Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.446
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 184(23): 5824-5837.e15, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34672953

RESUMO

The human mitochondrial genome encodes thirteen core subunits of the oxidative phosphorylation system, and defects in mitochondrial gene expression lead to severe neuromuscular disorders. However, the mechanisms of mitochondrial gene expression remain poorly understood due to a lack of experimental approaches to analyze these processes. Here, we present an in vitro system to silence translation in purified mitochondria. In vitro import of chemically synthesized precursor-morpholino hybrids allows us to target translation of individual mitochondrial mRNAs. By applying this approach, we conclude that the bicistronic, overlapping ATP8/ATP6 transcript is translated through a single ribosome/mRNA engagement. We show that recruitment of COX1 assembly factors to translating ribosomes depends on nascent chain formation. By defining mRNA-specific interactomes for COX1 and COX2, we reveal an unexpected function of the cytosolic oncofetal IGF2BP1, an RNA-binding protein, in mitochondrial translation. Our data provide insight into mitochondrial translation and innovative strategies to investigate mitochondrial gene expression.


Assuntos
Regulação da Expressão Gênica , Inativação Gênica , Genes Mitocondriais , Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons/genética , Células HEK293 , Humanos , Proteínas Mitocondriais/metabolismo , Oligonucleotídeos/química , Fosforilação Oxidativa , Biossíntese de Proteínas , Subunidades Proteicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Mitocondrial/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo
2.
Cell ; 171(6): 1453-1467.e13, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29153834

RESUMO

We describe a multiplex genome engineering technology in Saccharomyces cerevisiae based on annealing synthetic oligonucleotides at the lagging strand of DNA replication. The mechanism is independent of Rad51-directed homologous recombination and avoids the creation of double-strand DNA breaks, enabling precise chromosome modifications at single base-pair resolution with an efficiency of >40%, without unintended mutagenic changes at the targeted genetic loci. We observed the simultaneous incorporation of up to 12 oligonucleotides with as many as 60 targeted mutations in one transformation. Iterative transformations of a complex pool of oligonucleotides rapidly produced large combinatorial genomic diversity >105. This method was used to diversify a heterologous ß-carotene biosynthetic pathway that produced genetic variants with precise mutations in promoters, genes, and terminators, leading to altered carotenoid levels. Our approach of engineering the conserved processes of DNA replication, repair, and recombination could be automated and establishes a general strategy for multiplex combinatorial genome engineering in eukaryotes.


Assuntos
Engenharia Genética/métodos , Saccharomyces cerevisiae/genética , Replicação do DNA , Escherichia coli/genética , Edição de Genes , Oligonucleotídeos/química
3.
Cell ; 164(4): 792-804, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26871636

RESUMO

In recently developed approaches for high-resolution imaging within intact tissue, molecular characterization over large volumes has been largely restricted to labeling of proteins. But volumetric nucleic acid labeling may represent a far greater scientific and clinical opportunity, enabling detection of not only diverse coding RNA variants but also non-coding RNAs. Moreover, scaling immunohistochemical detection to large tissue volumes has limitations due to high cost, limited renewability/availability, and restricted multiplexing capability of antibody labels. With the goal of versatile, high-content, and scalable molecular phenotyping of intact tissues, we developed a method using carbodiimide-based chemistry to stably retain RNAs in clarified tissue, coupled with amplification tools for multiplexed detection. The resulting technology enables robust measurement of activity-dependent transcriptional signatures, cell-identity markers, and diverse non-coding RNAs in rodent and human tissue volumes. The growing set of validated probes is deposited in an online resource for nucleating related developments from across the scientific community.


Assuntos
Química Encefálica , Hibridização In Situ/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA/análise , Transcriptoma , Adolescente , Animais , Cianatos/química , Etildimetilaminopropil Carbodi-Imida/química , Feminino , Humanos , Masculino , Maleimidas/química , Camundongos , Pessoa de Meia-Idade , Oligonucleotídeos/química , Succinimidas/química
4.
Nature ; 622(7982): 292-300, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37704731

RESUMO

The past decades have witnessed the evolution of electronic and photonic integrated circuits, from application specific to programmable1,2. Although liquid-phase DNA circuitry holds the potential for massive parallelism in the encoding and execution of algorithms3,4, the development of general-purpose DNA integrated circuits (DICs) has yet to be explored. Here we demonstrate a DIC system by integration of multilayer DNA-based programmable gate arrays (DPGAs). We find that the use of generic single-stranded oligonucleotides as a uniform transmission signal can reliably integrate large-scale DICs with minimal leakage and high fidelity for general-purpose computing. Reconfiguration of a single DPGA with 24 addressable dual-rail gates can be programmed with wiring instructions to implement over 100 billion distinct circuits. Furthermore, to control the intrinsically random collision of molecules, we designed DNA origami registers to provide the directionality for asynchronous execution of cascaded DPGAs. We exemplify this by a quadratic equation-solving DIC assembled with three layers of cascade DPGAs comprising 30 logic gates with around 500 DNA strands. We further show that integration of a DPGA with an analog-to-digital converter can classify disease-related microRNAs. The ability to integrate large-scale DPGA networks without apparent signal attenuation marks a key step towards general-purpose DNA computing.


Assuntos
Computadores Moleculares , DNA , Algoritmos , DNA/química , Oligonucleotídeos/química , MicroRNAs/classificação , Doença/genética
5.
Cell ; 152(1-2): 132-43, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-23332751

RESUMO

The sequence-specific transcription factor NF-Y binds the CCAAT box, one of the sequence elements most frequently found in eukaryotic promoters. NF-Y is composed of the NF-YA and NF-YB/NF-YC subunits, the latter two hosting histone-fold domains (HFDs). The crystal structure of NF-Y bound to a 25 bp CCAAT oligonucleotide shows that the HFD dimer binds to the DNA sugar-phosphate backbone, mimicking the nucleosome H2A/H2B-DNA assembly. NF-YA both binds to NF-YB/NF-YC and inserts an α helix deeply into the DNA minor groove, providing sequence-specific contacts to the CCAAT box. Structural considerations and mutational data indicate that NF-YB ubiquitination at Lys138 precedes and is equivalent to H2B Lys120 monoubiquitination, important in transcriptional activation. Thus, NF-Y is a sequence-specific transcription factor with nucleosome-like properties of nonspecific DNA binding and helps establish permissive chromatin modifications at CCAAT promoters. Our findings suggest that other HFD-containing proteins may function in similar ways.


Assuntos
Fator de Ligação a CCAAT/química , Sequência de Aminoácidos , Animais , Fator de Ligação a CCAAT/metabolismo , Cristalografia por Raios X , DNA/química , DNA/genética , DNA/metabolismo , Proteínas de Choque Térmico HSP72/genética , Histonas/química , Humanos , Dados de Sequência Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Oligonucleotídeos/química , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Alinhamento de Sequência , Ubiquitinação
6.
RNA ; 30(6): 710-727, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38423625

RESUMO

All kinds of RNA molecules can be produced by in vitro transcription using T7 RNA polymerase using DNA templates obtained by solid-phase chemical synthesis, primer extension, PCR, or DNA cloning. The oligonucleotide design, however, is a challenge to nonexperts as this relies on a set of rules that have been established empirically over time. Here, we describe a Python program to facilitate the rational design of oligonucleotides, calculated with kinetic parameters for enhanced in vitro transcription (ROCKET). The Python tool uses thermodynamic parameters, performs folding-energy calculations, and selects oligonucleotides suitable for the polymerase extension reaction. These oligonucleotides improve yields of template DNA. With the oligonucleotides selected by the program, the tRNA transcripts can be prepared by a one-pot reaction of the DNA polymerase extension reaction and the transcription reaction. Also, the ROCKET-selected oligonucleotides provide greater transcription yields than that from oligonucleotides selected by Primerize, a leading software for designing oligonucleotides for in vitro transcription, due to the enhancement of template DNA synthesis. Apart from over 50 tRNA genes tested, an in vitro transcribed self-cleaving ribozyme was found to have catalytic activity. In addition, the program can be applied to the synthesis of mRNA, demonstrating the wide applicability of the ROCKET software.


Assuntos
Oligonucleotídeos , Software , Transcrição Gênica , Oligonucleotídeos/química , Oligonucleotídeos/genética , Oligonucleotídeos/síntese química , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Catalítico/genética , RNA Catalítico/metabolismo , RNA Catalítico/química , Termodinâmica , RNA de Transferência/genética , RNA de Transferência/química , RNA de Transferência/metabolismo , Cinética , RNA Mensageiro/genética , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
7.
Nucleic Acids Res ; 52(1): 49-58, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37971296

RESUMO

Conjugates of therapeutic oligonucleotides (ONs) including peptide conjugates, provide a potential solution to the major challenge of specific tissue delivery faced by this class of drugs. Conjugations are often positioned terminal at the ONs, although internal placement of other chemical modifications are known to be of critical importance. The introduction of internal conjugation handles in chemically modified ONs require highly specialized and expensive nucleoside phosphoramidites. Here, we present a method for synthesizing a library of peptide-siRNA conjugates by conjugation at internal phosphorous positions via sulfonylphosphoramidate modifications incorporated into the sense strand. The sulfonylphosphoramidate modification offers benefits as it can be directly incorporated into chemically modified ONs by simply changing the oxidation step during synthesis, and furthermore holds the potential to create multifunctionalized therapeutic ONs. We have developed a workflow using a novel pH-controlled amine-to-amine linker that yields peptide-siRNA conjugates linked via amide bonds, and we have synthesized conjugates between GLP1 peptides and a HPRT1 siRNA as a model system. The in vitro activity of the conjugates was tested by GLP1R activity and knockdown of the HPRT1 gene. We found that conjugation near the 3'-end is more favorable than certain central internal positions and different internal conjugation strategies were compared.


Assuntos
Oligonucleotídeos , Peptídeos , RNA Interferente Pequeno , Aminas/química , Oligonucleotídeos/química , Peptídeos/química , RNA Interferente Pequeno/química
8.
Nucleic Acids Res ; 52(5): 2174-2187, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38348869

RESUMO

Oligonucleotide hybridization is crucial in various biological, prebiotic and nanotechnological processes, including gene regulation, non-enzymatic primer extension and DNA nanodevice assembly. Although extensive research has focused on the thermodynamics and kinetics of nucleic acid hybridization, the behavior of complex mixtures and the outcome of competition for target binding remain less well understood. In this study, we investigate the impact of mismatches and bulges in a 12 bp DNA or RNA duplex on its association (kon) and dissociation (koff) kinetics. We find that such defects have relatively small effects on the association kinetics, while the dissociation kinetics vary in a position-dependent manner by up to 6 orders of magnitude. Building upon this observation, we explored a competition scenario involving multiple oligonucleotides, and observed a transient low specificity of probe hybridization to fully versus partially complementary targets in solution. We characterize these long-lived metastable states and their evolution toward equilibrium, and show that sufficiently long-lived mis-paired duplexes can serve as substrates for prebiotically relevant chemical copying reactions. Our results suggest that transient low accuracy states may spontaneously emerge within all complex nucleic acid systems comprising a large enough number of competing strands, with potential repercussions for gene regulation in the realm of modern biology and the prebiotic preservation of genetic information.


Assuntos
Hibridização de Ácido Nucleico , Oligonucleotídeos , DNA/química , Cinética , Oligonucleotídeos/genética , Oligonucleotídeos/química , RNA/química , Termodinâmica
9.
Nucleic Acids Res ; 52(15): 9062-9075, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-38869058

RESUMO

Colorimetric assays in which the color of a solution changes in the presence of an input provide a simple and inexpensive way to monitor experimental readouts. In this study we used in vitro selection to identify a self-phosphorylating kinase deoxyribozyme that produces a colorimetric signal by converting the colorless substrate pNPP into the yellow product pNP. The minimized catalytic core, sequence requirements, secondary structure, and buffer requirements of this deoxyribozyme, which we named Apollon, were characterized using a variety of techniques including reselection experiments, high-throughput sequencing, comparative analysis, biochemical activity assays, and NMR. A bimolecular version of Apollon catalyzed multiple turnover phosphorylation and amplified the colorimetric signal. Engineered versions of Apollon could detect oligonucleotides with specific sequences as well as several different types of nucleases in homogenous assays that can be performed in a single tube without the need for washes or purifications. We anticipate that Apollon will be particularly useful to reduce costs in high-throughput screens and for applications in which specialized equipment is not available.


Assuntos
Colorimetria , DNA Catalítico , DNA Catalítico/química , DNA Catalítico/metabolismo , Colorimetria/métodos , Fosforilação , Oligonucleotídeos/química , Sequenciamento de Nucleotídeos em Larga Escala , Conformação de Ácido Nucleico , Especificidade por Substrato
10.
Nucleic Acids Res ; 52(10): 5451-5464, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38726871

RESUMO

The emergence of RNA on the early Earth is likely to have been influenced by chemical and physical processes that acted to filter out various alternative nucleic acids. For example, UV photostability is thought to have favored the survival of the canonical nucleotides. In a recent proposal for the prebiotic synthesis of the building blocks of RNA, ribonucleotides share a common pathway with arabino- and threo-nucleotides. We have therefore investigated non-templated primer extension with 2-aminoimidazole-activated forms of these alternative nucleotides to see if the synthesis of the first oligonucleotides might have been biased in favor of RNA. We show that non-templated primer extension occurs predominantly through 5'-5' imidazolium-bridged dinucleotides, echoing the mechanism of template-directed primer extension. Ribo- and arabino-nucleotides exhibited comparable rates and yields of non-templated primer extension, whereas threo-nucleotides showed lower reactivity. Competition experiments confirmed the bias against the incorporation of threo-nucleotides. The incorporation of an arabino-nucleotide at the end of the primer acts as a chain terminator and blocks subsequent extension. These biases, coupled with potentially selective prebiotic synthesis, and the templated copying that is known to favour the incorporation of ribonucleotides, provide a plausible model for the effective exclusion of arabino- and threo-nucleotides from primordial oligonucleotides.


Assuntos
Nucleotídeos , RNA , Ribonucleotídeos , RNA/química , Nucleotídeos/química , Ribonucleotídeos/química , Origem da Vida , Moldes Genéticos , Imidazóis/química , Oligonucleotídeos/química
11.
Nucleic Acids Res ; 52(5): 2686-2697, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38281138

RESUMO

We present here the high-resolution structure of an antiparallel DNA triplex in which a monomer of para-twisted intercalating nucleic acid (para-TINA: (R)-1-O-[4-(1-pyrenylethynyl)phenylmethyl]glycerol) is covalently inserted as a bulge in the third strand of the triplex. TINA is a potent modulator of the hybridization properties of DNA sequences with extremely useful properties when conjugated in G-rich oligonucleotides. The insertion of para-TINA between two guanines of the triplex imparts a high thermal stabilization (ΔTM = 9ºC) to the structure and enhances the quality of NMR spectra by increasing the chemical shift dispersion of proton signals near the TINA location. The structural determination reveals that TINA intercalates between two consecutive triads, causing only local distortions in the structure. The two aromatic moieties of TINA are nearly coplanar, with the phenyl ring intercalating between the flanking guanine bases in the sequence, and the pyrene moiety situated between the Watson-Crick base pair of the two first strands. The precise position of TINA within the triplex structure reveals key TINA-DNA interactions, which explains the high stabilization observed and will aid in the design of new and more efficient binders to DNA.


Assuntos
DNA , Glicerol , Conformação de Ácido Nucleico , Pirenos , DNA/química , Guanina , Hibridização de Ácido Nucleico , Oligonucleotídeos/química , Pirenos/química , Glicerol/análogos & derivados , Glicerol/química
12.
Nucleic Acids Res ; 52(6): 2836-2847, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38412249

RESUMO

The field of synthetic nucleic acids with novel backbone structures [xenobiotic nucleic acids (XNAs)] has flourished due to the increased importance of XNA antisense oligonucleotides and aptamers in medicine, as well as the development of XNA processing enzymes and new XNA genetic materials. Molecular modeling on XNA structures can accelerate rational design in the field of XNAs as it contributes in understanding and predicting how changes in the sugar-phosphate backbone impact on the complementation properties of the nucleic acids. To support the development of novel XNA polymers, we present a first-in-class open-source program (Ducque) to build duplexes of nucleic acid analogs with customizable chemistry. A detailed procedure is described to extend the Ducque library with new user-defined XNA fragments using quantum mechanics (QM) and to generate QM-based force field parameters for molecular dynamics simulations within standard packages such as AMBER. The tool was used within a molecular modeling workflow to accurately reproduce a selection of experimental structures for nucleic acid duplexes with ribose-based as well as non-ribose-based nucleosides. Additionally, it was challenged to build duplexes of morpholino nucleic acids bound to complementary RNA sequences.


Assuntos
Simulação de Dinâmica Molecular , Morfolinos , Ácidos Nucleicos , RNA , Software , Morfolinos/química , Conformação de Ácido Nucleico , Ácidos Nucleicos/química , Oligonucleotídeos/química , RNA/química , Software/normas
13.
Nucleic Acids Res ; 52(4): 1896-1908, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38164970

RESUMO

We used structure guided mutagenesis and directed enzyme evolution to alter the specificity of the CG specific bacterial DNA (cytosine-5) methyltransferase M.MpeI. Methylation specificity of the M.MpeI variants was characterized by digestions with methylation sensitive restriction enzymes and by measuring incorporation of tritiated methyl groups into double-stranded oligonucleotides containing single CC, CG, CA or CT sites. Site specific mutagenesis steps designed to disrupt the specific contacts between the enzyme and the non-substrate base pair of the target sequence (5'-CG/5'-CG) yielded M.MpeI variants with varying levels of CG specific and increasing levels of CA and CC specific MTase activity. Subsequent random mutagenesis of the target recognizing domain coupled with selection for non-CG specific methylation yielded a variant, which predominantly methylates CC dinucleotides, has very low activity on CG and CA sites, and no activity on CT sites. This M.MpeI variant contains a one amino acid deletion (ΔA323) and three substitutions (N324G, R326G and E305N) in the target recognition domain. The mutant enzyme has very strong preference for A and C in the 3' flanking position making it a CCA and CCC specific DNA methyltransferase.


Assuntos
Metilação de DNA , Metiltransferases , Metiltransferases/genética , Metiltransferases/metabolismo , Oligonucleotídeos/química , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , DNA/química , Especificidade por Substrato , DNA (Citosina-5-)-Metiltransferases/genética
14.
Nucleic Acids Res ; 52(15): 8702-8716, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39051544

RESUMO

DNA and RNA nucleobase modifications are biologically relevant and valuable in fundamental biochemical and biophysical investigations of nucleic acids. However, directly introducing site-specific nucleobase modifications into long unprotected oligonucleotides is a substantial challenge. In this study, we used in vitro selection to identify DNAzymes that site-specifically N-alkylate the exocyclic nucleobase amines of particular cytidine, guanosine, and adenosine (C, G and A) nucleotides in DNA substrates, by reductive amination using a 5'-benzaldehyde oligonucleotide as the reaction partner. The new DNAzymes each require one or more of Mg2+, Mn2+, and Zn2+ as metal ion cofactors and have kobs from 0.04 to 0.3 h-1, with rate enhancement as high as ∼104 above the splinted background reaction. Several of the new DNAzymes are catalytically active when an RNA substrate is provided in place of DNA. Similarly, several new DNAzymes function when a small-molecule benzaldehyde compound replaces the 5'-benzaldehyde oligonucleotide. These findings expand the scope of DNAzyme catalysis to include nucleobase N-alkylation by reductive amination. Further development of this new class of DNAzymes is anticipated to facilitate practical covalent modification and labeling of DNA and RNA substrates.


Assuntos
Benzaldeídos , DNA Catalítico , Oligonucleotídeos , DNA Catalítico/química , DNA Catalítico/metabolismo , Aminação , Alquilação , Oligonucleotídeos/química , Oligonucleotídeos/metabolismo , Benzaldeídos/química , DNA/química , DNA/metabolismo , Oxirredução , Catálise , RNA/química , RNA/metabolismo , Aminas/química
15.
Nucleic Acids Res ; 52(7): e39, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38477342

RESUMO

CRISPR-Cas systems with dual functions offer precise sequence-based recognition and efficient catalytic cleavage of nucleic acids, making them highly promising in biosensing and diagnostic technologies. However, current methods encounter challenges of complexity, low turnover efficiency, and the necessity for sophisticated probe design. To better integrate the dual functions of Cas proteins, we proposed a novel approach called CRISPR-Cas Autocatalysis Amplification driven by LNA-modified Split Activators (CALSA) for the highly efficient detection of single-stranded DNA (ssDNA) and genomic DNA. By introducing split ssDNA activators and the site-directed trans-cleavage mediated by LNA modifications, an autocatalysis-driven positive feedback loop of nucleic acids based on the LbCas12a system was constructed. Consequently, CALSA enabled one-pot and real-time detection of genomic DNA and cell-free DNA (cfDNA) from different tumor cell lines. Notably, CALSA achieved high sensitivity, single-base specificity, and remarkably short reaction times. Due to the high programmability of nucleic acid circuits, these results highlighted the immense potential of CALSA as a powerful tool for cascade signal amplification. Moreover, the sensitivity and specificity further emphasized the value of CALSA in biosensing and diagnostics, opening avenues for future clinical applications.


Assuntos
Técnicas Biossensoriais , Sistemas CRISPR-Cas , DNA de Cadeia Simples , Oligonucleotídeos , Humanos , Oligonucleotídeos/química , Oligonucleotídeos/genética , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/química , Técnicas Biossensoriais/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , DNA/química , DNA/genética , Linhagem Celular Tumoral , Catálise
16.
Nucleic Acids Res ; 52(6): 3137-3145, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38324466

RESUMO

Custom oligonucleotides (oligos) are widely used reagents in biomedical research. Some common applications of oligos include polymerase chain reaction (PCR), sequencing, hybridization, microarray, and library construction. The reliability of oligos in such applications depends on their purity and specificity. Here, we report that commercially available oligos are frequently contaminated with nonspecific sequences (i.e. other unrelated oligonucleotides). Most of the oligos that we designed to amplify clustered regularly interspersed palindromic repeats (CRISPR) guide sequences contained nonspecific CRISPR guides. These contaminants were detected in research-grade oligos procured from eight commercial oligo-suppliers located in three different geographic regions of the world. Deep sequencing of some of the oligos revealed a variety of contaminants. Given the wide range of applications of oligos, the impact of oligo cross-contamination varies greatly depending on the field and the experimental method. Incorporating appropriate control experiments in research design can help ensure that the quality of oligo reagents meets the intended purpose. This can also minimize risk depending on the purposes for which the oligos are used.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Contaminação de Medicamentos , Indicadores e Reagentes , Oligonucleotídeos , Sequência de Bases , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Oligonucleotídeos/química , Oligonucleotídeos/normas , Técnicas Genéticas , Indicadores e Reagentes/análise , Indicadores e Reagentes/normas , Indústrias/normas
17.
Nucleic Acids Res ; 52(17): 10085-10101, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39149896

RESUMO

Xenobiotic nucleic acids (XNAs) are artificial genetic polymers with altered structural moieties and useful features, such as enhanced biological and chemical stability. Enzymatic synthesis and efficient labelling of XNAs are crucial for their broader application. Terminal deoxynucleotidyl transferases (TdTs) have been exploited for the de novo synthesis and labelling of DNA and demonstrated the capability of recognizing various substrates. However, the activities of TdTs for the synthesis and labelling of commonly used XNAs with 2' modifications have not been systematically explored. In this work, we explored and demonstrated the varied activities of three TdTs (bovine TdT, MTdT-evo and murine TdT) for the template-independent incorporation of 2'-methoxy NTPs, 2'-fluoro NTPs and 2'-fluoroarabino NTPs into the 3' ends of single- and double-stranded DNAs and the extension of 2'-modified XNAs with (d)NTPs containing a natural or unnatural nucleobase. Taking advantages of these activities, we established a strategy for protecting single-stranded DNAs from exonuclease I degradation by TdT-synthesized 2'-modified XNA tails and methods for 3'-end labelling of 2'-modified XNAs by TdT-mediated synthesis of G-quadruplex-containing tails or incorporation of nucleotides with a functionalized nucleobase. A DNA-2'-fluoroarabino nucleic acid (FANA) chimeric hydrogel was also successfully constructed based on the extraordinary activity of MTdT-evo for template-independent FANA synthesis.


Assuntos
DNA Nucleotidilexotransferase , Oligonucleotídeos , DNA Nucleotidilexotransferase/metabolismo , DNA Nucleotidilexotransferase/química , Animais , Oligonucleotídeos/química , Oligonucleotídeos/síntese química , Oligonucleotídeos/metabolismo , Camundongos , Bovinos , DNA/química , DNA/biossíntese , DNA/metabolismo , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/química , Moldes Genéticos
18.
Nucleic Acids Res ; 52(10): 5804-5824, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38676942

RESUMO

MicroRNAs (miRNAs) that share identical or near-identical sequences constitute miRNA families and are predicted to act redundantly. Yet recent evidence suggests that members of the same miRNA family with high sequence similarity might have different roles and that this functional divergence might be rooted in their precursors' sequence. Current knock-down strategies such as antisense oligonucleotides (ASOs) or miRNA sponges cannot distinguish between identical or near identical miRNAs originating from different precursors to allow exploring unique functions of these miRNAs. We here develop a novel strategy based on short 2'-OMe/LNA-modified oligonucleotides to selectively target specific precursor molecules and ablate the production of individual members of miRNA families in vitro and in vivo. Leveraging the highly conserved Xenopus miR-181a family as proof-of-concept, we demonstrate that 2'-OMe/LNA-ASOs targeting the apical region of pre-miRNAs achieve precursor-selective inhibition of mature miRNA-5p production. Furthermore, we extend the applicability of our approach to the human miR-16 family, illustrating its universality in targeting precursors generating identical miRNAs. Overall, our strategy enables efficient manipulation of miRNA expression, offering a powerful tool to dissect the functions of identical or highly similar miRNAs derived from different precursors within miRNA families.


Assuntos
MicroRNAs , Oligonucleotídeos , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Humanos , Oligonucleotídeos/química , Oligonucleotídeos/genética , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Precursores de RNA/metabolismo , Precursores de RNA/genética , Precursores de RNA/química , Xenopus/genética
19.
Nucleic Acids Res ; 52(W1): W547-W555, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38661214

RESUMO

The technology of triplex-forming oligonucleotides (TFOs) provides an approach to manipulate genes at the DNA level. TFOs bind to specific sites on genomic DNA, creating a unique intermolecular triple-helix DNA structure through Hoogsteen hydrogen bonding. This targeting by TFOs is site-specific and the locations TFOs bind are referred to as TFO target sites (TTS). Triplexes have been observed to selectively influence gene expression, homologous recombination, mutations, protein binding, and DNA damage. These sites typically feature a poly-purine sequence in duplex DNA, and the characteristics of these TTS sequences greatly influence the formation of the triplex. We introduce TTSBBC, a novel analysis and visualization platform designed to explore features of TTS sequences to enable users to design and validate TTSs. The web server can be freely accessed at https://kowalski-labapps.dellmed.utexas.edu/TTSBBC/.


Assuntos
DNA , Neoplasias , Humanos , DNA/química , DNA/genética , DNA/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Software , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Oligonucleotídeos/química , Sítios de Ligação , Conformação de Ácido Nucleico , Código de Barras de DNA Taxonômico/métodos
20.
Nucleic Acids Res ; 52(17): 10068-10084, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39149897

RESUMO

AIMers are short, chemically modified oligonucleotides that induce A-to-I RNA editing through interaction with endogenous adenosine deaminases acting on RNA (ADAR) enzymes. Here, we describe the development of new AIMer designs with base, sugar and backbone modifications that improve RNA editing efficiency over our previous design. AIMers incorporating a novel pattern of backbone and 2' sugar modifications support enhanced editing efficiency across multiple sequences. Further efficiency gains were achieved through incorporation of an N-3-uridine (N3U), in place of cytidine (C), in the 'orphan base' position opposite the edit site. Molecular modeling suggests that N3U might enhance ADAR catalytic activity by stabilizing the AIMer-ADAR interaction and potentially reducing the energy required to flip the target base into the active site. Supporting this hypothesis, AIMers containing N3U consistently enhanced RNA editing over those containing C across multiple target sequences and multiple nearest neighbor sequence combinations. AIMers combining N3U and the novel pattern of 2' sugar chemistry and backbone modifications improved RNA editing both in vitro and in vivo. We provide detailed N3U synthesis methods and, for the first time, explore the impact of N3U and its analogs on ADAR-mediated RNA editing efficiency and targetable sequence space.


Assuntos
Adenosina Desaminase , Edição de RNA , Proteínas de Ligação a RNA , Adenosina Desaminase/metabolismo , Adenosina Desaminase/genética , Adenosina Desaminase/química , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Humanos , Uridina/metabolismo , Uridina/química , Oligonucleotídeos/química , Oligonucleotídeos/metabolismo , RNA/química , RNA/metabolismo , Citidina/química , Citidina/metabolismo , Modelos Moleculares , Células HEK293
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA