Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.520
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 185(11): 1943-1959.e21, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35545089

RESUMO

Parthanatos-associated apoptosis-inducing factor (AIF) nuclease (PAAN), also known as macrophage migration inhibitor factor (MIF), is a member of the PD-D/E(X)K nucleases that acts as a final executioner in parthanatos. PAAN's role in Parkinson's disease (PD) and whether it is amenable to chemical inhibition is not known. Here, we show that neurodegeneration induced by pathologic α-synuclein (α-syn) occurs via PAAN/MIF nuclease activity. Genetic depletion of PAAN/MIF and a mutant lacking nuclease activity prevent the loss of dopaminergic neurons and behavioral deficits in the α-syn preformed fibril (PFF) mouse model of sporadic PD. Compound screening led to the identification of PAANIB-1, a brain-penetrant PAAN/MIF nuclease inhibitor that prevents neurodegeneration induced by α-syn PFF, AAV-α-syn overexpression, or MPTP intoxication in vivo. Our findings could have broad relevance in human pathologies where parthanatos plays a role in the development of cell death inhibitors targeting the druggable PAAN/MIF nuclease.


Assuntos
Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Doença de Parkinson , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Endonucleases/metabolismo , Camundongos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Doença de Parkinson/metabolismo
2.
Immunity ; 57(8): 1828-1847.e11, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39002541

RESUMO

Interaction of mast cells (MCs) with fibroblasts is essential for MC maturation within tissue microenvironments, although the underlying mechanism is incompletely understood. Through a phenotypic screening of >30 mouse lines deficient in lipid-related genes, we found that deletion of the lysophosphatidic acid (LPA) receptor LPA1, like that of the phospholipase PLA2G3, the prostaglandin D2 (PGD2) synthase L-PGDS, or the PGD2 receptor DP1, impairs MC maturation and thereby anaphylaxis. Mechanistically, MC-secreted PLA2G3 acts on extracellular vesicles (EVs) to supply lysophospholipids, which are converted by fibroblast-derived autotaxin (ATX) to LPA. Fibroblast LPA1 then integrates multiple pathways required for MC maturation by facilitating integrin-mediated MC-fibroblast adhesion, IL-33-ST2 signaling, L-PGDS-driven PGD2 generation, and feedforward ATX-LPA1 amplification. Defective MC maturation resulting from PLA2G3 deficiency is restored by supplementation with LPA1 agonists or PLA2G3-modified EVs. Thus, the lipid-orchestrated paracrine circuit involving PLA2G3-driven lysophospholipid, eicosanoid, integrin, and cytokine signaling fine-tunes MC-fibroblast communication, ensuring MC maturation.


Assuntos
Anafilaxia , Fibroblastos , Lisofosfolipídeos , Mastócitos , Camundongos Knockout , Comunicação Parácrina , Diester Fosfórico Hidrolases , Receptores de Ácidos Lisofosfatídicos , Transdução de Sinais , Animais , Mastócitos/imunologia , Mastócitos/metabolismo , Anafilaxia/imunologia , Anafilaxia/metabolismo , Camundongos , Fibroblastos/metabolismo , Lisofosfolipídeos/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Receptores de Ácidos Lisofosfatídicos/genética , Diester Fosfórico Hidrolases/metabolismo , Diester Fosfórico Hidrolases/genética , Prostaglandina D2/metabolismo , Vesículas Extracelulares/metabolismo , Interleucina-33/metabolismo , Oxirredutases Intramoleculares/metabolismo , Oxirredutases Intramoleculares/genética , Receptores de Prostaglandina/metabolismo , Receptores de Prostaglandina/genética , Diferenciação Celular , Camundongos Endogâmicos C57BL , Proteína 1 Semelhante a Receptor de Interleucina-1 , Lipocalinas
3.
Circ Res ; 135(6): e133-e149, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39082135

RESUMO

BACKGROUND: Prostaglandin I2 synthesized by endothelial COX (cyclooxygenase) evokes potent vasodilation in some blood vessels but is paradoxically responsible for endothelium-dependent constriction (EDC) in others. Prostaglandin I2 production and EDC may be enhanced in diseases such as hypertension. However, how PGIS (prostaglandin I2 synthase) deficiency affects EDC and how this is implicated in the consequent cardiovascular pathologies remain largely unknown. METHODS: Experiments were performed with wild-type, Pgis knockout (Pgis-/-) and Pgis/thromboxane-prostanoid receptor gene (Tp) double knockout (Pgis-/-Tp-/-) mice and Pgis-/- mice transplanted with unfractionated wild-type or Cox-1-/- bone marrow cells, as well as human umbilical arteries. COX-derived prostanoids were measured by high-performance liquid chromatography-mass spectrometry. Vasomotor responses of distinct types of arteries were assessed by isometric force measurement. Parameters of hypertension, vascular remodeling, and cardiac hypertrophy in mice at different ages were monitored. RESULTS: PGF2α, PGE2, and a trace amount of PGD2, but not thromboxane A2 (TxA2), were produced in response to acetylcholine in Pgis-/- or PGIS-inhibited arteries. PGIS deficiency resulted in exacerbation or occurrence of EDC ex vivo and in vivo. Endothelium-dependent hyperpolarization was unchanged, but phosphorylation levels of eNOS (endothelial nitric oxide synthase) at Ser1177 and Thr495 were altered and NO production and the NO-dependent relaxation evoked by acetylcholine were remarkably reduced in Pgis-/- aortas. Pgis-/- mice developed high blood pressure and vascular remodeling at 16 to 17 weeks and subsequently cardiac hypertrophy at 24 to 26 weeks. Meanwhile, blood pressure and cardiac parameters remained normal at 8 to 10 weeks. Additional ablation of TP (TxA2 receptor) not only restrained EDC and the downregulation of NO signaling in Pgis-/- mice but also ameliorated the cardiovascular abnormalities. Stimulation of Pgis-/- vessels with acetylcholine in the presence of platelets led to increased TxA2 generation. COX-1 disruption in bone marrow-derived cells failed to affect the development of high blood pressure and vascular remodeling in Pgis-/- mice though it largely suppressed the increase of plasma TxB2 (TxA2 metabolite) level. CONCLUSIONS: Our study demonstrates that the non-TxA2 prostanoids/TP axis plays an essential role in mediating the augmentation of EDC and cardiovascular disorders when PGIS is deficient, suggesting TP as a promising therapeutic target in diseases associated with PGIS insufficiency.


Assuntos
Endotélio Vascular , Oxirredutases Intramoleculares , Camundongos Endogâmicos C57BL , Camundongos Knockout , Prostaglandinas , Vasoconstrição , Animais , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/deficiência , Oxirredutases Intramoleculares/metabolismo , Camundongos , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Prostaglandinas/metabolismo , Humanos , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/deficiência , Tromboxano A2/metabolismo , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/fisiopatologia , Doenças Cardiovasculares/etiologia , Masculino , Receptores de Tromboxanos/metabolismo , Receptores de Tromboxanos/genética , Vasodilatação , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatologia , Remodelação Vascular , Transdução de Sinais , Ciclo-Oxigenase 1/deficiência , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 1/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(22): e2300284120, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37216530

RESUMO

Mast cells play pivotal roles in innate host defenses against venom. Activated mast cells release large amounts of prostaglandin D2 (PGD2). However, the role of PGD2 in such host defense remains unclear. We found that c-kit-dependent and c-kit-independent mast cell-specific hematopoietic prostaglandin D synthase (H-pgds) deficiency significantly exacerbated honey bee venom (BV)-induced hypothermia and increased mortality rates in mice. BV absorption via postcapillary venules in the skin was accelerated upon endothelial barrier disruption resulting in increased plasma venom concentrations. These results suggest that mast cell-derived PGD2 may enhance host defense against BV and save lives by inhibiting BV absorption into circulation.


Assuntos
Venenos de Abelha , Prostaglandinas , Animais , Camundongos , Mastócitos/metabolismo , Prostaglandina D2/metabolismo , Absorção Subcutânea , Oxirredutases Intramoleculares/metabolismo , Alérgenos
5.
Proc Natl Acad Sci U S A ; 120(5): e2219091120, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36693098

RESUMO

Macrophage migration inhibitory factor (MIF) is a multifaced protein that plays important roles in multiple inflammatory conditions. However, the role of MIF in endothelial cell (EC) death under inflammatory condition remains largely unknown. Here we show that MIF actively promotes receptor-interacting protein kinase 1 (RIPK1)-mediated cell death under oxygen-glucose deprivation condition. MIF expression is induced by surgical trauma in peripheral myeloid cells both in perioperative humans and mice. We demonstrate that MIF-loaded myeloid cells induced by peripheral surgery adhere to the brain ECs after distal middle cerebral artery occlusion (dMCAO) and exacerbate the blood-brain barrier (BBB) disruption. Genetic depletion of myeloid-derived MIF in perioperative ischemic stroke (PIS) mice with MCAO following a surgical insult leads to significant reduction in ECs apoptosis and necroptosis and the associated BBB disruption. The adoptive transfer of peripheral blood mononuclear cells (PBMC) from surgical MIFΔLyz2 mice to wild-type (WT) MCAO mice also shows reduced ECs apoptosis and necroptosis compared to the transfer of PBMC from surgical MIFf  l/f  l mice to MCAO recipients. The genetic inhibition of RIPK1 also attenuates BBB disruption and ECs death compared to that of WT mice in PIS. The administration of MIF inhibitor (ISO-1) and RIPK1 inhibitor (Nec-1s) can both reduce the brain EC death and neurological deficits following PIS. We conclude that myeloid-derived MIF promotes ECs apoptosis and necroptosis through RIPK1 kinase-dependent pathway. The above findings may provide insights into the mechanism as how peripheral inflammation promotes the pathology in central nervous system.


Assuntos
Lesões Encefálicas , Fatores Inibidores da Migração de Macrófagos , Proteína Serina-Treonina Quinases de Interação com Receptores , Animais , Humanos , Camundongos , Apoptose , Morte Celular , Células Endoteliais/metabolismo , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/metabolismo , Leucócitos Mononucleares/metabolismo , Fatores Inibidores da Migração de Macrófagos/genética , Fatores Inibidores da Migração de Macrófagos/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
6.
J Biol Chem ; 300(7): 107443, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38838773

RESUMO

Functional variants of the gene for the cytokine macrophage migration inhibitory factor (MIF) are defined by a 4-nucleotide promoter microsatellite (-794 CATT5-8, rs5844572) and confer risk for autoimmune, infectious, and oncologic diseases. We describe herein the discovery of a prototypic, small molecule inhibitor of MIF transcription with selectivity for high microsatellite repeat number and correspondingly high gene expression. Utilizing a high-throughput luminescent proximity screen, we identify 1-carbomethoxy-5-formyl-4,6,8-trihydroxyphenazine (CMFT) to inhibit the functional interaction between the transcription factor ICBP90 (namely, UHRF1) and the MIF -794 CATT5-8 promoter microsatellite. CMFT inhibits MIF mRNA expression in a -794 CATT5-8 length-dependent manner with an IC50 of 470 nM, and preferentially reduces ICBP90-dependent MIF mRNA and protein expression in high-genotypic versus low-genotypic MIF-expressing macrophages. RNA expression analysis also showed CMFT to downregulate MIF-dependent, inflammatory gene expression with little evidence of off-target metabolic toxicity. These findings provide proof-of-concept for advancing the pharmacogenomic development of precision-based MIF inhibitors for diverse autoimmune and inflammatory conditions.


Assuntos
Oxirredutases Intramoleculares , Fatores Inibidores da Migração de Macrófagos , Fatores Inibidores da Migração de Macrófagos/genética , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Fatores Inibidores da Migração de Macrófagos/metabolismo , Fatores Inibidores da Migração de Macrófagos/imunologia , Humanos , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/antagonistas & inibidores , Oxirredutases Intramoleculares/metabolismo , Alelos , Repetições de Microssatélites , Regiões Promotoras Genéticas , Animais , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Camundongos , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo
7.
Nat Immunol ; 14(1): 41-51, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23179077

RESUMO

Coordinated navigation within tissues is essential for cells of the innate immune system to reach the sites of inflammatory processes, but the signals involved are incompletely understood. Here we demonstrate that NG2(+) pericytes controlled the pattern and efficacy of the interstitial migration of leukocytes in vivo. In response to inflammatory mediators, pericytes upregulated expression of the adhesion molecule ICAM-1 and released the chemoattractant MIF. Arteriolar and capillary pericytes attracted and interacted with myeloid leukocytes after extravasating from postcapillary venules, 'instructing' them with pattern-recognition and motility programs. Inhibition of MIF neutralized the migratory cues provided to myeloid leukocytes by NG2(+) pericytes. Hence, our results identify a previously unknown role for NG2(+) pericytes as an active component of innate immune responses, which supports the immunosurveillance and effector function of extravasated neutrophils and macrophages.


Assuntos
Molécula 1 de Adesão Intercelular/metabolismo , Oxirredutases Intramoleculares/metabolismo , Leucócitos/imunologia , Fatores Inibidores da Migração de Macrófagos/metabolismo , Pericitos/imunologia , Receptores de Reconhecimento de Padrão/imunologia , Anticorpos Bloqueadores/farmacologia , Arteríolas/imunologia , Capilares/imunologia , Comunicação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Movimento Celular/imunologia , Células Cultivadas , Humanos , Imunidade Inata , Mediadores da Inflamação/metabolismo , Molécula 1 de Adesão Intercelular/genética , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/imunologia , Leucócitos/efeitos dos fármacos , Fatores Inibidores da Migração de Macrófagos/genética , Fatores Inibidores da Migração de Macrófagos/imunologia , Ativação de Neutrófilo/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Vênulas/imunologia
8.
Nat Immunol ; 14(6): 554-63, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23624557

RESUMO

Microenvironment-based alterations in phenotypes of mast cells influence the susceptibility to anaphylaxis, yet the mechanisms underlying proper maturation of mast cells toward an anaphylaxis-sensitive phenotype are incompletely understood. Here we report that PLA2G3, a mammalian homolog of anaphylactic bee venom phospholipase A2, regulates this process. PLA2G3 secreted from mast cells is coupled with fibroblastic lipocalin-type PGD2 synthase (L-PGDS) to provide PGD2, which facilitates mast-cell maturation via PGD2 receptor DP1. Mice lacking PLA2G3, L-PGDS or DP1, mast cell-deficient mice reconstituted with PLA2G3-null or DP1-null mast cells, or mast cells cultured with L-PGDS-ablated fibroblasts exhibited impaired maturation and anaphylaxis of mast cells. Thus, we describe a lipid-driven PLA2G3-L-PGDS-DP1 loop that drives mast cell maturation.


Assuntos
Fosfolipases A2 do Grupo III/imunologia , Mastócitos/imunologia , Comunicação Parácrina/imunologia , Prostaglandina D2/imunologia , Receptores de Prostaglandina/imunologia , Animais , Western Blotting , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/imunologia , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Fosfolipases A2 do Grupo III/genética , Fosfolipases A2 do Grupo III/metabolismo , Humanos , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/imunologia , Oxirredutases Intramoleculares/metabolismo , Lipocalinas/genética , Lipocalinas/imunologia , Lipocalinas/metabolismo , Mastócitos/metabolismo , Mastócitos/ultraestrutura , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Análise de Sequência com Séries de Oligonucleotídeos , Comunicação Parácrina/genética , Prostaglandina D2/metabolismo , Receptores de Prostaglandina/genética , Receptores de Prostaglandina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
FASEB J ; 38(6): e23576, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38530238

RESUMO

High level expression of the pro-inflammatory cytokine macrophage migration inhibitory factor (MIF) has been associated with severe asthma. The role of MIF and its functional promotor polymorphism in innate immune training is currently unknown. Using novel humanized CATT7 MIF mice, this study is the first to investigate the effect of MIF on bone marrow-derived macrophage (BMDM) memory after house dust mite (HDM) challenge. CATT7 BMDMs demonstrated a significant primed increase in M1 markers following HDM and LPS stimulation, compared to naive mice. This M1 signature was found to be MIF-dependent, as administration of a small molecule MIF inhibitor, SCD-19, blocked the induction of this pro-inflammatory M1-like phenotype in BMDMs from CATT7 mice challenged with HDM. Training naive BMDMs in vitro with HDM for 24 h followed by a rest period and subsequent stimulation with LPS led to significantly increased production of the pro-inflammatory cytokine TNFα in BMDMs from CATT7 mice but not WT mice. Addition of the pan methyltransferase inhibitor MTA before HDM training significantly abrogated this effect in BMDMs from CATT7 mice, suggesting that HDM-induced training is associated with epigenetic remodelling. These findings suggest that trained immunity induced by HDM is under genetic control, playing an important role in asthma patients with the high MIF genotypes (CATT6/7/8).


Assuntos
Asma , Fatores Inibidores da Migração de Macrófagos , Humanos , Animais , Camundongos , Fatores Inibidores da Migração de Macrófagos/genética , Lipopolissacarídeos/toxicidade , Pyroglyphidae , Asma/genética , Inflamação , Oxirredutases Intramoleculares/genética
10.
FASEB J ; 38(10): e23696, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38787620

RESUMO

Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine that plays a crucial role in antitumor immunity. However, the role of MIF in influencing the tumor microenvironment (TME) and prognosis of triple-negative breast cancer (TNBC) remains to be elucidated. Using R, we analyzed single-cell RNA sequencing (scRNA-seq) data of 41 567 cells from 10 TNBC tumor samples and spatial transcriptomic data from two patients. Relationships between MIF expression and immune cell infiltration, clinicopathological stage, and survival prognosis were determined using samples from The Cancer Genome Atlas (TCGA) and validated in a clinical cohort using immunohistochemistry. Analysis of scRNA-seq data revealed that MIF secreted by epithelial cells in TNBC patients could regulate the polarization of macrophages into the M2 phenotype, which plays a key role in modulating the TME. Spatial transcriptomic data also showed that epithelial cells (tumor cells) and MIF were proximally located. Analysis of TCGA samples confirmed that tumor tissues of patients with high MIF expression were enriched with M2 macrophages and showed a higher T stage. High MIF expression was significantly associated with poor patient prognosis. Immunohistochemical staining showed high MIF expression was associated with younger patients and worse clinicopathological staging. MIF secreted by epithelial cells may represent a potential biomarker for the diagnosis and prognosis of TNBC and may promote TNBC invasion by remodeling the tumor immune microenvironment.


Assuntos
Biomarcadores Tumorais , Oxirredutases Intramoleculares , Fatores Inibidores da Migração de Macrófagos , Macrófagos , Neoplasias de Mama Triplo Negativas , Microambiente Tumoral , Humanos , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/diagnóstico , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/genética , Fatores Inibidores da Migração de Macrófagos/metabolismo , Fatores Inibidores da Migração de Macrófagos/genética , Feminino , Oxirredutases Intramoleculares/metabolismo , Oxirredutases Intramoleculares/genética , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Macrófagos/metabolismo , Macrófagos/imunologia , Prognóstico , Pessoa de Meia-Idade , Regulação Neoplásica da Expressão Gênica
11.
Arterioscler Thromb Vasc Biol ; 44(9): 2118-2135, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38989580

RESUMO

BACKGROUND: Aortic stenosis (AS) is driven by progressive inflammatory and fibrocalcific processes regulated by circulating inflammatory and valve resident endothelial and interstitial cells. The impact of platelets, platelet-derived mediators, and platelet-monocyte interactions on the acceleration of local valvular inflammation and mineralization is presently unknown. METHODS: We prospectively enrolled 475 consecutive patients with severe symptomatic AS undergoing aortic valve replacement. Clinical workup included repetitive echocardiography, analysis of platelets, monocytes, chemokine profiling, aortic valve tissue samples for immunohistochemistry, and gene expression analysis. RESULTS: The patients were classified as fast-progressive AS by the median ∆Vmax of 0.45 m/s per year determined by echocardiography. Immunohistological aortic valve analysis revealed enhanced cellularity in fast-progressive AS (slow- versus fast-progressive AS; median [interquartile range], 247 [142.3-504] versus 717.5 [360.5-1234]; P<0.001) with less calcification (calcification area, mm2: 33.74 [27.82-41.86] versus 20.54 [13.52-33.41]; P<0.001). MIF (macrophage migration inhibitory factor)-associated gene expression was significantly enhanced in fast-progressive AS accompanied by significantly elevated MIF plasma levels (mean±SEM; 6877±379.1 versus 9959±749.1; P<0.001), increased platelet activation, and decreased intracellular MIF expression indicating enhanced MIF release upon platelet activation (CD62P, %: median [interquartile range], 16.8 [11.58-23.8] versus 20.55 [12.48-32.28], P=0.005; MIF, %: 4.85 [1.48-9.75] versus 2.3 [0.78-5.9], P<0.001). Regression analysis confirmed that MIF-associated biomarkers are strongly associated with an accelerated course of AS. CONCLUSIONS: Our findings suggest a key role for platelet-derived MIF and its interplay with circulating and valve resident monocytes/macrophages in local and systemic thromboinflammation during accelerated AS. MIF-based biomarkers predict an accelerated course of AS and represent a novel pharmacological target to attenuate progression of AS.


Assuntos
Estenose da Valva Aórtica , Valva Aórtica , Biomarcadores , Progressão da Doença , Oxirredutases Intramoleculares , Fatores Inibidores da Migração de Macrófagos , Tromboinflamação , Humanos , Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/patologia , Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/sangue , Fatores Inibidores da Migração de Macrófagos/sangue , Fatores Inibidores da Migração de Macrófagos/genética , Fatores Inibidores da Migração de Macrófagos/metabolismo , Masculino , Feminino , Idoso , Estudos Prospectivos , Valva Aórtica/patologia , Valva Aórtica/metabolismo , Valva Aórtica/diagnóstico por imagem , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/metabolismo , Oxirredutases Intramoleculares/sangue , Biomarcadores/sangue , Tromboinflamação/genética , Tromboinflamação/patologia , Tromboinflamação/metabolismo , Plaquetas/metabolismo , Plaquetas/patologia , Idoso de 80 Anos ou mais , Monócitos/metabolismo , Pessoa de Meia-Idade , Implante de Prótese de Valva Cardíaca , Fatores de Tempo , Índice de Gravidade de Doença , Calcinose/patologia , Calcinose/genética , Calcinose/sangue , Calcinose/metabolismo
12.
Exp Cell Res ; 439(1): 114089, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38740166

RESUMO

Nucleus pulposus cells (NPCs) apoptosis and inflammation are the extremely critical factors of intervertebral disc degeneration (IVDD). Nevertheless, the underlying procedure remains mysterious. Macrophage migration inhibitory factor (MIF) is a cytokine that promotes inflammation and has been demonstrated to have a significant impact on apoptosis and inflammation. For this research, we employed a model of NPCs degeneration stimulated by lipopolysaccharides (LPS) and a rat acupuncture IVDD model to examine the role of MIF in vitro and in vivo, respectively. Initially, we verified that there was a significant rise of MIF expression in the NP tissues of individuals with IVDD, as well as in rat models of IVDD. Furthermore, this augmented expression of MIF was similarly evident in degenerated NPCs. Afterwards, it was discovered that ISO-1, a MIF inhibitor, effectively decreased the quantity of cells undergoing apoptosis and inhibited the release of inflammatory molecules (TNF-α, IL-1ß, IL-6). Furthermore, it has been shown that the PI3K/Akt pathway plays a vital part in the regulation of NPCs degeneration by MIF. Ultimately, we showcased that the IVDD process was impacted by the MIF inhibitor in the rat model. In summary, our experimental results substantiate the significant involvement of MIF in the degeneration of NPCs, and inhibiting MIF activity can effectively mitigate IVDD.


Assuntos
Apoptose , Inflamação , Degeneração do Disco Intervertebral , Fatores Inibidores da Migração de Macrófagos , Núcleo Pulposo , Ratos Sprague-Dawley , Animais , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Fatores Inibidores da Migração de Macrófagos/metabolismo , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/metabolismo , Apoptose/efeitos dos fármacos , Inflamação/metabolismo , Inflamação/patologia , Ratos , Masculino , Humanos , Oxirredutases Intramoleculares/metabolismo , Oxirredutases Intramoleculares/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Feminino , Isoxazóis/farmacologia , Adulto , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Fosfatidilinositol 3-Quinases/metabolismo
13.
Cell Mol Life Sci ; 81(1): 296, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992165

RESUMO

Next to its classical role in MHC II-mediated antigen presentation, CD74 was identified as a high-affinity receptor for macrophage migration inhibitory factor (MIF), a pleiotropic cytokine and major determinant of various acute and chronic inflammatory conditions, cardiovascular diseases and cancer. Recent evidence suggests that CD74 is expressed in T cells, but the functional relevance of this observation is poorly understood. Here, we characterized the regulation of CD74 expression and that of the MIF chemokine receptors during activation of human CD4+ T cells and studied links to MIF-induced T-cell migration, function, and COVID-19 disease stage. MIF receptor profiling of resting primary human CD4+ T cells via flow cytometry revealed high surface expression of CXCR4, while CD74, CXCR2 and ACKR3/CXCR7 were not measurably expressed. However, CD4+ T cells constitutively expressed CD74 intracellularly, which upon T-cell activation was significantly upregulated, post-translationally modified by chondroitin sulfate and could be detected on the cell surface, as determined by flow cytometry, Western blot, immunohistochemistry, and re-analysis of available RNA-sequencing and proteomic data sets. Applying 3D-matrix-based live cell-imaging and receptor pathway-specific inhibitors, we determined a causal involvement of CD74 and CXCR4 in MIF-induced CD4+ T-cell migration. Mechanistically, proximity ligation assay visualized CD74/CXCR4 heterocomplexes on activated CD4+ T cells, which were significantly diminished after MIF treatment, pointing towards a MIF-mediated internalization process. Lastly, in a cohort of 30 COVID-19 patients, CD74 surface expression was found to be significantly upregulated on CD4+ and CD8+ T cells in patients with severe compared to patients with only mild disease course. Together, our study characterizes the MIF receptor network in the course of T-cell activation and reveals CD74 as a novel functional MIF receptor and MHC II-independent activation marker of primary human CD4+ T cells.


Assuntos
Antígenos de Diferenciação de Linfócitos B , Linfócitos T CD4-Positivos , COVID-19 , Antígenos de Histocompatibilidade Classe II , Oxirredutases Intramoleculares , Ativação Linfocitária , Fatores Inibidores da Migração de Macrófagos , SARS-CoV-2 , Humanos , Antígenos de Diferenciação de Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Antígenos de Histocompatibilidade Classe II/imunologia , Fatores Inibidores da Migração de Macrófagos/metabolismo , Fatores Inibidores da Migração de Macrófagos/genética , Ativação Linfocitária/imunologia , SARS-CoV-2/metabolismo , SARS-CoV-2/imunologia , COVID-19/imunologia , COVID-19/metabolismo , COVID-19/patologia , Oxirredutases Intramoleculares/metabolismo , Oxirredutases Intramoleculares/genética , Receptores CXCR4/metabolismo , Receptores CXCR4/genética , Movimento Celular , Masculino , Feminino , Pessoa de Meia-Idade , Receptores Imunológicos
14.
Carcinogenesis ; 45(8): 582-594, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38629149

RESUMO

Inflammation and aberrant cellular metabolism are widely recognized as hallmarks of cancer. In pancreatic ductal adenocarcinoma (PDAC), inflammatory signaling and metabolic reprogramming are tightly interwoven, playing pivotal roles in the pathogenesis and progression of the disease. However, the regulatory functions of inflammatory mediators in metabolic reprogramming in pancreatic cancer have not been fully explored. Earlier, we demonstrated that pro-inflammatory mediator macrophage migration inhibitory factor (MIF) enhances disease progression by inhibiting its downstream transcriptional factor nuclear receptor subfamily 3 group C member 2 (NR3C2). Here, we provide evidence that MIF and NR3C2 interactively regulate metabolic reprogramming, resulting in MIF-induced cancer growth and progression in PDAC. MIF positively correlates with the HK1 (hexokinase 1), HK2 (hexokinase 2) and LDHA (lactate dehydrogenase) expression and increased pyruvate and lactate production in PDAC patients. Additionally, MIF augments glucose uptake and lactate efflux by upregulating HK1, HK2 and LDHA expression in pancreatic cancer cells in vitro and in mouse models of PDAC. Conversely, a reduction in HK1, HK2 and LDHA expression is observed in tumors with high NR3C2 expression in PDAC patients. NR3C2 suppresses HK1, HK2 and LDHA expression, thereby inhibiting glucose uptake and lactate efflux in pancreatic cancer. Mechanistically, MIF-mediated regulation of glycolytic metabolism involves the activation of the mitogen-activated protein kinase-ERK signaling pathway, whereas NR3C2 interacts with the activator protein 1 to regulate glycolysis. Our findings reveal an interactive role of the MIF/NR3C2 axis in regulating glucose metabolism supporting tumor growth and progression and may be a potential target for designing novel approaches for improving disease outcome.


Assuntos
Carcinoma Ductal Pancreático , Glucose , Oxirredutases Intramoleculares , Fatores Inibidores da Migração de Macrófagos , Neoplasias Pancreáticas , Fator de Transcrição AP-1 , Humanos , Fatores Inibidores da Migração de Macrófagos/metabolismo , Fatores Inibidores da Migração de Macrófagos/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Animais , Camundongos , Glucose/metabolismo , Oxirredutases Intramoleculares/metabolismo , Oxirredutases Intramoleculares/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Fator de Transcrição AP-1/metabolismo , Linhagem Celular Tumoral , Sistema de Sinalização das MAP Quinases , Regulação Neoplásica da Expressão Gênica , Hexoquinase/metabolismo , Hexoquinase/genética , Proliferação de Células , Transdução de Sinais , Reprogramação Metabólica
15.
Clin Immunol ; 263: 110199, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38565329

RESUMO

Cell-cell communication is crucial for regulating signaling and cellular function. However, the precise cellular and molecular changes remain poorly understood in skin aging. Based on single-cell and bulk RNA data, we explored the role of cell-cell ligand-receptor interaction in skin aging. We found that the macrophage migration inhibitory factor (MIF)/CD74 ligand-receptor complex was significantly upregulatedin aged skin, showing the predominant paracrine effect of keratinocytes on fibroblasts. Enrichment analysis and in vitro experiment revealed a close association of the activation of the MIF/CD74 with inflammatory pathways and immune response. Mechanistically, MIF/CD74 could significantly inhibit PPARγ protein, which thus significantly increased the degree of fibroblast senescence, and significantly up-regulated the expression of senescence-associated secretory phenotype (SASP) factors and FOS gene. Therefore, our study reveals that MIF/CD74 inhibits the activation of the PPAR signaling pathway, subsequently inducing the production of SASP factors and the upregulation of FOS expression, ultimately accelerating fibroblast senescence.


Assuntos
Antígenos de Diferenciação de Linfócitos B , Fibroblastos , Antígenos de Histocompatibilidade Classe II , Fatores Inibidores da Migração de Macrófagos , Análise de Célula Única , Envelhecimento da Pele , Feminino , Humanos , Masculino , Antígenos de Diferenciação de Linfócitos B/genética , Antígenos de Diferenciação de Linfócitos B/metabolismo , Células Cultivadas , Senescência Celular/genética , Fibroblastos/metabolismo , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/metabolismo , Queratinócitos/metabolismo , Queratinócitos/imunologia , Fatores Inibidores da Migração de Macrófagos/genética , Fatores Inibidores da Migração de Macrófagos/metabolismo , PPAR gama/metabolismo , PPAR gama/genética , Análise de Sequência de RNA , Transdução de Sinais , Análise de Célula Única/métodos , Pele/metabolismo , Pele/imunologia , Envelhecimento da Pele/genética , Envelhecimento da Pele/fisiologia , Animais , Camundongos
16.
Cancer Immunol Immunother ; 73(9): 178, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954031

RESUMO

Intracranial tumors present a significant therapeutic challenge due to their physiological location. Immunotherapy presents an attractive method for targeting these intracranial tumors due to relatively low toxicity and tumor specificity. Here we show that SCIB1, a TRP-2 and gp100 directed ImmunoBody® DNA vaccine, generates a strong TRP-2 specific immune response, as demonstrated by the high number of TRP2-specific IFNγ spots produced and the detection of a significant number of pentamer positive T cells in the spleen of vaccinated mice. Furthermore, vaccine-induced T cells were able to recognize and kill B16HHDII/DR1 cells after a short in vitro culture. Having found that glioblastoma multiforme (GBM) expresses significant levels of PD-L1 and IDO1, with PD-L1 correlating with poorer survival in patients with the mesenchymal subtype of GBM, we decided to combine SCIB1 ImmunoBody® with PD-1 immune checkpoint blockade to treat mice harboring intracranial tumors expressing TRP-2 and gp100. Time-to-death was significantly prolonged, and this correlated with increased CD4+ and CD8+ T cell infiltration in the tissue microenvironment (TME). However, in addition to PD-L1 and IDO, the GBM TME was found to contain a significant number of immunoregulatory T (Treg) cell-associated transcripts, and the presence of such cells is likely to significantly affect clinical outcome unless also tackled.


Assuntos
Neoplasias Encefálicas , Vacinas Anticâncer , Inibidores de Checkpoint Imunológico , Receptor de Morte Celular Programada 1 , Vacinas de DNA , Animais , Feminino , Humanos , Camundongos , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Linhagem Celular Tumoral , Glioblastoma/imunologia , Glioblastoma/terapia , Glioblastoma/tratamento farmacológico , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/métodos , Oxirredutases Intramoleculares , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Vacinas de DNA/imunologia , Vacinas de DNA/uso terapêutico , Masculino , Criança , Pessoa de Meia-Idade
17.
J Neuroinflammation ; 21(1): 8, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178143

RESUMO

Progressive brain diseases create a huge social and economic burden on modern societies as a major cause of disability and death. Incidence of brain diseases has a significantly increasing trend and merits new therapeutic strategies. At the base of many progressive brain malfunctions is a process of unresolved, chronic inflammation. Macrophage migration inhibitory factor, MIF, is an inflammatory mediator that recently gained interest of neuro-researchers due to its varied effects on the CNS such as participation of nervous system development, neuroendocrine functions, and modulation of neuroinflammation. MIF appears to be a candidate as a new biomarker and target of novel therapeutics against numerous neurologic diseases ranging from cancer, autoimmune diseases, vascular diseases, neurodegenerative pathology to psychiatric disorders. In this review, we will focus on MIF's crucial role in neurological diseases such as multiple sclerosis (MS), Alzheimer's disease (AD) and glioblastoma (GBM).


Assuntos
Encefalopatias , Fatores Inibidores da Migração de Macrófagos , Esclerose Múltipla , Doenças do Sistema Nervoso , Humanos , Fatores Inibidores da Migração de Macrófagos/genética , Inflamação , Calgranulina A , Calgranulina B , Oxirredutases Intramoleculares
18.
Am J Kidney Dis ; 84(3): 339-348.e1, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38537905

RESUMO

RATIONALE & OBJECTIVE: ß2-Microglobulin (B2M) and ß-trace protein (BTP) are novel endogenous filtration markers that may improve the accuracy of estimated glomerular filtration rate (eGFR) beyond creatinine and cystatin C (eGFRcr-cys), but they have not been assessed in patients with cancer. STUDY DESIGN: Cross-sectional analysis. SETTING & PARTICIPANTS: Prospective cohort of 1,200 patients with active solid tumors recruited between April 2015 and September 2017. EXPOSURE: CKD-EPI equations without race combining B2M and/or BTP with creatinine with or without cystatin C (2-, 3-, or 4-marker panel eGFR). OUTCOME: Performance of equations compared with eGFRcr-cys and non-GFR determinants of serum B2M and BTP (SB2M, and SBTP, respectively). Measured GFR (mGFR) was determined using the plasma clearance of chromium-51 labeled ethylenediamine tetraacetic acid (51Cr-EDTA). ANALYTICAL APPROACH: Bias was defined as the median of the differences between mGFR and eGFR, and 1-P30 was defined as the percentage of estimates that differed by more than 30% from the mGFR (1-P30). Linear regression was used to assess association of clinical and laboratory variables with SB2M, and SBTP after adjustment for mGFR. RESULTS: Mean age and mGFR were 58.8±13.2 SD years and 78.4±21.7 SD mL/min/1.73m2, respectively. Performance of the 3-marker and 4-marker panel equations was better than eGFRcr-cys (lesser bias and 1-P30). Performance of 2-marker panel equations was as good as eGFRcr-cys (lesser bias and similar 1-P30). SB2M and SBTP were not strongly influenced by cancer site. LIMITATIONS: Participants may have had better clinical performance status than the general population of patients with solid tumors. CONCLUSIONS: B2M and BTP can improve the accuracy of eGFR and may be useful as confirmatory tests in patients with solid tumors, either by inclusion in a multimarker panel equation with creatinine and cystatin C, or by substituting for cystatin C in combination with creatinine. PLAIN-LANGUAGE SUMMARY: The most accurate method to assess estimate kidney function is estimated glomerular filtration rate (eGFR) using creatinine and cystatin C (eGFRcr-cys). We studied whether using ß2-microglobulin (B2M) and/or ß-trace protein (BTP) with creatinine with or without cystatin C (2-, 3-, or 4-marker panel eGFR) might be useful in patients with active solid tumors. The performance of the 3-marker and 4-marker panel equations was better than eGFRcr-cys. Performance of 2-marker panel equations was as good as eGFRcr-cys. We conclude that B2M and BTP can improve the accuracy of eGFR and may be useful as a confirmatory test in patients with solid tumors either by inclusion in multimarker panel equation with creatinine and cystatin C or by substituting for cystatin C in combination with creatinine.


Assuntos
Biomarcadores , Taxa de Filtração Glomerular , Oxirredutases Intramoleculares , Lipocalinas , Neoplasias , Microglobulina beta-2 , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Microglobulina beta-2/sangue , Biomarcadores/sangue , Creatinina/sangue , Estudos Transversais , Cistatina C/sangue , Taxa de Filtração Glomerular/fisiologia , Oxirredutases Intramoleculares/sangue , Lipocalinas/sangue , Neoplasias/sangue , Estudos Prospectivos
19.
Plant Physiol ; 193(2): 1621-1634, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37392433

RESUMO

Allene oxide cyclase (AOC) is a key enzyme in the biosynthesis of jasmonic acid (JA), which is involved in plant growth and development as well as adaptation to environmental stresses. We identified the cold- and pathogen-responsive AOC2 gene from Medicago sativa subsp. falcata (MfAOC2) and its homolog MtAOC2 from Medicago truncatula. Heterologous expression of MfAOC2 in M. truncatula enhanced cold tolerance and resistance to the fungal pathogen Rhizoctonia solani, with greater accumulation of JA and higher transcript levels of JA downstream genes than in wild-type plants. In contrast, mutation of MtAOC2 reduced cold tolerance and pathogen resistance, with less accumulation of JA and lower transcript levels of JA downstream genes in the aoc2 mutant than in wild-type plants. The aoc2 phenotype and low levels of cold-responsive C-repeat-binding factor (CBF) transcripts could be rescued by expressing MfAOC2 in aoc2 plants or exogenous application of methyl jasmonate. Compared with wild-type plants, higher levels of CBF transcripts were observed in lines expressing MfAOC2 but lower levels of CBF transcripts were observed in the aoc2 mutant under cold conditions; superoxide dismutase, catalase, and ascorbate-peroxidase activities as well as proline concentrations were higher in MfAOC2-expressing lines but lower in the aoc2 mutant. These results suggest that expression of MfAOC2 or MtAOC2 promotes biosynthesis of JA, which positively regulates expression of CBF genes and antioxidant defense under cold conditions and expression of JA downstream genes after pathogen infection, leading to greater cold tolerance and pathogen resistance.


Assuntos
Ciclopentanos , Oxilipinas , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/metabolismo , Fenótipo , Regulação da Expressão Gênica de Plantas
20.
Electrophoresis ; 45(9-10): 948-957, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38326083

RESUMO

Hemp and marijuana, both derived from Cannabis sativa L. (C. sativa), are subject to divergent legal regulations due to their different Δ9-tetrahydrocannabinol (Δ9-THC) contents. Cannabinoid synthase genes are considered the key enzymes that determine the chemical composition or chemotype of a particular cultivar. However, existing methods for crop type differentiation based on previous synthase gene theories have limitations in terms of precision and specificity, and a wider range of cannabis varieties must be considered when examining cannabis-based genetic markers. A custom next-generation sequencing (NGS) panel was developed targeting all synthase genes, including Δ9-THC acid synthase, cannabidiolic acid synthase, and cannabichromenic acid synthase, as well as the pseudogenes across diverse C. sativa samples, spanning reference hemp and marijuana, commercial hemp derivatives, and seized marijuana extracts. Interpretation of NGS data revealed a relationship between genotypes and underlying chemotypes, with the principal component analysis indicating a clear distinction between hemp and marijuana clusters. This differentiation was attributed to variations in both synthase genes and pseudogene variants. Finally, this study proposes a genetic cannabis classification method using a differentiation flow chart with novel synthase markers. The flow chart successfully differentiated hemp from marijuana with a 1.3% error rate (n = 147).


Assuntos
Cannabis , Sequenciamento de Nucleotídeos em Larga Escala , Cannabis/genética , Cannabis/química , Cannabis/enzimologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Dronabinol/análise , DNA de Plantas/genética , DNA de Plantas/análise , Canabinoides/análise , Canabinoides/metabolismo , Oxirredutases Intramoleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA