for Research on Cancer. DNA adduct formation by these two carcinogens is believed to play a critical role in tobacco carcinogenesis. Among all the DNA adducts formed by NNN and NNK, 2'-deoxyadenosine (dAdo)-derived adducts have not been fully characterized. In the study reported here, we characterized the formation of N6-[4-(3-pyridyl)-4-oxo-1-butyl]-2'-deoxyadenosine (N6-POB-dAdo) and its reduced form N6-PHB-dAdo formed by NNN 2'-hydroxylation in rat liver and lung DNA. More importantly, we characterized a new dAdo adduct N6-[4-hydroxy-1-(pyridine-3-yl)butyl]-2'-deoxyadenosine (N6-HPB-dAdo) formed after NaBH3CN or NaBH4 reduction both in vitro in calf thymus DNA reacted with 5'-acetoxy-N'-nitrosonornicotine and in vivo in rat liver and lung upon treatment with NNN. This adduct was specifically formed by NNN 5'-hydroxylation. Chemical standards of N6-HPB-dAdo and the corresponding isotopically labeled internal standard [pyridine-d4]N6-HPB-dAdo were synthesized using a four-step method. Both NMR and high-resolution mass spectrometry data agreed well with the proposed structure of N6-HPB-dAdo. The new adduct coeluted with the synthesized internal standard under various LC conditions. Its product ion patterns of MS2 and MS3 transitions were also consistent with the proposed fragmentation patterns. Chromatographic resolution of the two diastereomers of N6-HPB-dAdo was successfully achieved. Quantitation suggested a dose-dependent response of the levels of this new adduct in the liver and lung of rats treated with NNN. However, its level was lower than that of 2-[2-(3-pyridyl)-N-pyrrolidinyl]-2'-deoxyinosine, a previously reported dGuo adduct that is also formed from NNN 5'-hydroxylation. The identification of N6-HPB-dAdo in this study leads to new insights pertinent to the mechanism of carcinogenesis by NNN and to the development of biomarkers of NNN metabolic activation.


Assuntos
Adutos de DNA/análise , DNA/química , Desoxiadenosinas/análise , Fígado/química , Pulmão/química , Nitrosaminas/química , Animais , DNA/metabolismo , Adutos de DNA/metabolismo , Desoxiadenosinas/metabolismo , Fígado/metabolismo , Pulmão/metabolismo , Estrutura Molecular , Nitrosaminas/metabolismo , Proibitinas , Ratos
18.
Chem Res Toxicol ; 33(2): 436-447, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-31889441

RESUMO

As an abundantly present tobacco component, carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) has also been detected in atmospheric particulate matter, suggesting the ineluctable exposure risk of this contaminant. NNK metabolic activation by cytochrome P450 enzymes (CYPs) is a prerequisite to exerting its genotoxicity, but the metabolic regioselectivity and mechanism are still unknown. Here the binding feature and regioselectivity of CYPs 1A1, 1A2, 2A6, 2A13, 2B6, and 3A4 toward NNK are unraveled through molecular docking and molecular dynamics (MD) simulations. Binding mode analyses reveal that 1A2 and 2B6 have definite preferences for NNK α-methyl hydroxylation, while the other four CYPs preferentially catalyze α-methylene hydroxylation. The binding affinities between NNK and CYPs evaluated by the binding free energies follow the order 2A13 > 2B6 > 1A2 > 2A6 > 1A1 > 3A4. Density functional theory (DFT) calculations are further performed to characterize the mechanism of NNK biotransformation. Results show that the α-hydroxyNNK generated from α-hydroxylation may undergo nonenzymatic decomposition to form genotoxic diazohydroxide and aldehyde, and further oxidation by P450 to yield nitrosamide, which mainly contributes to NNK toxification capacity. Meanwhile the pyridine N-oxidation and denitrosation of Cα-radical intermediate play an important role in detoxifying NNK. Overall, the present study provides the molecular basis for CYP-catalyzed regioselectivity and mechanism of NNK biotransformation, which can enable the identification of metabolites for assessing the health risk of individual NNK exposure.


Assuntos
Carcinógenos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Nitrosaminas/metabolismo , Carcinógenos/química , Teoria da Densidade Funcional , Modelos Moleculares , Estrutura Molecular , Nitrosaminas/química , Estereoisomerismo , Termodinâmica
19.
Chem Res Toxicol ; 33(8): 2072-2086, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32672941

RESUMO

Nitrosamine metabolites resulting from cigarette smoking and E-cigarette (E-cig) vaping cause DNA damage that can lead to genotoxicity. While DNA adducts of metabolites of nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N-nitrosonornicotine (NNN) are well-known tobacco-related cancer biomarkers, only a few studies implicate NNN and NNK in DNA oxidation in humans. NNK and NNN were found in the urine of E-cigarette users who never smoked cigarettes. This paper proposes the first chemical pathways of DNA oxidation driven by NNK and NNN metabolites in redox reactions with Cu2+ and NADPH leading to reactive oxygen species (ROS). A microfluidic array with thin films of DNA and metabolic enzymes that make metabolites of NNN and NNK in the presence of Cu2+ and NADPH was used to estimate relative rates of DNA oxidation. Detection by electrochemiluminescence (ECL) employed a new ECL dye [Os(tpy-benz-COOH)2]2+ that is selective for and sensitive to the primary DNA oxidation product 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodG) in DNA. Enzyme-DNA films on magnetic beads were used to produce nitrosamine metabolites that enter ROS-forming redox cycles with Cu2+ and NADPH, and liquid chromatography-mass spectrometry (LC-MS) was used to quantify 8-oxodG and identify metabolites. ROS were detected by optical sensors. Metabolites of NNK and NNN + Cu2+ + NADPH generated relatively high rates of DNA oxidation. Lung is the exposure route in smoking and vaping, human lung tissue contains Cu2+ and NADPH, and lung microsomal enzymes gave the highest rates of DNA oxidation in this study. Also, E-cigarette vapor contains 6-fold more copper than that in cigarette smoke, which could exacerbate DNA oxidation.


Assuntos
Cobre/metabolismo , DNA/metabolismo , Sistemas Eletrônicos de Liberação de Nicotina , Nicotiana/metabolismo , Nitrosaminas/metabolismo , Cromatografia Líquida de Alta Pressão , Humanos , Espectrometria de Massas , Técnicas Analíticas Microfluídicas , Estrutura Molecular , Nitrosaminas/química , Oxirredução
20.
Biotechnol Bioeng ; 117(1): 17-29, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31520472

RESUMO

Enzymes are biological catalysts with many industrial applications, but natural enzymes are usually unsuitable for industrial processes because they are not optimized for the process conditions. The properties of enzymes can be improved by directed evolution, which involves multiple rounds of mutagenesis and screening. By using mathematical models to predict the structure-activity relationship of an enzyme, and by defining the optimal combination of mutations in silico, we can significantly reduce the number of bench experiments needed, and hence the time and investment required to develop an optimized product. Here, we applied our innovative sequence-activity relationship methodology (innov'SAR) to improve glucose oxidase activity in the presence of different mediators across a range of pH values. Using this machine learning approach, a predictive model was developed and the optimal combination of mutations was determined, leading to a glucose oxidase mutant (P1) with greater specificity for the mediators ferrocene-methanol (12-fold) and nitrosoaniline (8-fold), compared to the wild-type enzyme, and better performance in three pH-adjusted buffers. The kcat /KM ratio of P1 increased by up to 121 folds compared to the wild type enzyme at pH 5.5 in the presence of ferrocene methanol.


Assuntos
Evolução Molecular Direcionada/métodos , Glucose Oxidase , Aprendizado de Máquina , Mutagênese Sítio-Dirigida/métodos , Mutação , Sequência de Aminoácidos , Compostos Ferrosos/metabolismo , Glucose/metabolismo , Glucose Oxidase/química , Glucose Oxidase/genética , Glucose Oxidase/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Modelos Estatísticos , Nitrosaminas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA